xref: /openbmc/linux/net/ipv4/ip_output.c (revision 643d1f7f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/mm.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
66 
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/mroute.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
86 
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
89 {
90 	iph->check = 0;
91 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
101 		       dst_output);
102 }
103 
104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
118 {
119 	skb_reset_mac_header(newskb);
120 	__skb_pull(newskb, skb_network_offset(newskb));
121 	newskb->pkt_type = PACKET_LOOPBACK;
122 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 	BUG_TRAP(newskb->dst);
124 	netif_rx(newskb);
125 	return 0;
126 }
127 
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
129 {
130 	int ttl = inet->uc_ttl;
131 
132 	if (ttl < 0)
133 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
134 	return ttl;
135 }
136 
137 /*
138  *		Add an ip header to a skbuff and send it out.
139  *
140  */
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
143 {
144 	struct inet_sock *inet = inet_sk(sk);
145 	struct rtable *rt = (struct rtable *)skb->dst;
146 	struct iphdr *iph;
147 
148 	/* Build the IP header. */
149 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 	skb_reset_network_header(skb);
151 	iph = ip_hdr(skb);
152 	iph->version  = 4;
153 	iph->ihl      = 5;
154 	iph->tos      = inet->tos;
155 	if (ip_dont_fragment(sk, &rt->u.dst))
156 		iph->frag_off = htons(IP_DF);
157 	else
158 		iph->frag_off = 0;
159 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
160 	iph->daddr    = rt->rt_dst;
161 	iph->saddr    = rt->rt_src;
162 	iph->protocol = sk->sk_protocol;
163 	ip_select_ident(iph, &rt->u.dst, sk);
164 
165 	if (opt && opt->optlen) {
166 		iph->ihl += opt->optlen>>2;
167 		ip_options_build(skb, opt, daddr, rt, 0);
168 	}
169 
170 	skb->priority = sk->sk_priority;
171 	skb->mark = sk->sk_mark;
172 
173 	/* Send it out. */
174 	return ip_local_out(skb);
175 }
176 
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 	struct dst_entry *dst = skb->dst;
182 	struct rtable *rt = (struct rtable *)dst;
183 	struct net_device *dev = dst->dev;
184 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 
186 	if (rt->rt_type == RTN_MULTICAST)
187 		IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
188 	else if (rt->rt_type == RTN_BROADCAST)
189 		IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
190 
191 	/* Be paranoid, rather than too clever. */
192 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 		struct sk_buff *skb2;
194 
195 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 		if (skb2 == NULL) {
197 			kfree_skb(skb);
198 			return -ENOMEM;
199 		}
200 		if (skb->sk)
201 			skb_set_owner_w(skb2, skb->sk);
202 		kfree_skb(skb);
203 		skb = skb2;
204 	}
205 
206 	if (dst->hh)
207 		return neigh_hh_output(dst->hh, skb);
208 	else if (dst->neighbour)
209 		return dst->neighbour->output(skb);
210 
211 	if (net_ratelimit())
212 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 	kfree_skb(skb);
214 	return -EINVAL;
215 }
216 
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 {
219 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 
221 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
223 }
224 
225 static int ip_finish_output(struct sk_buff *skb)
226 {
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 	/* Policy lookup after SNAT yielded a new policy */
229 	if (skb->dst->xfrm != NULL) {
230 		IPCB(skb)->flags |= IPSKB_REROUTED;
231 		return dst_output(skb);
232 	}
233 #endif
234 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 		return ip_fragment(skb, ip_finish_output2);
236 	else
237 		return ip_finish_output2(skb);
238 }
239 
240 int ip_mc_output(struct sk_buff *skb)
241 {
242 	struct sock *sk = skb->sk;
243 	struct rtable *rt = (struct rtable*)skb->dst;
244 	struct net_device *dev = rt->u.dst.dev;
245 
246 	/*
247 	 *	If the indicated interface is up and running, send the packet.
248 	 */
249 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
250 
251 	skb->dev = dev;
252 	skb->protocol = htons(ETH_P_IP);
253 
254 	/*
255 	 *	Multicasts are looped back for other local users
256 	 */
257 
258 	if (rt->rt_flags&RTCF_MULTICAST) {
259 		if ((!sk || inet_sk(sk)->mc_loop)
260 #ifdef CONFIG_IP_MROUTE
261 		/* Small optimization: do not loopback not local frames,
262 		   which returned after forwarding; they will be  dropped
263 		   by ip_mr_input in any case.
264 		   Note, that local frames are looped back to be delivered
265 		   to local recipients.
266 
267 		   This check is duplicated in ip_mr_input at the moment.
268 		 */
269 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
270 #endif
271 		) {
272 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
273 			if (newskb)
274 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
275 					NULL, newskb->dev,
276 					ip_dev_loopback_xmit);
277 		}
278 
279 		/* Multicasts with ttl 0 must not go beyond the host */
280 
281 		if (ip_hdr(skb)->ttl == 0) {
282 			kfree_skb(skb);
283 			return 0;
284 		}
285 	}
286 
287 	if (rt->rt_flags&RTCF_BROADCAST) {
288 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
289 		if (newskb)
290 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
291 				newskb->dev, ip_dev_loopback_xmit);
292 	}
293 
294 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
295 			    ip_finish_output,
296 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
297 }
298 
299 int ip_output(struct sk_buff *skb)
300 {
301 	struct net_device *dev = skb->dst->dev;
302 
303 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
304 
305 	skb->dev = dev;
306 	skb->protocol = htons(ETH_P_IP);
307 
308 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
309 			    ip_finish_output,
310 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
311 }
312 
313 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
314 {
315 	struct sock *sk = skb->sk;
316 	struct inet_sock *inet = inet_sk(sk);
317 	struct ip_options *opt = inet->opt;
318 	struct rtable *rt;
319 	struct iphdr *iph;
320 
321 	/* Skip all of this if the packet is already routed,
322 	 * f.e. by something like SCTP.
323 	 */
324 	rt = (struct rtable *) skb->dst;
325 	if (rt != NULL)
326 		goto packet_routed;
327 
328 	/* Make sure we can route this packet. */
329 	rt = (struct rtable *)__sk_dst_check(sk, 0);
330 	if (rt == NULL) {
331 		__be32 daddr;
332 
333 		/* Use correct destination address if we have options. */
334 		daddr = inet->daddr;
335 		if(opt && opt->srr)
336 			daddr = opt->faddr;
337 
338 		{
339 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
340 					    .nl_u = { .ip4_u =
341 						      { .daddr = daddr,
342 							.saddr = inet->saddr,
343 							.tos = RT_CONN_FLAGS(sk) } },
344 					    .proto = sk->sk_protocol,
345 					    .uli_u = { .ports =
346 						       { .sport = inet->sport,
347 							 .dport = inet->dport } } };
348 
349 			/* If this fails, retransmit mechanism of transport layer will
350 			 * keep trying until route appears or the connection times
351 			 * itself out.
352 			 */
353 			security_sk_classify_flow(sk, &fl);
354 			if (ip_route_output_flow(&init_net, &rt, &fl, sk, 0))
355 				goto no_route;
356 		}
357 		sk_setup_caps(sk, &rt->u.dst);
358 	}
359 	skb->dst = dst_clone(&rt->u.dst);
360 
361 packet_routed:
362 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
363 		goto no_route;
364 
365 	/* OK, we know where to send it, allocate and build IP header. */
366 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
367 	skb_reset_network_header(skb);
368 	iph = ip_hdr(skb);
369 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
370 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
371 		iph->frag_off = htons(IP_DF);
372 	else
373 		iph->frag_off = 0;
374 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
375 	iph->protocol = sk->sk_protocol;
376 	iph->saddr    = rt->rt_src;
377 	iph->daddr    = rt->rt_dst;
378 	/* Transport layer set skb->h.foo itself. */
379 
380 	if (opt && opt->optlen) {
381 		iph->ihl += opt->optlen >> 2;
382 		ip_options_build(skb, opt, inet->daddr, rt, 0);
383 	}
384 
385 	ip_select_ident_more(iph, &rt->u.dst, sk,
386 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
387 
388 	skb->priority = sk->sk_priority;
389 	skb->mark = sk->sk_mark;
390 
391 	return ip_local_out(skb);
392 
393 no_route:
394 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
395 	kfree_skb(skb);
396 	return -EHOSTUNREACH;
397 }
398 
399 
400 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
401 {
402 	to->pkt_type = from->pkt_type;
403 	to->priority = from->priority;
404 	to->protocol = from->protocol;
405 	dst_release(to->dst);
406 	to->dst = dst_clone(from->dst);
407 	to->dev = from->dev;
408 	to->mark = from->mark;
409 
410 	/* Copy the flags to each fragment. */
411 	IPCB(to)->flags = IPCB(from)->flags;
412 
413 #ifdef CONFIG_NET_SCHED
414 	to->tc_index = from->tc_index;
415 #endif
416 	nf_copy(to, from);
417 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
418     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
419 	to->nf_trace = from->nf_trace;
420 #endif
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
422 	to->ipvs_property = from->ipvs_property;
423 #endif
424 	skb_copy_secmark(to, from);
425 }
426 
427 /*
428  *	This IP datagram is too large to be sent in one piece.  Break it up into
429  *	smaller pieces (each of size equal to IP header plus
430  *	a block of the data of the original IP data part) that will yet fit in a
431  *	single device frame, and queue such a frame for sending.
432  */
433 
434 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
435 {
436 	struct iphdr *iph;
437 	int raw = 0;
438 	int ptr;
439 	struct net_device *dev;
440 	struct sk_buff *skb2;
441 	unsigned int mtu, hlen, left, len, ll_rs, pad;
442 	int offset;
443 	__be16 not_last_frag;
444 	struct rtable *rt = (struct rtable*)skb->dst;
445 	int err = 0;
446 
447 	dev = rt->u.dst.dev;
448 
449 	/*
450 	 *	Point into the IP datagram header.
451 	 */
452 
453 	iph = ip_hdr(skb);
454 
455 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
456 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
457 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
458 			  htonl(ip_skb_dst_mtu(skb)));
459 		kfree_skb(skb);
460 		return -EMSGSIZE;
461 	}
462 
463 	/*
464 	 *	Setup starting values.
465 	 */
466 
467 	hlen = iph->ihl * 4;
468 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
469 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
470 
471 	/* When frag_list is given, use it. First, check its validity:
472 	 * some transformers could create wrong frag_list or break existing
473 	 * one, it is not prohibited. In this case fall back to copying.
474 	 *
475 	 * LATER: this step can be merged to real generation of fragments,
476 	 * we can switch to copy when see the first bad fragment.
477 	 */
478 	if (skb_shinfo(skb)->frag_list) {
479 		struct sk_buff *frag;
480 		int first_len = skb_pagelen(skb);
481 		int truesizes = 0;
482 
483 		if (first_len - hlen > mtu ||
484 		    ((first_len - hlen) & 7) ||
485 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
486 		    skb_cloned(skb))
487 			goto slow_path;
488 
489 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
490 			/* Correct geometry. */
491 			if (frag->len > mtu ||
492 			    ((frag->len & 7) && frag->next) ||
493 			    skb_headroom(frag) < hlen)
494 			    goto slow_path;
495 
496 			/* Partially cloned skb? */
497 			if (skb_shared(frag))
498 				goto slow_path;
499 
500 			BUG_ON(frag->sk);
501 			if (skb->sk) {
502 				sock_hold(skb->sk);
503 				frag->sk = skb->sk;
504 				frag->destructor = sock_wfree;
505 				truesizes += frag->truesize;
506 			}
507 		}
508 
509 		/* Everything is OK. Generate! */
510 
511 		err = 0;
512 		offset = 0;
513 		frag = skb_shinfo(skb)->frag_list;
514 		skb_shinfo(skb)->frag_list = NULL;
515 		skb->data_len = first_len - skb_headlen(skb);
516 		skb->truesize -= truesizes;
517 		skb->len = first_len;
518 		iph->tot_len = htons(first_len);
519 		iph->frag_off = htons(IP_MF);
520 		ip_send_check(iph);
521 
522 		for (;;) {
523 			/* Prepare header of the next frame,
524 			 * before previous one went down. */
525 			if (frag) {
526 				frag->ip_summed = CHECKSUM_NONE;
527 				skb_reset_transport_header(frag);
528 				__skb_push(frag, hlen);
529 				skb_reset_network_header(frag);
530 				memcpy(skb_network_header(frag), iph, hlen);
531 				iph = ip_hdr(frag);
532 				iph->tot_len = htons(frag->len);
533 				ip_copy_metadata(frag, skb);
534 				if (offset == 0)
535 					ip_options_fragment(frag);
536 				offset += skb->len - hlen;
537 				iph->frag_off = htons(offset>>3);
538 				if (frag->next != NULL)
539 					iph->frag_off |= htons(IP_MF);
540 				/* Ready, complete checksum */
541 				ip_send_check(iph);
542 			}
543 
544 			err = output(skb);
545 
546 			if (!err)
547 				IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
548 			if (err || !frag)
549 				break;
550 
551 			skb = frag;
552 			frag = skb->next;
553 			skb->next = NULL;
554 		}
555 
556 		if (err == 0) {
557 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
558 			return 0;
559 		}
560 
561 		while (frag) {
562 			skb = frag->next;
563 			kfree_skb(frag);
564 			frag = skb;
565 		}
566 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
567 		return err;
568 	}
569 
570 slow_path:
571 	left = skb->len - hlen;		/* Space per frame */
572 	ptr = raw + hlen;		/* Where to start from */
573 
574 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
575 	 * we need to make room for the encapsulating header
576 	 */
577 	pad = nf_bridge_pad(skb);
578 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
579 	mtu -= pad;
580 
581 	/*
582 	 *	Fragment the datagram.
583 	 */
584 
585 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
586 	not_last_frag = iph->frag_off & htons(IP_MF);
587 
588 	/*
589 	 *	Keep copying data until we run out.
590 	 */
591 
592 	while (left > 0) {
593 		len = left;
594 		/* IF: it doesn't fit, use 'mtu' - the data space left */
595 		if (len > mtu)
596 			len = mtu;
597 		/* IF: we are not sending upto and including the packet end
598 		   then align the next start on an eight byte boundary */
599 		if (len < left)	{
600 			len &= ~7;
601 		}
602 		/*
603 		 *	Allocate buffer.
604 		 */
605 
606 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
607 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
608 			err = -ENOMEM;
609 			goto fail;
610 		}
611 
612 		/*
613 		 *	Set up data on packet
614 		 */
615 
616 		ip_copy_metadata(skb2, skb);
617 		skb_reserve(skb2, ll_rs);
618 		skb_put(skb2, len + hlen);
619 		skb_reset_network_header(skb2);
620 		skb2->transport_header = skb2->network_header + hlen;
621 
622 		/*
623 		 *	Charge the memory for the fragment to any owner
624 		 *	it might possess
625 		 */
626 
627 		if (skb->sk)
628 			skb_set_owner_w(skb2, skb->sk);
629 
630 		/*
631 		 *	Copy the packet header into the new buffer.
632 		 */
633 
634 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
635 
636 		/*
637 		 *	Copy a block of the IP datagram.
638 		 */
639 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
640 			BUG();
641 		left -= len;
642 
643 		/*
644 		 *	Fill in the new header fields.
645 		 */
646 		iph = ip_hdr(skb2);
647 		iph->frag_off = htons((offset >> 3));
648 
649 		/* ANK: dirty, but effective trick. Upgrade options only if
650 		 * the segment to be fragmented was THE FIRST (otherwise,
651 		 * options are already fixed) and make it ONCE
652 		 * on the initial skb, so that all the following fragments
653 		 * will inherit fixed options.
654 		 */
655 		if (offset == 0)
656 			ip_options_fragment(skb);
657 
658 		/*
659 		 *	Added AC : If we are fragmenting a fragment that's not the
660 		 *		   last fragment then keep MF on each bit
661 		 */
662 		if (left > 0 || not_last_frag)
663 			iph->frag_off |= htons(IP_MF);
664 		ptr += len;
665 		offset += len;
666 
667 		/*
668 		 *	Put this fragment into the sending queue.
669 		 */
670 		iph->tot_len = htons(len + hlen);
671 
672 		ip_send_check(iph);
673 
674 		err = output(skb2);
675 		if (err)
676 			goto fail;
677 
678 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
679 	}
680 	kfree_skb(skb);
681 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
682 	return err;
683 
684 fail:
685 	kfree_skb(skb);
686 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
687 	return err;
688 }
689 
690 EXPORT_SYMBOL(ip_fragment);
691 
692 int
693 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
694 {
695 	struct iovec *iov = from;
696 
697 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
698 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
699 			return -EFAULT;
700 	} else {
701 		__wsum csum = 0;
702 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
703 			return -EFAULT;
704 		skb->csum = csum_block_add(skb->csum, csum, odd);
705 	}
706 	return 0;
707 }
708 
709 static inline __wsum
710 csum_page(struct page *page, int offset, int copy)
711 {
712 	char *kaddr;
713 	__wsum csum;
714 	kaddr = kmap(page);
715 	csum = csum_partial(kaddr + offset, copy, 0);
716 	kunmap(page);
717 	return csum;
718 }
719 
720 static inline int ip_ufo_append_data(struct sock *sk,
721 			int getfrag(void *from, char *to, int offset, int len,
722 			       int odd, struct sk_buff *skb),
723 			void *from, int length, int hh_len, int fragheaderlen,
724 			int transhdrlen, int mtu,unsigned int flags)
725 {
726 	struct sk_buff *skb;
727 	int err;
728 
729 	/* There is support for UDP fragmentation offload by network
730 	 * device, so create one single skb packet containing complete
731 	 * udp datagram
732 	 */
733 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
734 		skb = sock_alloc_send_skb(sk,
735 			hh_len + fragheaderlen + transhdrlen + 20,
736 			(flags & MSG_DONTWAIT), &err);
737 
738 		if (skb == NULL)
739 			return err;
740 
741 		/* reserve space for Hardware header */
742 		skb_reserve(skb, hh_len);
743 
744 		/* create space for UDP/IP header */
745 		skb_put(skb,fragheaderlen + transhdrlen);
746 
747 		/* initialize network header pointer */
748 		skb_reset_network_header(skb);
749 
750 		/* initialize protocol header pointer */
751 		skb->transport_header = skb->network_header + fragheaderlen;
752 
753 		skb->ip_summed = CHECKSUM_PARTIAL;
754 		skb->csum = 0;
755 		sk->sk_sndmsg_off = 0;
756 	}
757 
758 	err = skb_append_datato_frags(sk,skb, getfrag, from,
759 			       (length - transhdrlen));
760 	if (!err) {
761 		/* specify the length of each IP datagram fragment*/
762 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
763 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
764 		__skb_queue_tail(&sk->sk_write_queue, skb);
765 
766 		return 0;
767 	}
768 	/* There is not enough support do UFO ,
769 	 * so follow normal path
770 	 */
771 	kfree_skb(skb);
772 	return err;
773 }
774 
775 /*
776  *	ip_append_data() and ip_append_page() can make one large IP datagram
777  *	from many pieces of data. Each pieces will be holded on the socket
778  *	until ip_push_pending_frames() is called. Each piece can be a page
779  *	or non-page data.
780  *
781  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
782  *	this interface potentially.
783  *
784  *	LATER: length must be adjusted by pad at tail, when it is required.
785  */
786 int ip_append_data(struct sock *sk,
787 		   int getfrag(void *from, char *to, int offset, int len,
788 			       int odd, struct sk_buff *skb),
789 		   void *from, int length, int transhdrlen,
790 		   struct ipcm_cookie *ipc, struct rtable *rt,
791 		   unsigned int flags)
792 {
793 	struct inet_sock *inet = inet_sk(sk);
794 	struct sk_buff *skb;
795 
796 	struct ip_options *opt = NULL;
797 	int hh_len;
798 	int exthdrlen;
799 	int mtu;
800 	int copy;
801 	int err;
802 	int offset = 0;
803 	unsigned int maxfraglen, fragheaderlen;
804 	int csummode = CHECKSUM_NONE;
805 
806 	if (flags&MSG_PROBE)
807 		return 0;
808 
809 	if (skb_queue_empty(&sk->sk_write_queue)) {
810 		/*
811 		 * setup for corking.
812 		 */
813 		opt = ipc->opt;
814 		if (opt) {
815 			if (inet->cork.opt == NULL) {
816 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
817 				if (unlikely(inet->cork.opt == NULL))
818 					return -ENOBUFS;
819 			}
820 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
821 			inet->cork.flags |= IPCORK_OPT;
822 			inet->cork.addr = ipc->addr;
823 		}
824 		dst_hold(&rt->u.dst);
825 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
826 					    rt->u.dst.dev->mtu :
827 					    dst_mtu(rt->u.dst.path);
828 		inet->cork.rt = rt;
829 		inet->cork.length = 0;
830 		sk->sk_sndmsg_page = NULL;
831 		sk->sk_sndmsg_off = 0;
832 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
833 			length += exthdrlen;
834 			transhdrlen += exthdrlen;
835 		}
836 	} else {
837 		rt = inet->cork.rt;
838 		if (inet->cork.flags & IPCORK_OPT)
839 			opt = inet->cork.opt;
840 
841 		transhdrlen = 0;
842 		exthdrlen = 0;
843 		mtu = inet->cork.fragsize;
844 	}
845 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
846 
847 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
848 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
849 
850 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
851 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
852 		return -EMSGSIZE;
853 	}
854 
855 	/*
856 	 * transhdrlen > 0 means that this is the first fragment and we wish
857 	 * it won't be fragmented in the future.
858 	 */
859 	if (transhdrlen &&
860 	    length + fragheaderlen <= mtu &&
861 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
862 	    !exthdrlen)
863 		csummode = CHECKSUM_PARTIAL;
864 
865 	inet->cork.length += length;
866 	if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
867 			(rt->u.dst.dev->features & NETIF_F_UFO)) {
868 
869 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
870 					 fragheaderlen, transhdrlen, mtu,
871 					 flags);
872 		if (err)
873 			goto error;
874 		return 0;
875 	}
876 
877 	/* So, what's going on in the loop below?
878 	 *
879 	 * We use calculated fragment length to generate chained skb,
880 	 * each of segments is IP fragment ready for sending to network after
881 	 * adding appropriate IP header.
882 	 */
883 
884 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
885 		goto alloc_new_skb;
886 
887 	while (length > 0) {
888 		/* Check if the remaining data fits into current packet. */
889 		copy = mtu - skb->len;
890 		if (copy < length)
891 			copy = maxfraglen - skb->len;
892 		if (copy <= 0) {
893 			char *data;
894 			unsigned int datalen;
895 			unsigned int fraglen;
896 			unsigned int fraggap;
897 			unsigned int alloclen;
898 			struct sk_buff *skb_prev;
899 alloc_new_skb:
900 			skb_prev = skb;
901 			if (skb_prev)
902 				fraggap = skb_prev->len - maxfraglen;
903 			else
904 				fraggap = 0;
905 
906 			/*
907 			 * If remaining data exceeds the mtu,
908 			 * we know we need more fragment(s).
909 			 */
910 			datalen = length + fraggap;
911 			if (datalen > mtu - fragheaderlen)
912 				datalen = maxfraglen - fragheaderlen;
913 			fraglen = datalen + fragheaderlen;
914 
915 			if ((flags & MSG_MORE) &&
916 			    !(rt->u.dst.dev->features&NETIF_F_SG))
917 				alloclen = mtu;
918 			else
919 				alloclen = datalen + fragheaderlen;
920 
921 			/* The last fragment gets additional space at tail.
922 			 * Note, with MSG_MORE we overallocate on fragments,
923 			 * because we have no idea what fragment will be
924 			 * the last.
925 			 */
926 			if (datalen == length + fraggap)
927 				alloclen += rt->u.dst.trailer_len;
928 
929 			if (transhdrlen) {
930 				skb = sock_alloc_send_skb(sk,
931 						alloclen + hh_len + 15,
932 						(flags & MSG_DONTWAIT), &err);
933 			} else {
934 				skb = NULL;
935 				if (atomic_read(&sk->sk_wmem_alloc) <=
936 				    2 * sk->sk_sndbuf)
937 					skb = sock_wmalloc(sk,
938 							   alloclen + hh_len + 15, 1,
939 							   sk->sk_allocation);
940 				if (unlikely(skb == NULL))
941 					err = -ENOBUFS;
942 			}
943 			if (skb == NULL)
944 				goto error;
945 
946 			/*
947 			 *	Fill in the control structures
948 			 */
949 			skb->ip_summed = csummode;
950 			skb->csum = 0;
951 			skb_reserve(skb, hh_len);
952 
953 			/*
954 			 *	Find where to start putting bytes.
955 			 */
956 			data = skb_put(skb, fraglen);
957 			skb_set_network_header(skb, exthdrlen);
958 			skb->transport_header = (skb->network_header +
959 						 fragheaderlen);
960 			data += fragheaderlen;
961 
962 			if (fraggap) {
963 				skb->csum = skb_copy_and_csum_bits(
964 					skb_prev, maxfraglen,
965 					data + transhdrlen, fraggap, 0);
966 				skb_prev->csum = csum_sub(skb_prev->csum,
967 							  skb->csum);
968 				data += fraggap;
969 				pskb_trim_unique(skb_prev, maxfraglen);
970 			}
971 
972 			copy = datalen - transhdrlen - fraggap;
973 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
974 				err = -EFAULT;
975 				kfree_skb(skb);
976 				goto error;
977 			}
978 
979 			offset += copy;
980 			length -= datalen - fraggap;
981 			transhdrlen = 0;
982 			exthdrlen = 0;
983 			csummode = CHECKSUM_NONE;
984 
985 			/*
986 			 * Put the packet on the pending queue.
987 			 */
988 			__skb_queue_tail(&sk->sk_write_queue, skb);
989 			continue;
990 		}
991 
992 		if (copy > length)
993 			copy = length;
994 
995 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
996 			unsigned int off;
997 
998 			off = skb->len;
999 			if (getfrag(from, skb_put(skb, copy),
1000 					offset, copy, off, skb) < 0) {
1001 				__skb_trim(skb, off);
1002 				err = -EFAULT;
1003 				goto error;
1004 			}
1005 		} else {
1006 			int i = skb_shinfo(skb)->nr_frags;
1007 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1008 			struct page *page = sk->sk_sndmsg_page;
1009 			int off = sk->sk_sndmsg_off;
1010 			unsigned int left;
1011 
1012 			if (page && (left = PAGE_SIZE - off) > 0) {
1013 				if (copy >= left)
1014 					copy = left;
1015 				if (page != frag->page) {
1016 					if (i == MAX_SKB_FRAGS) {
1017 						err = -EMSGSIZE;
1018 						goto error;
1019 					}
1020 					get_page(page);
1021 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1022 					frag = &skb_shinfo(skb)->frags[i];
1023 				}
1024 			} else if (i < MAX_SKB_FRAGS) {
1025 				if (copy > PAGE_SIZE)
1026 					copy = PAGE_SIZE;
1027 				page = alloc_pages(sk->sk_allocation, 0);
1028 				if (page == NULL)  {
1029 					err = -ENOMEM;
1030 					goto error;
1031 				}
1032 				sk->sk_sndmsg_page = page;
1033 				sk->sk_sndmsg_off = 0;
1034 
1035 				skb_fill_page_desc(skb, i, page, 0, 0);
1036 				frag = &skb_shinfo(skb)->frags[i];
1037 			} else {
1038 				err = -EMSGSIZE;
1039 				goto error;
1040 			}
1041 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1042 				err = -EFAULT;
1043 				goto error;
1044 			}
1045 			sk->sk_sndmsg_off += copy;
1046 			frag->size += copy;
1047 			skb->len += copy;
1048 			skb->data_len += copy;
1049 			skb->truesize += copy;
1050 			atomic_add(copy, &sk->sk_wmem_alloc);
1051 		}
1052 		offset += copy;
1053 		length -= copy;
1054 	}
1055 
1056 	return 0;
1057 
1058 error:
1059 	inet->cork.length -= length;
1060 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1061 	return err;
1062 }
1063 
1064 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1065 		       int offset, size_t size, int flags)
1066 {
1067 	struct inet_sock *inet = inet_sk(sk);
1068 	struct sk_buff *skb;
1069 	struct rtable *rt;
1070 	struct ip_options *opt = NULL;
1071 	int hh_len;
1072 	int mtu;
1073 	int len;
1074 	int err;
1075 	unsigned int maxfraglen, fragheaderlen, fraggap;
1076 
1077 	if (inet->hdrincl)
1078 		return -EPERM;
1079 
1080 	if (flags&MSG_PROBE)
1081 		return 0;
1082 
1083 	if (skb_queue_empty(&sk->sk_write_queue))
1084 		return -EINVAL;
1085 
1086 	rt = inet->cork.rt;
1087 	if (inet->cork.flags & IPCORK_OPT)
1088 		opt = inet->cork.opt;
1089 
1090 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1091 		return -EOPNOTSUPP;
1092 
1093 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1094 	mtu = inet->cork.fragsize;
1095 
1096 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1097 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1098 
1099 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1100 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1101 		return -EMSGSIZE;
1102 	}
1103 
1104 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1105 		return -EINVAL;
1106 
1107 	inet->cork.length += size;
1108 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1109 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1110 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1111 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1112 	}
1113 
1114 
1115 	while (size > 0) {
1116 		int i;
1117 
1118 		if (skb_is_gso(skb))
1119 			len = size;
1120 		else {
1121 
1122 			/* Check if the remaining data fits into current packet. */
1123 			len = mtu - skb->len;
1124 			if (len < size)
1125 				len = maxfraglen - skb->len;
1126 		}
1127 		if (len <= 0) {
1128 			struct sk_buff *skb_prev;
1129 			int alloclen;
1130 
1131 			skb_prev = skb;
1132 			fraggap = skb_prev->len - maxfraglen;
1133 
1134 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1135 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1136 			if (unlikely(!skb)) {
1137 				err = -ENOBUFS;
1138 				goto error;
1139 			}
1140 
1141 			/*
1142 			 *	Fill in the control structures
1143 			 */
1144 			skb->ip_summed = CHECKSUM_NONE;
1145 			skb->csum = 0;
1146 			skb_reserve(skb, hh_len);
1147 
1148 			/*
1149 			 *	Find where to start putting bytes.
1150 			 */
1151 			skb_put(skb, fragheaderlen + fraggap);
1152 			skb_reset_network_header(skb);
1153 			skb->transport_header = (skb->network_header +
1154 						 fragheaderlen);
1155 			if (fraggap) {
1156 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1157 								   maxfraglen,
1158 						    skb_transport_header(skb),
1159 								   fraggap, 0);
1160 				skb_prev->csum = csum_sub(skb_prev->csum,
1161 							  skb->csum);
1162 				pskb_trim_unique(skb_prev, maxfraglen);
1163 			}
1164 
1165 			/*
1166 			 * Put the packet on the pending queue.
1167 			 */
1168 			__skb_queue_tail(&sk->sk_write_queue, skb);
1169 			continue;
1170 		}
1171 
1172 		i = skb_shinfo(skb)->nr_frags;
1173 		if (len > size)
1174 			len = size;
1175 		if (skb_can_coalesce(skb, i, page, offset)) {
1176 			skb_shinfo(skb)->frags[i-1].size += len;
1177 		} else if (i < MAX_SKB_FRAGS) {
1178 			get_page(page);
1179 			skb_fill_page_desc(skb, i, page, offset, len);
1180 		} else {
1181 			err = -EMSGSIZE;
1182 			goto error;
1183 		}
1184 
1185 		if (skb->ip_summed == CHECKSUM_NONE) {
1186 			__wsum csum;
1187 			csum = csum_page(page, offset, len);
1188 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1189 		}
1190 
1191 		skb->len += len;
1192 		skb->data_len += len;
1193 		skb->truesize += len;
1194 		atomic_add(len, &sk->sk_wmem_alloc);
1195 		offset += len;
1196 		size -= len;
1197 	}
1198 	return 0;
1199 
1200 error:
1201 	inet->cork.length -= size;
1202 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1203 	return err;
1204 }
1205 
1206 static void ip_cork_release(struct inet_sock *inet)
1207 {
1208 	inet->cork.flags &= ~IPCORK_OPT;
1209 	kfree(inet->cork.opt);
1210 	inet->cork.opt = NULL;
1211 	if (inet->cork.rt) {
1212 		ip_rt_put(inet->cork.rt);
1213 		inet->cork.rt = NULL;
1214 	}
1215 }
1216 
1217 /*
1218  *	Combined all pending IP fragments on the socket as one IP datagram
1219  *	and push them out.
1220  */
1221 int ip_push_pending_frames(struct sock *sk)
1222 {
1223 	struct sk_buff *skb, *tmp_skb;
1224 	struct sk_buff **tail_skb;
1225 	struct inet_sock *inet = inet_sk(sk);
1226 	struct ip_options *opt = NULL;
1227 	struct rtable *rt = inet->cork.rt;
1228 	struct iphdr *iph;
1229 	__be16 df = 0;
1230 	__u8 ttl;
1231 	int err = 0;
1232 
1233 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1234 		goto out;
1235 	tail_skb = &(skb_shinfo(skb)->frag_list);
1236 
1237 	/* move skb->data to ip header from ext header */
1238 	if (skb->data < skb_network_header(skb))
1239 		__skb_pull(skb, skb_network_offset(skb));
1240 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1241 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1242 		*tail_skb = tmp_skb;
1243 		tail_skb = &(tmp_skb->next);
1244 		skb->len += tmp_skb->len;
1245 		skb->data_len += tmp_skb->len;
1246 		skb->truesize += tmp_skb->truesize;
1247 		__sock_put(tmp_skb->sk);
1248 		tmp_skb->destructor = NULL;
1249 		tmp_skb->sk = NULL;
1250 	}
1251 
1252 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1253 	 * to fragment the frame generated here. No matter, what transforms
1254 	 * how transforms change size of the packet, it will come out.
1255 	 */
1256 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1257 		skb->local_df = 1;
1258 
1259 	/* DF bit is set when we want to see DF on outgoing frames.
1260 	 * If local_df is set too, we still allow to fragment this frame
1261 	 * locally. */
1262 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1263 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1264 	     ip_dont_fragment(sk, &rt->u.dst)))
1265 		df = htons(IP_DF);
1266 
1267 	if (inet->cork.flags & IPCORK_OPT)
1268 		opt = inet->cork.opt;
1269 
1270 	if (rt->rt_type == RTN_MULTICAST)
1271 		ttl = inet->mc_ttl;
1272 	else
1273 		ttl = ip_select_ttl(inet, &rt->u.dst);
1274 
1275 	iph = (struct iphdr *)skb->data;
1276 	iph->version = 4;
1277 	iph->ihl = 5;
1278 	if (opt) {
1279 		iph->ihl += opt->optlen>>2;
1280 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1281 	}
1282 	iph->tos = inet->tos;
1283 	iph->frag_off = df;
1284 	ip_select_ident(iph, &rt->u.dst, sk);
1285 	iph->ttl = ttl;
1286 	iph->protocol = sk->sk_protocol;
1287 	iph->saddr = rt->rt_src;
1288 	iph->daddr = rt->rt_dst;
1289 
1290 	skb->priority = sk->sk_priority;
1291 	skb->mark = sk->sk_mark;
1292 	skb->dst = dst_clone(&rt->u.dst);
1293 
1294 	if (iph->protocol == IPPROTO_ICMP)
1295 		icmp_out_count(((struct icmphdr *)
1296 			skb_transport_header(skb))->type);
1297 
1298 	/* Netfilter gets whole the not fragmented skb. */
1299 	err = ip_local_out(skb);
1300 	if (err) {
1301 		if (err > 0)
1302 			err = inet->recverr ? net_xmit_errno(err) : 0;
1303 		if (err)
1304 			goto error;
1305 	}
1306 
1307 out:
1308 	ip_cork_release(inet);
1309 	return err;
1310 
1311 error:
1312 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1313 	goto out;
1314 }
1315 
1316 /*
1317  *	Throw away all pending data on the socket.
1318  */
1319 void ip_flush_pending_frames(struct sock *sk)
1320 {
1321 	struct sk_buff *skb;
1322 
1323 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1324 		kfree_skb(skb);
1325 
1326 	ip_cork_release(inet_sk(sk));
1327 }
1328 
1329 
1330 /*
1331  *	Fetch data from kernel space and fill in checksum if needed.
1332  */
1333 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1334 			      int len, int odd, struct sk_buff *skb)
1335 {
1336 	__wsum csum;
1337 
1338 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1339 	skb->csum = csum_block_add(skb->csum, csum, odd);
1340 	return 0;
1341 }
1342 
1343 /*
1344  *	Generic function to send a packet as reply to another packet.
1345  *	Used to send TCP resets so far. ICMP should use this function too.
1346  *
1347  *	Should run single threaded per socket because it uses the sock
1348  *     	structure to pass arguments.
1349  */
1350 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1351 		   unsigned int len)
1352 {
1353 	struct inet_sock *inet = inet_sk(sk);
1354 	struct {
1355 		struct ip_options	opt;
1356 		char			data[40];
1357 	} replyopts;
1358 	struct ipcm_cookie ipc;
1359 	__be32 daddr;
1360 	struct rtable *rt = (struct rtable*)skb->dst;
1361 
1362 	if (ip_options_echo(&replyopts.opt, skb))
1363 		return;
1364 
1365 	daddr = ipc.addr = rt->rt_src;
1366 	ipc.opt = NULL;
1367 
1368 	if (replyopts.opt.optlen) {
1369 		ipc.opt = &replyopts.opt;
1370 
1371 		if (ipc.opt->srr)
1372 			daddr = replyopts.opt.faddr;
1373 	}
1374 
1375 	{
1376 		struct flowi fl = { .oif = arg->bound_dev_if,
1377 				    .nl_u = { .ip4_u =
1378 					      { .daddr = daddr,
1379 						.saddr = rt->rt_spec_dst,
1380 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1381 				    /* Not quite clean, but right. */
1382 				    .uli_u = { .ports =
1383 					       { .sport = tcp_hdr(skb)->dest,
1384 						 .dport = tcp_hdr(skb)->source } },
1385 				    .proto = sk->sk_protocol };
1386 		security_skb_classify_flow(skb, &fl);
1387 		if (ip_route_output_key(sk->sk_net, &rt, &fl))
1388 			return;
1389 	}
1390 
1391 	/* And let IP do all the hard work.
1392 
1393 	   This chunk is not reenterable, hence spinlock.
1394 	   Note that it uses the fact, that this function is called
1395 	   with locally disabled BH and that sk cannot be already spinlocked.
1396 	 */
1397 	bh_lock_sock(sk);
1398 	inet->tos = ip_hdr(skb)->tos;
1399 	sk->sk_priority = skb->priority;
1400 	sk->sk_protocol = ip_hdr(skb)->protocol;
1401 	sk->sk_bound_dev_if = arg->bound_dev_if;
1402 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1403 		       &ipc, rt, MSG_DONTWAIT);
1404 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1405 		if (arg->csumoffset >= 0)
1406 			*((__sum16 *)skb_transport_header(skb) +
1407 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1408 								arg->csum));
1409 		skb->ip_summed = CHECKSUM_NONE;
1410 		ip_push_pending_frames(sk);
1411 	}
1412 
1413 	bh_unlock_sock(sk);
1414 
1415 	ip_rt_put(rt);
1416 }
1417 
1418 void __init ip_init(void)
1419 {
1420 	ip_rt_init();
1421 	inet_initpeers();
1422 
1423 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1424 	igmp_mc_proc_init();
1425 #endif
1426 }
1427 
1428 EXPORT_SYMBOL(ip_generic_getfrag);
1429 EXPORT_SYMBOL(ip_queue_xmit);
1430 EXPORT_SYMBOL(ip_send_check);
1431