1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/inet_ecn.h> 78 #include <net/lwtunnel.h> 79 #include <linux/bpf-cgroup.h> 80 #include <linux/igmp.h> 81 #include <linux/netfilter_ipv4.h> 82 #include <linux/netfilter_bridge.h> 83 #include <linux/netlink.h> 84 #include <linux/tcp.h> 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 106 /* if egress device is enslaved to an L3 master device pass the 107 * skb to its handler for processing 108 */ 109 skb = l3mdev_ip_out(sk, skb); 110 if (unlikely(!skb)) 111 return 0; 112 113 skb->protocol = htons(ETH_P_IP); 114 115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 116 net, sk, skb, NULL, skb_dst(skb)->dev, 117 dst_output); 118 } 119 120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 121 { 122 int err; 123 124 err = __ip_local_out(net, sk, skb); 125 if (likely(err == 1)) 126 err = dst_output(net, sk, skb); 127 128 return err; 129 } 130 EXPORT_SYMBOL_GPL(ip_local_out); 131 132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 133 { 134 int ttl = inet->uc_ttl; 135 136 if (ttl < 0) 137 ttl = ip4_dst_hoplimit(dst); 138 return ttl; 139 } 140 141 /* 142 * Add an ip header to a skbuff and send it out. 143 * 144 */ 145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 147 u8 tos) 148 { 149 struct inet_sock *inet = inet_sk(sk); 150 struct rtable *rt = skb_rtable(skb); 151 struct net *net = sock_net(sk); 152 struct iphdr *iph; 153 154 /* Build the IP header. */ 155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 156 skb_reset_network_header(skb); 157 iph = ip_hdr(skb); 158 iph->version = 4; 159 iph->ihl = 5; 160 iph->tos = tos; 161 iph->ttl = ip_select_ttl(inet, &rt->dst); 162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 163 iph->saddr = saddr; 164 iph->protocol = sk->sk_protocol; 165 if (ip_dont_fragment(sk, &rt->dst)) { 166 iph->frag_off = htons(IP_DF); 167 iph->id = 0; 168 } else { 169 iph->frag_off = 0; 170 __ip_select_ident(net, iph, 1); 171 } 172 173 if (opt && opt->opt.optlen) { 174 iph->ihl += opt->opt.optlen>>2; 175 ip_options_build(skb, &opt->opt, daddr, rt, 0); 176 } 177 178 skb->priority = sk->sk_priority; 179 if (!skb->mark) 180 skb->mark = sk->sk_mark; 181 182 /* Send it out. */ 183 return ip_local_out(net, skb->sk, skb); 184 } 185 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 186 187 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 188 { 189 struct dst_entry *dst = skb_dst(skb); 190 struct rtable *rt = (struct rtable *)dst; 191 struct net_device *dev = dst->dev; 192 unsigned int hh_len = LL_RESERVED_SPACE(dev); 193 struct neighbour *neigh; 194 bool is_v6gw = false; 195 196 if (rt->rt_type == RTN_MULTICAST) { 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 198 } else if (rt->rt_type == RTN_BROADCAST) 199 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 200 201 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 202 skb = skb_expand_head(skb, hh_len); 203 if (!skb) 204 return -ENOMEM; 205 } 206 207 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 208 int res = lwtunnel_xmit(skb); 209 210 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 211 return res; 212 } 213 214 rcu_read_lock_bh(); 215 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 216 if (!IS_ERR(neigh)) { 217 int res; 218 219 sock_confirm_neigh(skb, neigh); 220 /* if crossing protocols, can not use the cached header */ 221 res = neigh_output(neigh, skb, is_v6gw); 222 rcu_read_unlock_bh(); 223 return res; 224 } 225 rcu_read_unlock_bh(); 226 227 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 228 __func__); 229 kfree_skb(skb); 230 return -EINVAL; 231 } 232 233 static int ip_finish_output_gso(struct net *net, struct sock *sk, 234 struct sk_buff *skb, unsigned int mtu) 235 { 236 struct sk_buff *segs, *nskb; 237 netdev_features_t features; 238 int ret = 0; 239 240 /* common case: seglen is <= mtu 241 */ 242 if (skb_gso_validate_network_len(skb, mtu)) 243 return ip_finish_output2(net, sk, skb); 244 245 /* Slowpath - GSO segment length exceeds the egress MTU. 246 * 247 * This can happen in several cases: 248 * - Forwarding of a TCP GRO skb, when DF flag is not set. 249 * - Forwarding of an skb that arrived on a virtualization interface 250 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 251 * stack. 252 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 253 * interface with a smaller MTU. 254 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 255 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 256 * insufficient MTU. 257 */ 258 features = netif_skb_features(skb); 259 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 260 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 261 if (IS_ERR_OR_NULL(segs)) { 262 kfree_skb(skb); 263 return -ENOMEM; 264 } 265 266 consume_skb(skb); 267 268 skb_list_walk_safe(segs, segs, nskb) { 269 int err; 270 271 skb_mark_not_on_list(segs); 272 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 273 274 if (err && ret == 0) 275 ret = err; 276 } 277 278 return ret; 279 } 280 281 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 282 { 283 unsigned int mtu; 284 285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 286 /* Policy lookup after SNAT yielded a new policy */ 287 if (skb_dst(skb)->xfrm) { 288 IPCB(skb)->flags |= IPSKB_REROUTED; 289 return dst_output(net, sk, skb); 290 } 291 #endif 292 mtu = ip_skb_dst_mtu(sk, skb); 293 if (skb_is_gso(skb)) 294 return ip_finish_output_gso(net, sk, skb, mtu); 295 296 if (skb->len > mtu || IPCB(skb)->frag_max_size) 297 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 298 299 return ip_finish_output2(net, sk, skb); 300 } 301 302 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 303 { 304 int ret; 305 306 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 307 switch (ret) { 308 case NET_XMIT_SUCCESS: 309 return __ip_finish_output(net, sk, skb); 310 case NET_XMIT_CN: 311 return __ip_finish_output(net, sk, skb) ? : ret; 312 default: 313 kfree_skb(skb); 314 return ret; 315 } 316 } 317 318 static int ip_mc_finish_output(struct net *net, struct sock *sk, 319 struct sk_buff *skb) 320 { 321 struct rtable *new_rt; 322 bool do_cn = false; 323 int ret, err; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 switch (ret) { 327 case NET_XMIT_CN: 328 do_cn = true; 329 fallthrough; 330 case NET_XMIT_SUCCESS: 331 break; 332 default: 333 kfree_skb(skb); 334 return ret; 335 } 336 337 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 338 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 339 * see ipv4_pktinfo_prepare(). 340 */ 341 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 342 if (new_rt) { 343 new_rt->rt_iif = 0; 344 skb_dst_drop(skb); 345 skb_dst_set(skb, &new_rt->dst); 346 } 347 348 err = dev_loopback_xmit(net, sk, skb); 349 return (do_cn && err) ? ret : err; 350 } 351 352 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 353 { 354 struct rtable *rt = skb_rtable(skb); 355 struct net_device *dev = rt->dst.dev; 356 357 /* 358 * If the indicated interface is up and running, send the packet. 359 */ 360 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 361 362 skb->dev = dev; 363 skb->protocol = htons(ETH_P_IP); 364 365 /* 366 * Multicasts are looped back for other local users 367 */ 368 369 if (rt->rt_flags&RTCF_MULTICAST) { 370 if (sk_mc_loop(sk) 371 #ifdef CONFIG_IP_MROUTE 372 /* Small optimization: do not loopback not local frames, 373 which returned after forwarding; they will be dropped 374 by ip_mr_input in any case. 375 Note, that local frames are looped back to be delivered 376 to local recipients. 377 378 This check is duplicated in ip_mr_input at the moment. 379 */ 380 && 381 ((rt->rt_flags & RTCF_LOCAL) || 382 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 383 #endif 384 ) { 385 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 386 if (newskb) 387 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 388 net, sk, newskb, NULL, newskb->dev, 389 ip_mc_finish_output); 390 } 391 392 /* Multicasts with ttl 0 must not go beyond the host */ 393 394 if (ip_hdr(skb)->ttl == 0) { 395 kfree_skb(skb); 396 return 0; 397 } 398 } 399 400 if (rt->rt_flags&RTCF_BROADCAST) { 401 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 402 if (newskb) 403 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 404 net, sk, newskb, NULL, newskb->dev, 405 ip_mc_finish_output); 406 } 407 408 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 409 net, sk, skb, NULL, skb->dev, 410 ip_finish_output, 411 !(IPCB(skb)->flags & IPSKB_REROUTED)); 412 } 413 414 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 415 { 416 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 417 418 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 419 420 skb->dev = dev; 421 skb->protocol = htons(ETH_P_IP); 422 423 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 424 net, sk, skb, indev, dev, 425 ip_finish_output, 426 !(IPCB(skb)->flags & IPSKB_REROUTED)); 427 } 428 EXPORT_SYMBOL(ip_output); 429 430 /* 431 * copy saddr and daddr, possibly using 64bit load/stores 432 * Equivalent to : 433 * iph->saddr = fl4->saddr; 434 * iph->daddr = fl4->daddr; 435 */ 436 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 437 { 438 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 439 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 440 441 iph->saddr = fl4->saddr; 442 iph->daddr = fl4->daddr; 443 } 444 445 /* Note: skb->sk can be different from sk, in case of tunnels */ 446 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 447 __u8 tos) 448 { 449 struct inet_sock *inet = inet_sk(sk); 450 struct net *net = sock_net(sk); 451 struct ip_options_rcu *inet_opt; 452 struct flowi4 *fl4; 453 struct rtable *rt; 454 struct iphdr *iph; 455 int res; 456 457 /* Skip all of this if the packet is already routed, 458 * f.e. by something like SCTP. 459 */ 460 rcu_read_lock(); 461 inet_opt = rcu_dereference(inet->inet_opt); 462 fl4 = &fl->u.ip4; 463 rt = skb_rtable(skb); 464 if (rt) 465 goto packet_routed; 466 467 /* Make sure we can route this packet. */ 468 rt = (struct rtable *)__sk_dst_check(sk, 0); 469 if (!rt) { 470 __be32 daddr; 471 472 /* Use correct destination address if we have options. */ 473 daddr = inet->inet_daddr; 474 if (inet_opt && inet_opt->opt.srr) 475 daddr = inet_opt->opt.faddr; 476 477 /* If this fails, retransmit mechanism of transport layer will 478 * keep trying until route appears or the connection times 479 * itself out. 480 */ 481 rt = ip_route_output_ports(net, fl4, sk, 482 daddr, inet->inet_saddr, 483 inet->inet_dport, 484 inet->inet_sport, 485 sk->sk_protocol, 486 RT_CONN_FLAGS_TOS(sk, tos), 487 sk->sk_bound_dev_if); 488 if (IS_ERR(rt)) 489 goto no_route; 490 sk_setup_caps(sk, &rt->dst); 491 } 492 skb_dst_set_noref(skb, &rt->dst); 493 494 packet_routed: 495 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 496 goto no_route; 497 498 /* OK, we know where to send it, allocate and build IP header. */ 499 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 500 skb_reset_network_header(skb); 501 iph = ip_hdr(skb); 502 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 503 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 504 iph->frag_off = htons(IP_DF); 505 else 506 iph->frag_off = 0; 507 iph->ttl = ip_select_ttl(inet, &rt->dst); 508 iph->protocol = sk->sk_protocol; 509 ip_copy_addrs(iph, fl4); 510 511 /* Transport layer set skb->h.foo itself. */ 512 513 if (inet_opt && inet_opt->opt.optlen) { 514 iph->ihl += inet_opt->opt.optlen >> 2; 515 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 516 } 517 518 ip_select_ident_segs(net, skb, sk, 519 skb_shinfo(skb)->gso_segs ?: 1); 520 521 /* TODO : should we use skb->sk here instead of sk ? */ 522 skb->priority = sk->sk_priority; 523 skb->mark = sk->sk_mark; 524 525 res = ip_local_out(net, sk, skb); 526 rcu_read_unlock(); 527 return res; 528 529 no_route: 530 rcu_read_unlock(); 531 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 532 kfree_skb(skb); 533 return -EHOSTUNREACH; 534 } 535 EXPORT_SYMBOL(__ip_queue_xmit); 536 537 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 538 { 539 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 540 } 541 EXPORT_SYMBOL(ip_queue_xmit); 542 543 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 544 { 545 to->pkt_type = from->pkt_type; 546 to->priority = from->priority; 547 to->protocol = from->protocol; 548 to->skb_iif = from->skb_iif; 549 skb_dst_drop(to); 550 skb_dst_copy(to, from); 551 to->dev = from->dev; 552 to->mark = from->mark; 553 554 skb_copy_hash(to, from); 555 556 #ifdef CONFIG_NET_SCHED 557 to->tc_index = from->tc_index; 558 #endif 559 nf_copy(to, from); 560 skb_ext_copy(to, from); 561 #if IS_ENABLED(CONFIG_IP_VS) 562 to->ipvs_property = from->ipvs_property; 563 #endif 564 skb_copy_secmark(to, from); 565 } 566 567 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 568 unsigned int mtu, 569 int (*output)(struct net *, struct sock *, struct sk_buff *)) 570 { 571 struct iphdr *iph = ip_hdr(skb); 572 573 if ((iph->frag_off & htons(IP_DF)) == 0) 574 return ip_do_fragment(net, sk, skb, output); 575 576 if (unlikely(!skb->ignore_df || 577 (IPCB(skb)->frag_max_size && 578 IPCB(skb)->frag_max_size > mtu))) { 579 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 580 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 581 htonl(mtu)); 582 kfree_skb(skb); 583 return -EMSGSIZE; 584 } 585 586 return ip_do_fragment(net, sk, skb, output); 587 } 588 589 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 590 unsigned int hlen, struct ip_fraglist_iter *iter) 591 { 592 unsigned int first_len = skb_pagelen(skb); 593 594 iter->frag = skb_shinfo(skb)->frag_list; 595 skb_frag_list_init(skb); 596 597 iter->offset = 0; 598 iter->iph = iph; 599 iter->hlen = hlen; 600 601 skb->data_len = first_len - skb_headlen(skb); 602 skb->len = first_len; 603 iph->tot_len = htons(first_len); 604 iph->frag_off = htons(IP_MF); 605 ip_send_check(iph); 606 } 607 EXPORT_SYMBOL(ip_fraglist_init); 608 609 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 610 { 611 unsigned int hlen = iter->hlen; 612 struct iphdr *iph = iter->iph; 613 struct sk_buff *frag; 614 615 frag = iter->frag; 616 frag->ip_summed = CHECKSUM_NONE; 617 skb_reset_transport_header(frag); 618 __skb_push(frag, hlen); 619 skb_reset_network_header(frag); 620 memcpy(skb_network_header(frag), iph, hlen); 621 iter->iph = ip_hdr(frag); 622 iph = iter->iph; 623 iph->tot_len = htons(frag->len); 624 ip_copy_metadata(frag, skb); 625 iter->offset += skb->len - hlen; 626 iph->frag_off = htons(iter->offset >> 3); 627 if (frag->next) 628 iph->frag_off |= htons(IP_MF); 629 /* Ready, complete checksum */ 630 ip_send_check(iph); 631 } 632 EXPORT_SYMBOL(ip_fraglist_prepare); 633 634 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 635 unsigned int ll_rs, unsigned int mtu, bool DF, 636 struct ip_frag_state *state) 637 { 638 struct iphdr *iph = ip_hdr(skb); 639 640 state->DF = DF; 641 state->hlen = hlen; 642 state->ll_rs = ll_rs; 643 state->mtu = mtu; 644 645 state->left = skb->len - hlen; /* Space per frame */ 646 state->ptr = hlen; /* Where to start from */ 647 648 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 649 state->not_last_frag = iph->frag_off & htons(IP_MF); 650 } 651 EXPORT_SYMBOL(ip_frag_init); 652 653 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 654 bool first_frag) 655 { 656 /* Copy the flags to each fragment. */ 657 IPCB(to)->flags = IPCB(from)->flags; 658 659 /* ANK: dirty, but effective trick. Upgrade options only if 660 * the segment to be fragmented was THE FIRST (otherwise, 661 * options are already fixed) and make it ONCE 662 * on the initial skb, so that all the following fragments 663 * will inherit fixed options. 664 */ 665 if (first_frag) 666 ip_options_fragment(from); 667 } 668 669 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 670 { 671 unsigned int len = state->left; 672 struct sk_buff *skb2; 673 struct iphdr *iph; 674 675 len = state->left; 676 /* IF: it doesn't fit, use 'mtu' - the data space left */ 677 if (len > state->mtu) 678 len = state->mtu; 679 /* IF: we are not sending up to and including the packet end 680 then align the next start on an eight byte boundary */ 681 if (len < state->left) { 682 len &= ~7; 683 } 684 685 /* Allocate buffer */ 686 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 687 if (!skb2) 688 return ERR_PTR(-ENOMEM); 689 690 /* 691 * Set up data on packet 692 */ 693 694 ip_copy_metadata(skb2, skb); 695 skb_reserve(skb2, state->ll_rs); 696 skb_put(skb2, len + state->hlen); 697 skb_reset_network_header(skb2); 698 skb2->transport_header = skb2->network_header + state->hlen; 699 700 /* 701 * Charge the memory for the fragment to any owner 702 * it might possess 703 */ 704 705 if (skb->sk) 706 skb_set_owner_w(skb2, skb->sk); 707 708 /* 709 * Copy the packet header into the new buffer. 710 */ 711 712 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 713 714 /* 715 * Copy a block of the IP datagram. 716 */ 717 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 718 BUG(); 719 state->left -= len; 720 721 /* 722 * Fill in the new header fields. 723 */ 724 iph = ip_hdr(skb2); 725 iph->frag_off = htons((state->offset >> 3)); 726 if (state->DF) 727 iph->frag_off |= htons(IP_DF); 728 729 /* 730 * Added AC : If we are fragmenting a fragment that's not the 731 * last fragment then keep MF on each bit 732 */ 733 if (state->left > 0 || state->not_last_frag) 734 iph->frag_off |= htons(IP_MF); 735 state->ptr += len; 736 state->offset += len; 737 738 iph->tot_len = htons(len + state->hlen); 739 740 ip_send_check(iph); 741 742 return skb2; 743 } 744 EXPORT_SYMBOL(ip_frag_next); 745 746 /* 747 * This IP datagram is too large to be sent in one piece. Break it up into 748 * smaller pieces (each of size equal to IP header plus 749 * a block of the data of the original IP data part) that will yet fit in a 750 * single device frame, and queue such a frame for sending. 751 */ 752 753 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 754 int (*output)(struct net *, struct sock *, struct sk_buff *)) 755 { 756 struct iphdr *iph; 757 struct sk_buff *skb2; 758 struct rtable *rt = skb_rtable(skb); 759 unsigned int mtu, hlen, ll_rs; 760 struct ip_fraglist_iter iter; 761 ktime_t tstamp = skb->tstamp; 762 struct ip_frag_state state; 763 int err = 0; 764 765 /* for offloaded checksums cleanup checksum before fragmentation */ 766 if (skb->ip_summed == CHECKSUM_PARTIAL && 767 (err = skb_checksum_help(skb))) 768 goto fail; 769 770 /* 771 * Point into the IP datagram header. 772 */ 773 774 iph = ip_hdr(skb); 775 776 mtu = ip_skb_dst_mtu(sk, skb); 777 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 778 mtu = IPCB(skb)->frag_max_size; 779 780 /* 781 * Setup starting values. 782 */ 783 784 hlen = iph->ihl * 4; 785 mtu = mtu - hlen; /* Size of data space */ 786 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 787 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 788 789 /* When frag_list is given, use it. First, check its validity: 790 * some transformers could create wrong frag_list or break existing 791 * one, it is not prohibited. In this case fall back to copying. 792 * 793 * LATER: this step can be merged to real generation of fragments, 794 * we can switch to copy when see the first bad fragment. 795 */ 796 if (skb_has_frag_list(skb)) { 797 struct sk_buff *frag, *frag2; 798 unsigned int first_len = skb_pagelen(skb); 799 800 if (first_len - hlen > mtu || 801 ((first_len - hlen) & 7) || 802 ip_is_fragment(iph) || 803 skb_cloned(skb) || 804 skb_headroom(skb) < ll_rs) 805 goto slow_path; 806 807 skb_walk_frags(skb, frag) { 808 /* Correct geometry. */ 809 if (frag->len > mtu || 810 ((frag->len & 7) && frag->next) || 811 skb_headroom(frag) < hlen + ll_rs) 812 goto slow_path_clean; 813 814 /* Partially cloned skb? */ 815 if (skb_shared(frag)) 816 goto slow_path_clean; 817 818 BUG_ON(frag->sk); 819 if (skb->sk) { 820 frag->sk = skb->sk; 821 frag->destructor = sock_wfree; 822 } 823 skb->truesize -= frag->truesize; 824 } 825 826 /* Everything is OK. Generate! */ 827 ip_fraglist_init(skb, iph, hlen, &iter); 828 829 if (iter.frag) 830 ip_options_fragment(iter.frag); 831 832 for (;;) { 833 /* Prepare header of the next frame, 834 * before previous one went down. */ 835 if (iter.frag) { 836 IPCB(iter.frag)->flags = IPCB(skb)->flags; 837 ip_fraglist_prepare(skb, &iter); 838 } 839 840 skb->tstamp = tstamp; 841 err = output(net, sk, skb); 842 843 if (!err) 844 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 845 if (err || !iter.frag) 846 break; 847 848 skb = ip_fraglist_next(&iter); 849 } 850 851 if (err == 0) { 852 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 853 return 0; 854 } 855 856 kfree_skb_list(iter.frag); 857 858 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 859 return err; 860 861 slow_path_clean: 862 skb_walk_frags(skb, frag2) { 863 if (frag2 == frag) 864 break; 865 frag2->sk = NULL; 866 frag2->destructor = NULL; 867 skb->truesize += frag2->truesize; 868 } 869 } 870 871 slow_path: 872 /* 873 * Fragment the datagram. 874 */ 875 876 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 877 &state); 878 879 /* 880 * Keep copying data until we run out. 881 */ 882 883 while (state.left > 0) { 884 bool first_frag = (state.offset == 0); 885 886 skb2 = ip_frag_next(skb, &state); 887 if (IS_ERR(skb2)) { 888 err = PTR_ERR(skb2); 889 goto fail; 890 } 891 ip_frag_ipcb(skb, skb2, first_frag); 892 893 /* 894 * Put this fragment into the sending queue. 895 */ 896 skb2->tstamp = tstamp; 897 err = output(net, sk, skb2); 898 if (err) 899 goto fail; 900 901 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 902 } 903 consume_skb(skb); 904 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 905 return err; 906 907 fail: 908 kfree_skb(skb); 909 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 910 return err; 911 } 912 EXPORT_SYMBOL(ip_do_fragment); 913 914 int 915 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 916 { 917 struct msghdr *msg = from; 918 919 if (skb->ip_summed == CHECKSUM_PARTIAL) { 920 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 921 return -EFAULT; 922 } else { 923 __wsum csum = 0; 924 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 925 return -EFAULT; 926 skb->csum = csum_block_add(skb->csum, csum, odd); 927 } 928 return 0; 929 } 930 EXPORT_SYMBOL(ip_generic_getfrag); 931 932 static inline __wsum 933 csum_page(struct page *page, int offset, int copy) 934 { 935 char *kaddr; 936 __wsum csum; 937 kaddr = kmap(page); 938 csum = csum_partial(kaddr + offset, copy, 0); 939 kunmap(page); 940 return csum; 941 } 942 943 static int __ip_append_data(struct sock *sk, 944 struct flowi4 *fl4, 945 struct sk_buff_head *queue, 946 struct inet_cork *cork, 947 struct page_frag *pfrag, 948 int getfrag(void *from, char *to, int offset, 949 int len, int odd, struct sk_buff *skb), 950 void *from, int length, int transhdrlen, 951 unsigned int flags) 952 { 953 struct inet_sock *inet = inet_sk(sk); 954 struct ubuf_info *uarg = NULL; 955 struct sk_buff *skb; 956 957 struct ip_options *opt = cork->opt; 958 int hh_len; 959 int exthdrlen; 960 int mtu; 961 int copy; 962 int err; 963 int offset = 0; 964 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 965 int csummode = CHECKSUM_NONE; 966 struct rtable *rt = (struct rtable *)cork->dst; 967 unsigned int wmem_alloc_delta = 0; 968 bool paged, extra_uref = false; 969 u32 tskey = 0; 970 971 skb = skb_peek_tail(queue); 972 973 exthdrlen = !skb ? rt->dst.header_len : 0; 974 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 975 paged = !!cork->gso_size; 976 977 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 978 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 979 tskey = sk->sk_tskey++; 980 981 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 982 983 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 984 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 985 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 986 987 if (cork->length + length > maxnonfragsize - fragheaderlen) { 988 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 989 mtu - (opt ? opt->optlen : 0)); 990 return -EMSGSIZE; 991 } 992 993 /* 994 * transhdrlen > 0 means that this is the first fragment and we wish 995 * it won't be fragmented in the future. 996 */ 997 if (transhdrlen && 998 length + fragheaderlen <= mtu && 999 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1000 (!(flags & MSG_MORE) || cork->gso_size) && 1001 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1002 csummode = CHECKSUM_PARTIAL; 1003 1004 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 1005 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1006 if (!uarg) 1007 return -ENOBUFS; 1008 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1009 if (rt->dst.dev->features & NETIF_F_SG && 1010 csummode == CHECKSUM_PARTIAL) { 1011 paged = true; 1012 } else { 1013 uarg->zerocopy = 0; 1014 skb_zcopy_set(skb, uarg, &extra_uref); 1015 } 1016 } 1017 1018 cork->length += length; 1019 1020 /* So, what's going on in the loop below? 1021 * 1022 * We use calculated fragment length to generate chained skb, 1023 * each of segments is IP fragment ready for sending to network after 1024 * adding appropriate IP header. 1025 */ 1026 1027 if (!skb) 1028 goto alloc_new_skb; 1029 1030 while (length > 0) { 1031 /* Check if the remaining data fits into current packet. */ 1032 copy = mtu - skb->len; 1033 if (copy < length) 1034 copy = maxfraglen - skb->len; 1035 if (copy <= 0) { 1036 char *data; 1037 unsigned int datalen; 1038 unsigned int fraglen; 1039 unsigned int fraggap; 1040 unsigned int alloclen, alloc_extra; 1041 unsigned int pagedlen; 1042 struct sk_buff *skb_prev; 1043 alloc_new_skb: 1044 skb_prev = skb; 1045 if (skb_prev) 1046 fraggap = skb_prev->len - maxfraglen; 1047 else 1048 fraggap = 0; 1049 1050 /* 1051 * If remaining data exceeds the mtu, 1052 * we know we need more fragment(s). 1053 */ 1054 datalen = length + fraggap; 1055 if (datalen > mtu - fragheaderlen) 1056 datalen = maxfraglen - fragheaderlen; 1057 fraglen = datalen + fragheaderlen; 1058 pagedlen = 0; 1059 1060 alloc_extra = hh_len + 15; 1061 alloc_extra += exthdrlen; 1062 1063 /* The last fragment gets additional space at tail. 1064 * Note, with MSG_MORE we overallocate on fragments, 1065 * because we have no idea what fragment will be 1066 * the last. 1067 */ 1068 if (datalen == length + fraggap) 1069 alloc_extra += rt->dst.trailer_len; 1070 1071 if ((flags & MSG_MORE) && 1072 !(rt->dst.dev->features&NETIF_F_SG)) 1073 alloclen = mtu; 1074 else if (!paged && 1075 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1076 !(rt->dst.dev->features & NETIF_F_SG))) 1077 alloclen = fraglen; 1078 else { 1079 alloclen = min_t(int, fraglen, MAX_HEADER); 1080 pagedlen = fraglen - alloclen; 1081 } 1082 1083 alloclen += alloc_extra; 1084 1085 if (transhdrlen) { 1086 skb = sock_alloc_send_skb(sk, alloclen, 1087 (flags & MSG_DONTWAIT), &err); 1088 } else { 1089 skb = NULL; 1090 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1091 2 * sk->sk_sndbuf) 1092 skb = alloc_skb(alloclen, 1093 sk->sk_allocation); 1094 if (unlikely(!skb)) 1095 err = -ENOBUFS; 1096 } 1097 if (!skb) 1098 goto error; 1099 1100 /* 1101 * Fill in the control structures 1102 */ 1103 skb->ip_summed = csummode; 1104 skb->csum = 0; 1105 skb_reserve(skb, hh_len); 1106 1107 /* 1108 * Find where to start putting bytes. 1109 */ 1110 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1111 skb_set_network_header(skb, exthdrlen); 1112 skb->transport_header = (skb->network_header + 1113 fragheaderlen); 1114 data += fragheaderlen + exthdrlen; 1115 1116 if (fraggap) { 1117 skb->csum = skb_copy_and_csum_bits( 1118 skb_prev, maxfraglen, 1119 data + transhdrlen, fraggap); 1120 skb_prev->csum = csum_sub(skb_prev->csum, 1121 skb->csum); 1122 data += fraggap; 1123 pskb_trim_unique(skb_prev, maxfraglen); 1124 } 1125 1126 copy = datalen - transhdrlen - fraggap - pagedlen; 1127 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1128 err = -EFAULT; 1129 kfree_skb(skb); 1130 goto error; 1131 } 1132 1133 offset += copy; 1134 length -= copy + transhdrlen; 1135 transhdrlen = 0; 1136 exthdrlen = 0; 1137 csummode = CHECKSUM_NONE; 1138 1139 /* only the initial fragment is time stamped */ 1140 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1141 cork->tx_flags = 0; 1142 skb_shinfo(skb)->tskey = tskey; 1143 tskey = 0; 1144 skb_zcopy_set(skb, uarg, &extra_uref); 1145 1146 if ((flags & MSG_CONFIRM) && !skb_prev) 1147 skb_set_dst_pending_confirm(skb, 1); 1148 1149 /* 1150 * Put the packet on the pending queue. 1151 */ 1152 if (!skb->destructor) { 1153 skb->destructor = sock_wfree; 1154 skb->sk = sk; 1155 wmem_alloc_delta += skb->truesize; 1156 } 1157 __skb_queue_tail(queue, skb); 1158 continue; 1159 } 1160 1161 if (copy > length) 1162 copy = length; 1163 1164 if (!(rt->dst.dev->features&NETIF_F_SG) && 1165 skb_tailroom(skb) >= copy) { 1166 unsigned int off; 1167 1168 off = skb->len; 1169 if (getfrag(from, skb_put(skb, copy), 1170 offset, copy, off, skb) < 0) { 1171 __skb_trim(skb, off); 1172 err = -EFAULT; 1173 goto error; 1174 } 1175 } else if (!uarg || !uarg->zerocopy) { 1176 int i = skb_shinfo(skb)->nr_frags; 1177 1178 err = -ENOMEM; 1179 if (!sk_page_frag_refill(sk, pfrag)) 1180 goto error; 1181 1182 if (!skb_can_coalesce(skb, i, pfrag->page, 1183 pfrag->offset)) { 1184 err = -EMSGSIZE; 1185 if (i == MAX_SKB_FRAGS) 1186 goto error; 1187 1188 __skb_fill_page_desc(skb, i, pfrag->page, 1189 pfrag->offset, 0); 1190 skb_shinfo(skb)->nr_frags = ++i; 1191 get_page(pfrag->page); 1192 } 1193 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1194 if (getfrag(from, 1195 page_address(pfrag->page) + pfrag->offset, 1196 offset, copy, skb->len, skb) < 0) 1197 goto error_efault; 1198 1199 pfrag->offset += copy; 1200 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1201 skb->len += copy; 1202 skb->data_len += copy; 1203 skb->truesize += copy; 1204 wmem_alloc_delta += copy; 1205 } else { 1206 err = skb_zerocopy_iter_dgram(skb, from, copy); 1207 if (err < 0) 1208 goto error; 1209 } 1210 offset += copy; 1211 length -= copy; 1212 } 1213 1214 if (wmem_alloc_delta) 1215 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1216 return 0; 1217 1218 error_efault: 1219 err = -EFAULT; 1220 error: 1221 net_zcopy_put_abort(uarg, extra_uref); 1222 cork->length -= length; 1223 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1224 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1225 return err; 1226 } 1227 1228 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1229 struct ipcm_cookie *ipc, struct rtable **rtp) 1230 { 1231 struct ip_options_rcu *opt; 1232 struct rtable *rt; 1233 1234 rt = *rtp; 1235 if (unlikely(!rt)) 1236 return -EFAULT; 1237 1238 /* 1239 * setup for corking. 1240 */ 1241 opt = ipc->opt; 1242 if (opt) { 1243 if (!cork->opt) { 1244 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1245 sk->sk_allocation); 1246 if (unlikely(!cork->opt)) 1247 return -ENOBUFS; 1248 } 1249 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1250 cork->flags |= IPCORK_OPT; 1251 cork->addr = ipc->addr; 1252 } 1253 1254 cork->fragsize = ip_sk_use_pmtu(sk) ? 1255 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1256 1257 if (!inetdev_valid_mtu(cork->fragsize)) 1258 return -ENETUNREACH; 1259 1260 cork->gso_size = ipc->gso_size; 1261 1262 cork->dst = &rt->dst; 1263 /* We stole this route, caller should not release it. */ 1264 *rtp = NULL; 1265 1266 cork->length = 0; 1267 cork->ttl = ipc->ttl; 1268 cork->tos = ipc->tos; 1269 cork->mark = ipc->sockc.mark; 1270 cork->priority = ipc->priority; 1271 cork->transmit_time = ipc->sockc.transmit_time; 1272 cork->tx_flags = 0; 1273 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1274 1275 return 0; 1276 } 1277 1278 /* 1279 * ip_append_data() and ip_append_page() can make one large IP datagram 1280 * from many pieces of data. Each pieces will be holded on the socket 1281 * until ip_push_pending_frames() is called. Each piece can be a page 1282 * or non-page data. 1283 * 1284 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1285 * this interface potentially. 1286 * 1287 * LATER: length must be adjusted by pad at tail, when it is required. 1288 */ 1289 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1290 int getfrag(void *from, char *to, int offset, int len, 1291 int odd, struct sk_buff *skb), 1292 void *from, int length, int transhdrlen, 1293 struct ipcm_cookie *ipc, struct rtable **rtp, 1294 unsigned int flags) 1295 { 1296 struct inet_sock *inet = inet_sk(sk); 1297 int err; 1298 1299 if (flags&MSG_PROBE) 1300 return 0; 1301 1302 if (skb_queue_empty(&sk->sk_write_queue)) { 1303 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1304 if (err) 1305 return err; 1306 } else { 1307 transhdrlen = 0; 1308 } 1309 1310 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1311 sk_page_frag(sk), getfrag, 1312 from, length, transhdrlen, flags); 1313 } 1314 1315 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1316 int offset, size_t size, int flags) 1317 { 1318 struct inet_sock *inet = inet_sk(sk); 1319 struct sk_buff *skb; 1320 struct rtable *rt; 1321 struct ip_options *opt = NULL; 1322 struct inet_cork *cork; 1323 int hh_len; 1324 int mtu; 1325 int len; 1326 int err; 1327 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1328 1329 if (inet->hdrincl) 1330 return -EPERM; 1331 1332 if (flags&MSG_PROBE) 1333 return 0; 1334 1335 if (skb_queue_empty(&sk->sk_write_queue)) 1336 return -EINVAL; 1337 1338 cork = &inet->cork.base; 1339 rt = (struct rtable *)cork->dst; 1340 if (cork->flags & IPCORK_OPT) 1341 opt = cork->opt; 1342 1343 if (!(rt->dst.dev->features & NETIF_F_SG)) 1344 return -EOPNOTSUPP; 1345 1346 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1347 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1348 1349 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1350 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1351 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1352 1353 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1354 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1355 mtu - (opt ? opt->optlen : 0)); 1356 return -EMSGSIZE; 1357 } 1358 1359 skb = skb_peek_tail(&sk->sk_write_queue); 1360 if (!skb) 1361 return -EINVAL; 1362 1363 cork->length += size; 1364 1365 while (size > 0) { 1366 /* Check if the remaining data fits into current packet. */ 1367 len = mtu - skb->len; 1368 if (len < size) 1369 len = maxfraglen - skb->len; 1370 1371 if (len <= 0) { 1372 struct sk_buff *skb_prev; 1373 int alloclen; 1374 1375 skb_prev = skb; 1376 fraggap = skb_prev->len - maxfraglen; 1377 1378 alloclen = fragheaderlen + hh_len + fraggap + 15; 1379 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1380 if (unlikely(!skb)) { 1381 err = -ENOBUFS; 1382 goto error; 1383 } 1384 1385 /* 1386 * Fill in the control structures 1387 */ 1388 skb->ip_summed = CHECKSUM_NONE; 1389 skb->csum = 0; 1390 skb_reserve(skb, hh_len); 1391 1392 /* 1393 * Find where to start putting bytes. 1394 */ 1395 skb_put(skb, fragheaderlen + fraggap); 1396 skb_reset_network_header(skb); 1397 skb->transport_header = (skb->network_header + 1398 fragheaderlen); 1399 if (fraggap) { 1400 skb->csum = skb_copy_and_csum_bits(skb_prev, 1401 maxfraglen, 1402 skb_transport_header(skb), 1403 fraggap); 1404 skb_prev->csum = csum_sub(skb_prev->csum, 1405 skb->csum); 1406 pskb_trim_unique(skb_prev, maxfraglen); 1407 } 1408 1409 /* 1410 * Put the packet on the pending queue. 1411 */ 1412 __skb_queue_tail(&sk->sk_write_queue, skb); 1413 continue; 1414 } 1415 1416 if (len > size) 1417 len = size; 1418 1419 if (skb_append_pagefrags(skb, page, offset, len)) { 1420 err = -EMSGSIZE; 1421 goto error; 1422 } 1423 1424 if (skb->ip_summed == CHECKSUM_NONE) { 1425 __wsum csum; 1426 csum = csum_page(page, offset, len); 1427 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1428 } 1429 1430 skb->len += len; 1431 skb->data_len += len; 1432 skb->truesize += len; 1433 refcount_add(len, &sk->sk_wmem_alloc); 1434 offset += len; 1435 size -= len; 1436 } 1437 return 0; 1438 1439 error: 1440 cork->length -= size; 1441 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1442 return err; 1443 } 1444 1445 static void ip_cork_release(struct inet_cork *cork) 1446 { 1447 cork->flags &= ~IPCORK_OPT; 1448 kfree(cork->opt); 1449 cork->opt = NULL; 1450 dst_release(cork->dst); 1451 cork->dst = NULL; 1452 } 1453 1454 /* 1455 * Combined all pending IP fragments on the socket as one IP datagram 1456 * and push them out. 1457 */ 1458 struct sk_buff *__ip_make_skb(struct sock *sk, 1459 struct flowi4 *fl4, 1460 struct sk_buff_head *queue, 1461 struct inet_cork *cork) 1462 { 1463 struct sk_buff *skb, *tmp_skb; 1464 struct sk_buff **tail_skb; 1465 struct inet_sock *inet = inet_sk(sk); 1466 struct net *net = sock_net(sk); 1467 struct ip_options *opt = NULL; 1468 struct rtable *rt = (struct rtable *)cork->dst; 1469 struct iphdr *iph; 1470 __be16 df = 0; 1471 __u8 ttl; 1472 1473 skb = __skb_dequeue(queue); 1474 if (!skb) 1475 goto out; 1476 tail_skb = &(skb_shinfo(skb)->frag_list); 1477 1478 /* move skb->data to ip header from ext header */ 1479 if (skb->data < skb_network_header(skb)) 1480 __skb_pull(skb, skb_network_offset(skb)); 1481 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1482 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1483 *tail_skb = tmp_skb; 1484 tail_skb = &(tmp_skb->next); 1485 skb->len += tmp_skb->len; 1486 skb->data_len += tmp_skb->len; 1487 skb->truesize += tmp_skb->truesize; 1488 tmp_skb->destructor = NULL; 1489 tmp_skb->sk = NULL; 1490 } 1491 1492 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1493 * to fragment the frame generated here. No matter, what transforms 1494 * how transforms change size of the packet, it will come out. 1495 */ 1496 skb->ignore_df = ip_sk_ignore_df(sk); 1497 1498 /* DF bit is set when we want to see DF on outgoing frames. 1499 * If ignore_df is set too, we still allow to fragment this frame 1500 * locally. */ 1501 if (inet->pmtudisc == IP_PMTUDISC_DO || 1502 inet->pmtudisc == IP_PMTUDISC_PROBE || 1503 (skb->len <= dst_mtu(&rt->dst) && 1504 ip_dont_fragment(sk, &rt->dst))) 1505 df = htons(IP_DF); 1506 1507 if (cork->flags & IPCORK_OPT) 1508 opt = cork->opt; 1509 1510 if (cork->ttl != 0) 1511 ttl = cork->ttl; 1512 else if (rt->rt_type == RTN_MULTICAST) 1513 ttl = inet->mc_ttl; 1514 else 1515 ttl = ip_select_ttl(inet, &rt->dst); 1516 1517 iph = ip_hdr(skb); 1518 iph->version = 4; 1519 iph->ihl = 5; 1520 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1521 iph->frag_off = df; 1522 iph->ttl = ttl; 1523 iph->protocol = sk->sk_protocol; 1524 ip_copy_addrs(iph, fl4); 1525 ip_select_ident(net, skb, sk); 1526 1527 if (opt) { 1528 iph->ihl += opt->optlen >> 2; 1529 ip_options_build(skb, opt, cork->addr, rt, 0); 1530 } 1531 1532 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1533 skb->mark = cork->mark; 1534 skb->tstamp = cork->transmit_time; 1535 /* 1536 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1537 * on dst refcount 1538 */ 1539 cork->dst = NULL; 1540 skb_dst_set(skb, &rt->dst); 1541 1542 if (iph->protocol == IPPROTO_ICMP) 1543 icmp_out_count(net, ((struct icmphdr *) 1544 skb_transport_header(skb))->type); 1545 1546 ip_cork_release(cork); 1547 out: 1548 return skb; 1549 } 1550 1551 int ip_send_skb(struct net *net, struct sk_buff *skb) 1552 { 1553 int err; 1554 1555 err = ip_local_out(net, skb->sk, skb); 1556 if (err) { 1557 if (err > 0) 1558 err = net_xmit_errno(err); 1559 if (err) 1560 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1561 } 1562 1563 return err; 1564 } 1565 1566 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1567 { 1568 struct sk_buff *skb; 1569 1570 skb = ip_finish_skb(sk, fl4); 1571 if (!skb) 1572 return 0; 1573 1574 /* Netfilter gets whole the not fragmented skb. */ 1575 return ip_send_skb(sock_net(sk), skb); 1576 } 1577 1578 /* 1579 * Throw away all pending data on the socket. 1580 */ 1581 static void __ip_flush_pending_frames(struct sock *sk, 1582 struct sk_buff_head *queue, 1583 struct inet_cork *cork) 1584 { 1585 struct sk_buff *skb; 1586 1587 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1588 kfree_skb(skb); 1589 1590 ip_cork_release(cork); 1591 } 1592 1593 void ip_flush_pending_frames(struct sock *sk) 1594 { 1595 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1596 } 1597 1598 struct sk_buff *ip_make_skb(struct sock *sk, 1599 struct flowi4 *fl4, 1600 int getfrag(void *from, char *to, int offset, 1601 int len, int odd, struct sk_buff *skb), 1602 void *from, int length, int transhdrlen, 1603 struct ipcm_cookie *ipc, struct rtable **rtp, 1604 struct inet_cork *cork, unsigned int flags) 1605 { 1606 struct sk_buff_head queue; 1607 int err; 1608 1609 if (flags & MSG_PROBE) 1610 return NULL; 1611 1612 __skb_queue_head_init(&queue); 1613 1614 cork->flags = 0; 1615 cork->addr = 0; 1616 cork->opt = NULL; 1617 err = ip_setup_cork(sk, cork, ipc, rtp); 1618 if (err) 1619 return ERR_PTR(err); 1620 1621 err = __ip_append_data(sk, fl4, &queue, cork, 1622 ¤t->task_frag, getfrag, 1623 from, length, transhdrlen, flags); 1624 if (err) { 1625 __ip_flush_pending_frames(sk, &queue, cork); 1626 return ERR_PTR(err); 1627 } 1628 1629 return __ip_make_skb(sk, fl4, &queue, cork); 1630 } 1631 1632 /* 1633 * Fetch data from kernel space and fill in checksum if needed. 1634 */ 1635 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1636 int len, int odd, struct sk_buff *skb) 1637 { 1638 __wsum csum; 1639 1640 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1641 skb->csum = csum_block_add(skb->csum, csum, odd); 1642 return 0; 1643 } 1644 1645 /* 1646 * Generic function to send a packet as reply to another packet. 1647 * Used to send some TCP resets/acks so far. 1648 */ 1649 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1650 const struct ip_options *sopt, 1651 __be32 daddr, __be32 saddr, 1652 const struct ip_reply_arg *arg, 1653 unsigned int len, u64 transmit_time) 1654 { 1655 struct ip_options_data replyopts; 1656 struct ipcm_cookie ipc; 1657 struct flowi4 fl4; 1658 struct rtable *rt = skb_rtable(skb); 1659 struct net *net = sock_net(sk); 1660 struct sk_buff *nskb; 1661 int err; 1662 int oif; 1663 1664 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1665 return; 1666 1667 ipcm_init(&ipc); 1668 ipc.addr = daddr; 1669 ipc.sockc.transmit_time = transmit_time; 1670 1671 if (replyopts.opt.opt.optlen) { 1672 ipc.opt = &replyopts.opt; 1673 1674 if (replyopts.opt.opt.srr) 1675 daddr = replyopts.opt.opt.faddr; 1676 } 1677 1678 oif = arg->bound_dev_if; 1679 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1680 oif = skb->skb_iif; 1681 1682 flowi4_init_output(&fl4, oif, 1683 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1684 RT_TOS(arg->tos), 1685 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1686 ip_reply_arg_flowi_flags(arg), 1687 daddr, saddr, 1688 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1689 arg->uid); 1690 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1691 rt = ip_route_output_key(net, &fl4); 1692 if (IS_ERR(rt)) 1693 return; 1694 1695 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1696 1697 sk->sk_protocol = ip_hdr(skb)->protocol; 1698 sk->sk_bound_dev_if = arg->bound_dev_if; 1699 sk->sk_sndbuf = sysctl_wmem_default; 1700 ipc.sockc.mark = fl4.flowi4_mark; 1701 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1702 len, 0, &ipc, &rt, MSG_DONTWAIT); 1703 if (unlikely(err)) { 1704 ip_flush_pending_frames(sk); 1705 goto out; 1706 } 1707 1708 nskb = skb_peek(&sk->sk_write_queue); 1709 if (nskb) { 1710 if (arg->csumoffset >= 0) 1711 *((__sum16 *)skb_transport_header(nskb) + 1712 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1713 arg->csum)); 1714 nskb->ip_summed = CHECKSUM_NONE; 1715 ip_push_pending_frames(sk, &fl4); 1716 } 1717 out: 1718 ip_rt_put(rt); 1719 } 1720 1721 void __init ip_init(void) 1722 { 1723 ip_rt_init(); 1724 inet_initpeers(); 1725 1726 #if defined(CONFIG_IP_MULTICAST) 1727 igmp_mc_init(); 1728 #endif 1729 } 1730