xref: /openbmc/linux/net/ipv4/ip_output.c (revision 5d4a2e29)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 
93 int __ip_local_out(struct sk_buff *skb)
94 {
95 	struct iphdr *iph = ip_hdr(skb);
96 
97 	iph->tot_len = htons(skb->len);
98 	ip_send_check(iph);
99 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
100 		       skb_dst(skb)->dev, dst_output);
101 }
102 
103 int ip_local_out(struct sk_buff *skb)
104 {
105 	int err;
106 
107 	err = __ip_local_out(skb);
108 	if (likely(err == 1))
109 		err = dst_output(skb);
110 
111 	return err;
112 }
113 EXPORT_SYMBOL_GPL(ip_local_out);
114 
115 /* dev_loopback_xmit for use with netfilter. */
116 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
117 {
118 	skb_reset_mac_header(newskb);
119 	__skb_pull(newskb, skb_network_offset(newskb));
120 	newskb->pkt_type = PACKET_LOOPBACK;
121 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
122 	WARN_ON(!skb_dst(newskb));
123 	netif_rx_ni(newskb);
124 	return 0;
125 }
126 
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 {
129 	int ttl = inet->uc_ttl;
130 
131 	if (ttl < 0)
132 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
133 	return ttl;
134 }
135 
136 /*
137  *		Add an ip header to a skbuff and send it out.
138  *
139  */
140 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
141 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
142 {
143 	struct inet_sock *inet = inet_sk(sk);
144 	struct rtable *rt = skb_rtable(skb);
145 	struct iphdr *iph;
146 
147 	/* Build the IP header. */
148 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
149 	skb_reset_network_header(skb);
150 	iph = ip_hdr(skb);
151 	iph->version  = 4;
152 	iph->ihl      = 5;
153 	iph->tos      = inet->tos;
154 	if (ip_dont_fragment(sk, &rt->u.dst))
155 		iph->frag_off = htons(IP_DF);
156 	else
157 		iph->frag_off = 0;
158 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
159 	iph->daddr    = rt->rt_dst;
160 	iph->saddr    = rt->rt_src;
161 	iph->protocol = sk->sk_protocol;
162 	ip_select_ident(iph, &rt->u.dst, sk);
163 
164 	if (opt && opt->optlen) {
165 		iph->ihl += opt->optlen>>2;
166 		ip_options_build(skb, opt, daddr, rt, 0);
167 	}
168 
169 	skb->priority = sk->sk_priority;
170 	skb->mark = sk->sk_mark;
171 
172 	/* Send it out. */
173 	return ip_local_out(skb);
174 }
175 
176 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 
178 static inline int ip_finish_output2(struct sk_buff *skb)
179 {
180 	struct dst_entry *dst = skb_dst(skb);
181 	struct rtable *rt = (struct rtable *)dst;
182 	struct net_device *dev = dst->dev;
183 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 
185 	if (rt->rt_type == RTN_MULTICAST) {
186 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
187 	} else if (rt->rt_type == RTN_BROADCAST)
188 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
189 
190 	/* Be paranoid, rather than too clever. */
191 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
192 		struct sk_buff *skb2;
193 
194 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
195 		if (skb2 == NULL) {
196 			kfree_skb(skb);
197 			return -ENOMEM;
198 		}
199 		if (skb->sk)
200 			skb_set_owner_w(skb2, skb->sk);
201 		kfree_skb(skb);
202 		skb = skb2;
203 	}
204 
205 	if (dst->hh)
206 		return neigh_hh_output(dst->hh, skb);
207 	else if (dst->neighbour)
208 		return dst->neighbour->output(skb);
209 
210 	if (net_ratelimit())
211 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
212 	kfree_skb(skb);
213 	return -EINVAL;
214 }
215 
216 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 {
218 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 
220 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
221 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
222 }
223 
224 static int ip_finish_output(struct sk_buff *skb)
225 {
226 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
227 	/* Policy lookup after SNAT yielded a new policy */
228 	if (skb_dst(skb)->xfrm != NULL) {
229 		IPCB(skb)->flags |= IPSKB_REROUTED;
230 		return dst_output(skb);
231 	}
232 #endif
233 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
234 		return ip_fragment(skb, ip_finish_output2);
235 	else
236 		return ip_finish_output2(skb);
237 }
238 
239 int ip_mc_output(struct sk_buff *skb)
240 {
241 	struct sock *sk = skb->sk;
242 	struct rtable *rt = skb_rtable(skb);
243 	struct net_device *dev = rt->u.dst.dev;
244 
245 	/*
246 	 *	If the indicated interface is up and running, send the packet.
247 	 */
248 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
249 
250 	skb->dev = dev;
251 	skb->protocol = htons(ETH_P_IP);
252 
253 	/*
254 	 *	Multicasts are looped back for other local users
255 	 */
256 
257 	if (rt->rt_flags&RTCF_MULTICAST) {
258 		if (sk_mc_loop(sk)
259 #ifdef CONFIG_IP_MROUTE
260 		/* Small optimization: do not loopback not local frames,
261 		   which returned after forwarding; they will be  dropped
262 		   by ip_mr_input in any case.
263 		   Note, that local frames are looped back to be delivered
264 		   to local recipients.
265 
266 		   This check is duplicated in ip_mr_input at the moment.
267 		 */
268 		    &&
269 		    ((rt->rt_flags & RTCF_LOCAL) ||
270 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
271 #endif
272 		   ) {
273 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
274 			if (newskb)
275 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
276 					newskb, NULL, newskb->dev,
277 					ip_dev_loopback_xmit);
278 		}
279 
280 		/* Multicasts with ttl 0 must not go beyond the host */
281 
282 		if (ip_hdr(skb)->ttl == 0) {
283 			kfree_skb(skb);
284 			return 0;
285 		}
286 	}
287 
288 	if (rt->rt_flags&RTCF_BROADCAST) {
289 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
290 		if (newskb)
291 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
292 				NULL, newskb->dev, ip_dev_loopback_xmit);
293 	}
294 
295 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
296 			    skb->dev, ip_finish_output,
297 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
298 }
299 
300 int ip_output(struct sk_buff *skb)
301 {
302 	struct net_device *dev = skb_dst(skb)->dev;
303 
304 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
305 
306 	skb->dev = dev;
307 	skb->protocol = htons(ETH_P_IP);
308 
309 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
310 			    ip_finish_output,
311 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
312 }
313 
314 int ip_queue_xmit(struct sk_buff *skb)
315 {
316 	struct sock *sk = skb->sk;
317 	struct inet_sock *inet = inet_sk(sk);
318 	struct ip_options *opt = inet->opt;
319 	struct rtable *rt;
320 	struct iphdr *iph;
321 	int res;
322 
323 	/* Skip all of this if the packet is already routed,
324 	 * f.e. by something like SCTP.
325 	 */
326 	rcu_read_lock();
327 	rt = skb_rtable(skb);
328 	if (rt != NULL)
329 		goto packet_routed;
330 
331 	/* Make sure we can route this packet. */
332 	rt = (struct rtable *)__sk_dst_check(sk, 0);
333 	if (rt == NULL) {
334 		__be32 daddr;
335 
336 		/* Use correct destination address if we have options. */
337 		daddr = inet->inet_daddr;
338 		if(opt && opt->srr)
339 			daddr = opt->faddr;
340 
341 		{
342 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
343 					    .mark = sk->sk_mark,
344 					    .nl_u = { .ip4_u =
345 						      { .daddr = daddr,
346 							.saddr = inet->inet_saddr,
347 							.tos = RT_CONN_FLAGS(sk) } },
348 					    .proto = sk->sk_protocol,
349 					    .flags = inet_sk_flowi_flags(sk),
350 					    .uli_u = { .ports =
351 						       { .sport = inet->inet_sport,
352 							 .dport = inet->inet_dport } } };
353 
354 			/* If this fails, retransmit mechanism of transport layer will
355 			 * keep trying until route appears or the connection times
356 			 * itself out.
357 			 */
358 			security_sk_classify_flow(sk, &fl);
359 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
360 				goto no_route;
361 		}
362 		sk_setup_caps(sk, &rt->u.dst);
363 	}
364 	skb_dst_set_noref(skb, &rt->u.dst);
365 
366 packet_routed:
367 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
368 		goto no_route;
369 
370 	/* OK, we know where to send it, allocate and build IP header. */
371 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
372 	skb_reset_network_header(skb);
373 	iph = ip_hdr(skb);
374 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
375 	if (ip_dont_fragment(sk, &rt->u.dst) && !skb->local_df)
376 		iph->frag_off = htons(IP_DF);
377 	else
378 		iph->frag_off = 0;
379 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
380 	iph->protocol = sk->sk_protocol;
381 	iph->saddr    = rt->rt_src;
382 	iph->daddr    = rt->rt_dst;
383 	/* Transport layer set skb->h.foo itself. */
384 
385 	if (opt && opt->optlen) {
386 		iph->ihl += opt->optlen >> 2;
387 		ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
388 	}
389 
390 	ip_select_ident_more(iph, &rt->u.dst, sk,
391 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
392 
393 	skb->priority = sk->sk_priority;
394 	skb->mark = sk->sk_mark;
395 
396 	res = ip_local_out(skb);
397 	rcu_read_unlock();
398 	return res;
399 
400 no_route:
401 	rcu_read_unlock();
402 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
403 	kfree_skb(skb);
404 	return -EHOSTUNREACH;
405 }
406 
407 
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409 {
410 	to->pkt_type = from->pkt_type;
411 	to->priority = from->priority;
412 	to->protocol = from->protocol;
413 	skb_dst_drop(to);
414 	skb_dst_set(to, dst_clone(skb_dst(from)));
415 	to->dev = from->dev;
416 	to->mark = from->mark;
417 
418 	/* Copy the flags to each fragment. */
419 	IPCB(to)->flags = IPCB(from)->flags;
420 
421 #ifdef CONFIG_NET_SCHED
422 	to->tc_index = from->tc_index;
423 #endif
424 	nf_copy(to, from);
425 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
426     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
427 	to->nf_trace = from->nf_trace;
428 #endif
429 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
430 	to->ipvs_property = from->ipvs_property;
431 #endif
432 	skb_copy_secmark(to, from);
433 }
434 
435 /*
436  *	This IP datagram is too large to be sent in one piece.  Break it up into
437  *	smaller pieces (each of size equal to IP header plus
438  *	a block of the data of the original IP data part) that will yet fit in a
439  *	single device frame, and queue such a frame for sending.
440  */
441 
442 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
443 {
444 	struct iphdr *iph;
445 	int raw = 0;
446 	int ptr;
447 	struct net_device *dev;
448 	struct sk_buff *skb2;
449 	unsigned int mtu, hlen, left, len, ll_rs, pad;
450 	int offset;
451 	__be16 not_last_frag;
452 	struct rtable *rt = skb_rtable(skb);
453 	int err = 0;
454 
455 	dev = rt->u.dst.dev;
456 
457 	/*
458 	 *	Point into the IP datagram header.
459 	 */
460 
461 	iph = ip_hdr(skb);
462 
463 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
464 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
465 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
466 			  htonl(ip_skb_dst_mtu(skb)));
467 		kfree_skb(skb);
468 		return -EMSGSIZE;
469 	}
470 
471 	/*
472 	 *	Setup starting values.
473 	 */
474 
475 	hlen = iph->ihl * 4;
476 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
477 #ifdef CONFIG_BRIDGE_NETFILTER
478 	if (skb->nf_bridge)
479 		mtu -= nf_bridge_mtu_reduction(skb);
480 #endif
481 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482 
483 	/* When frag_list is given, use it. First, check its validity:
484 	 * some transformers could create wrong frag_list or break existing
485 	 * one, it is not prohibited. In this case fall back to copying.
486 	 *
487 	 * LATER: this step can be merged to real generation of fragments,
488 	 * we can switch to copy when see the first bad fragment.
489 	 */
490 	if (skb_has_frags(skb)) {
491 		struct sk_buff *frag;
492 		int first_len = skb_pagelen(skb);
493 		int truesizes = 0;
494 
495 		if (first_len - hlen > mtu ||
496 		    ((first_len - hlen) & 7) ||
497 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
498 		    skb_cloned(skb))
499 			goto slow_path;
500 
501 		skb_walk_frags(skb, frag) {
502 			/* Correct geometry. */
503 			if (frag->len > mtu ||
504 			    ((frag->len & 7) && frag->next) ||
505 			    skb_headroom(frag) < hlen)
506 			    goto slow_path;
507 
508 			/* Partially cloned skb? */
509 			if (skb_shared(frag))
510 				goto slow_path;
511 
512 			BUG_ON(frag->sk);
513 			if (skb->sk) {
514 				frag->sk = skb->sk;
515 				frag->destructor = sock_wfree;
516 			}
517 			truesizes += frag->truesize;
518 		}
519 
520 		/* Everything is OK. Generate! */
521 
522 		err = 0;
523 		offset = 0;
524 		frag = skb_shinfo(skb)->frag_list;
525 		skb_frag_list_init(skb);
526 		skb->data_len = first_len - skb_headlen(skb);
527 		skb->truesize -= truesizes;
528 		skb->len = first_len;
529 		iph->tot_len = htons(first_len);
530 		iph->frag_off = htons(IP_MF);
531 		ip_send_check(iph);
532 
533 		for (;;) {
534 			/* Prepare header of the next frame,
535 			 * before previous one went down. */
536 			if (frag) {
537 				frag->ip_summed = CHECKSUM_NONE;
538 				skb_reset_transport_header(frag);
539 				__skb_push(frag, hlen);
540 				skb_reset_network_header(frag);
541 				memcpy(skb_network_header(frag), iph, hlen);
542 				iph = ip_hdr(frag);
543 				iph->tot_len = htons(frag->len);
544 				ip_copy_metadata(frag, skb);
545 				if (offset == 0)
546 					ip_options_fragment(frag);
547 				offset += skb->len - hlen;
548 				iph->frag_off = htons(offset>>3);
549 				if (frag->next != NULL)
550 					iph->frag_off |= htons(IP_MF);
551 				/* Ready, complete checksum */
552 				ip_send_check(iph);
553 			}
554 
555 			err = output(skb);
556 
557 			if (!err)
558 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
559 			if (err || !frag)
560 				break;
561 
562 			skb = frag;
563 			frag = skb->next;
564 			skb->next = NULL;
565 		}
566 
567 		if (err == 0) {
568 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
569 			return 0;
570 		}
571 
572 		while (frag) {
573 			skb = frag->next;
574 			kfree_skb(frag);
575 			frag = skb;
576 		}
577 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
578 		return err;
579 	}
580 
581 slow_path:
582 	left = skb->len - hlen;		/* Space per frame */
583 	ptr = raw + hlen;		/* Where to start from */
584 
585 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
586 	 * we need to make room for the encapsulating header
587 	 */
588 	pad = nf_bridge_pad(skb);
589 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
590 	mtu -= pad;
591 
592 	/*
593 	 *	Fragment the datagram.
594 	 */
595 
596 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
597 	not_last_frag = iph->frag_off & htons(IP_MF);
598 
599 	/*
600 	 *	Keep copying data until we run out.
601 	 */
602 
603 	while (left > 0) {
604 		len = left;
605 		/* IF: it doesn't fit, use 'mtu' - the data space left */
606 		if (len > mtu)
607 			len = mtu;
608 		/* IF: we are not sending upto and including the packet end
609 		   then align the next start on an eight byte boundary */
610 		if (len < left)	{
611 			len &= ~7;
612 		}
613 		/*
614 		 *	Allocate buffer.
615 		 */
616 
617 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
618 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
619 			err = -ENOMEM;
620 			goto fail;
621 		}
622 
623 		/*
624 		 *	Set up data on packet
625 		 */
626 
627 		ip_copy_metadata(skb2, skb);
628 		skb_reserve(skb2, ll_rs);
629 		skb_put(skb2, len + hlen);
630 		skb_reset_network_header(skb2);
631 		skb2->transport_header = skb2->network_header + hlen;
632 
633 		/*
634 		 *	Charge the memory for the fragment to any owner
635 		 *	it might possess
636 		 */
637 
638 		if (skb->sk)
639 			skb_set_owner_w(skb2, skb->sk);
640 
641 		/*
642 		 *	Copy the packet header into the new buffer.
643 		 */
644 
645 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
646 
647 		/*
648 		 *	Copy a block of the IP datagram.
649 		 */
650 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
651 			BUG();
652 		left -= len;
653 
654 		/*
655 		 *	Fill in the new header fields.
656 		 */
657 		iph = ip_hdr(skb2);
658 		iph->frag_off = htons((offset >> 3));
659 
660 		/* ANK: dirty, but effective trick. Upgrade options only if
661 		 * the segment to be fragmented was THE FIRST (otherwise,
662 		 * options are already fixed) and make it ONCE
663 		 * on the initial skb, so that all the following fragments
664 		 * will inherit fixed options.
665 		 */
666 		if (offset == 0)
667 			ip_options_fragment(skb);
668 
669 		/*
670 		 *	Added AC : If we are fragmenting a fragment that's not the
671 		 *		   last fragment then keep MF on each bit
672 		 */
673 		if (left > 0 || not_last_frag)
674 			iph->frag_off |= htons(IP_MF);
675 		ptr += len;
676 		offset += len;
677 
678 		/*
679 		 *	Put this fragment into the sending queue.
680 		 */
681 		iph->tot_len = htons(len + hlen);
682 
683 		ip_send_check(iph);
684 
685 		err = output(skb2);
686 		if (err)
687 			goto fail;
688 
689 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
690 	}
691 	kfree_skb(skb);
692 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
693 	return err;
694 
695 fail:
696 	kfree_skb(skb);
697 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
698 	return err;
699 }
700 
701 EXPORT_SYMBOL(ip_fragment);
702 
703 int
704 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
705 {
706 	struct iovec *iov = from;
707 
708 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
709 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
710 			return -EFAULT;
711 	} else {
712 		__wsum csum = 0;
713 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
714 			return -EFAULT;
715 		skb->csum = csum_block_add(skb->csum, csum, odd);
716 	}
717 	return 0;
718 }
719 
720 static inline __wsum
721 csum_page(struct page *page, int offset, int copy)
722 {
723 	char *kaddr;
724 	__wsum csum;
725 	kaddr = kmap(page);
726 	csum = csum_partial(kaddr + offset, copy, 0);
727 	kunmap(page);
728 	return csum;
729 }
730 
731 static inline int ip_ufo_append_data(struct sock *sk,
732 			int getfrag(void *from, char *to, int offset, int len,
733 			       int odd, struct sk_buff *skb),
734 			void *from, int length, int hh_len, int fragheaderlen,
735 			int transhdrlen, int mtu, unsigned int flags)
736 {
737 	struct sk_buff *skb;
738 	int err;
739 
740 	/* There is support for UDP fragmentation offload by network
741 	 * device, so create one single skb packet containing complete
742 	 * udp datagram
743 	 */
744 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
745 		skb = sock_alloc_send_skb(sk,
746 			hh_len + fragheaderlen + transhdrlen + 20,
747 			(flags & MSG_DONTWAIT), &err);
748 
749 		if (skb == NULL)
750 			return err;
751 
752 		/* reserve space for Hardware header */
753 		skb_reserve(skb, hh_len);
754 
755 		/* create space for UDP/IP header */
756 		skb_put(skb, fragheaderlen + transhdrlen);
757 
758 		/* initialize network header pointer */
759 		skb_reset_network_header(skb);
760 
761 		/* initialize protocol header pointer */
762 		skb->transport_header = skb->network_header + fragheaderlen;
763 
764 		skb->ip_summed = CHECKSUM_PARTIAL;
765 		skb->csum = 0;
766 		sk->sk_sndmsg_off = 0;
767 
768 		/* specify the length of each IP datagram fragment */
769 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
770 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
771 		__skb_queue_tail(&sk->sk_write_queue, skb);
772 	}
773 
774 	return skb_append_datato_frags(sk, skb, getfrag, from,
775 				       (length - transhdrlen));
776 }
777 
778 /*
779  *	ip_append_data() and ip_append_page() can make one large IP datagram
780  *	from many pieces of data. Each pieces will be holded on the socket
781  *	until ip_push_pending_frames() is called. Each piece can be a page
782  *	or non-page data.
783  *
784  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
785  *	this interface potentially.
786  *
787  *	LATER: length must be adjusted by pad at tail, when it is required.
788  */
789 int ip_append_data(struct sock *sk,
790 		   int getfrag(void *from, char *to, int offset, int len,
791 			       int odd, struct sk_buff *skb),
792 		   void *from, int length, int transhdrlen,
793 		   struct ipcm_cookie *ipc, struct rtable **rtp,
794 		   unsigned int flags)
795 {
796 	struct inet_sock *inet = inet_sk(sk);
797 	struct sk_buff *skb;
798 
799 	struct ip_options *opt = NULL;
800 	int hh_len;
801 	int exthdrlen;
802 	int mtu;
803 	int copy;
804 	int err;
805 	int offset = 0;
806 	unsigned int maxfraglen, fragheaderlen;
807 	int csummode = CHECKSUM_NONE;
808 	struct rtable *rt;
809 
810 	if (flags&MSG_PROBE)
811 		return 0;
812 
813 	if (skb_queue_empty(&sk->sk_write_queue)) {
814 		/*
815 		 * setup for corking.
816 		 */
817 		opt = ipc->opt;
818 		if (opt) {
819 			if (inet->cork.opt == NULL) {
820 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
821 				if (unlikely(inet->cork.opt == NULL))
822 					return -ENOBUFS;
823 			}
824 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
825 			inet->cork.flags |= IPCORK_OPT;
826 			inet->cork.addr = ipc->addr;
827 		}
828 		rt = *rtp;
829 		if (unlikely(!rt))
830 			return -EFAULT;
831 		/*
832 		 * We steal reference to this route, caller should not release it
833 		 */
834 		*rtp = NULL;
835 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
836 					    rt->u.dst.dev->mtu :
837 					    dst_mtu(rt->u.dst.path);
838 		inet->cork.dst = &rt->u.dst;
839 		inet->cork.length = 0;
840 		sk->sk_sndmsg_page = NULL;
841 		sk->sk_sndmsg_off = 0;
842 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
843 			length += exthdrlen;
844 			transhdrlen += exthdrlen;
845 		}
846 	} else {
847 		rt = (struct rtable *)inet->cork.dst;
848 		if (inet->cork.flags & IPCORK_OPT)
849 			opt = inet->cork.opt;
850 
851 		transhdrlen = 0;
852 		exthdrlen = 0;
853 		mtu = inet->cork.fragsize;
854 	}
855 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
856 
857 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
858 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
859 
860 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
861 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
862 			       mtu-exthdrlen);
863 		return -EMSGSIZE;
864 	}
865 
866 	/*
867 	 * transhdrlen > 0 means that this is the first fragment and we wish
868 	 * it won't be fragmented in the future.
869 	 */
870 	if (transhdrlen &&
871 	    length + fragheaderlen <= mtu &&
872 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
873 	    !exthdrlen)
874 		csummode = CHECKSUM_PARTIAL;
875 
876 	inet->cork.length += length;
877 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
878 	    (sk->sk_protocol == IPPROTO_UDP) &&
879 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
880 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
881 					 fragheaderlen, transhdrlen, mtu,
882 					 flags);
883 		if (err)
884 			goto error;
885 		return 0;
886 	}
887 
888 	/* So, what's going on in the loop below?
889 	 *
890 	 * We use calculated fragment length to generate chained skb,
891 	 * each of segments is IP fragment ready for sending to network after
892 	 * adding appropriate IP header.
893 	 */
894 
895 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
896 		goto alloc_new_skb;
897 
898 	while (length > 0) {
899 		/* Check if the remaining data fits into current packet. */
900 		copy = mtu - skb->len;
901 		if (copy < length)
902 			copy = maxfraglen - skb->len;
903 		if (copy <= 0) {
904 			char *data;
905 			unsigned int datalen;
906 			unsigned int fraglen;
907 			unsigned int fraggap;
908 			unsigned int alloclen;
909 			struct sk_buff *skb_prev;
910 alloc_new_skb:
911 			skb_prev = skb;
912 			if (skb_prev)
913 				fraggap = skb_prev->len - maxfraglen;
914 			else
915 				fraggap = 0;
916 
917 			/*
918 			 * If remaining data exceeds the mtu,
919 			 * we know we need more fragment(s).
920 			 */
921 			datalen = length + fraggap;
922 			if (datalen > mtu - fragheaderlen)
923 				datalen = maxfraglen - fragheaderlen;
924 			fraglen = datalen + fragheaderlen;
925 
926 			if ((flags & MSG_MORE) &&
927 			    !(rt->u.dst.dev->features&NETIF_F_SG))
928 				alloclen = mtu;
929 			else
930 				alloclen = datalen + fragheaderlen;
931 
932 			/* The last fragment gets additional space at tail.
933 			 * Note, with MSG_MORE we overallocate on fragments,
934 			 * because we have no idea what fragment will be
935 			 * the last.
936 			 */
937 			if (datalen == length + fraggap)
938 				alloclen += rt->u.dst.trailer_len;
939 
940 			if (transhdrlen) {
941 				skb = sock_alloc_send_skb(sk,
942 						alloclen + hh_len + 15,
943 						(flags & MSG_DONTWAIT), &err);
944 			} else {
945 				skb = NULL;
946 				if (atomic_read(&sk->sk_wmem_alloc) <=
947 				    2 * sk->sk_sndbuf)
948 					skb = sock_wmalloc(sk,
949 							   alloclen + hh_len + 15, 1,
950 							   sk->sk_allocation);
951 				if (unlikely(skb == NULL))
952 					err = -ENOBUFS;
953 				else
954 					/* only the initial fragment is
955 					   time stamped */
956 					ipc->shtx.flags = 0;
957 			}
958 			if (skb == NULL)
959 				goto error;
960 
961 			/*
962 			 *	Fill in the control structures
963 			 */
964 			skb->ip_summed = csummode;
965 			skb->csum = 0;
966 			skb_reserve(skb, hh_len);
967 			*skb_tx(skb) = ipc->shtx;
968 
969 			/*
970 			 *	Find where to start putting bytes.
971 			 */
972 			data = skb_put(skb, fraglen);
973 			skb_set_network_header(skb, exthdrlen);
974 			skb->transport_header = (skb->network_header +
975 						 fragheaderlen);
976 			data += fragheaderlen;
977 
978 			if (fraggap) {
979 				skb->csum = skb_copy_and_csum_bits(
980 					skb_prev, maxfraglen,
981 					data + transhdrlen, fraggap, 0);
982 				skb_prev->csum = csum_sub(skb_prev->csum,
983 							  skb->csum);
984 				data += fraggap;
985 				pskb_trim_unique(skb_prev, maxfraglen);
986 			}
987 
988 			copy = datalen - transhdrlen - fraggap;
989 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
990 				err = -EFAULT;
991 				kfree_skb(skb);
992 				goto error;
993 			}
994 
995 			offset += copy;
996 			length -= datalen - fraggap;
997 			transhdrlen = 0;
998 			exthdrlen = 0;
999 			csummode = CHECKSUM_NONE;
1000 
1001 			/*
1002 			 * Put the packet on the pending queue.
1003 			 */
1004 			__skb_queue_tail(&sk->sk_write_queue, skb);
1005 			continue;
1006 		}
1007 
1008 		if (copy > length)
1009 			copy = length;
1010 
1011 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
1012 			unsigned int off;
1013 
1014 			off = skb->len;
1015 			if (getfrag(from, skb_put(skb, copy),
1016 					offset, copy, off, skb) < 0) {
1017 				__skb_trim(skb, off);
1018 				err = -EFAULT;
1019 				goto error;
1020 			}
1021 		} else {
1022 			int i = skb_shinfo(skb)->nr_frags;
1023 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1024 			struct page *page = sk->sk_sndmsg_page;
1025 			int off = sk->sk_sndmsg_off;
1026 			unsigned int left;
1027 
1028 			if (page && (left = PAGE_SIZE - off) > 0) {
1029 				if (copy >= left)
1030 					copy = left;
1031 				if (page != frag->page) {
1032 					if (i == MAX_SKB_FRAGS) {
1033 						err = -EMSGSIZE;
1034 						goto error;
1035 					}
1036 					get_page(page);
1037 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1038 					frag = &skb_shinfo(skb)->frags[i];
1039 				}
1040 			} else if (i < MAX_SKB_FRAGS) {
1041 				if (copy > PAGE_SIZE)
1042 					copy = PAGE_SIZE;
1043 				page = alloc_pages(sk->sk_allocation, 0);
1044 				if (page == NULL)  {
1045 					err = -ENOMEM;
1046 					goto error;
1047 				}
1048 				sk->sk_sndmsg_page = page;
1049 				sk->sk_sndmsg_off = 0;
1050 
1051 				skb_fill_page_desc(skb, i, page, 0, 0);
1052 				frag = &skb_shinfo(skb)->frags[i];
1053 			} else {
1054 				err = -EMSGSIZE;
1055 				goto error;
1056 			}
1057 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1058 				err = -EFAULT;
1059 				goto error;
1060 			}
1061 			sk->sk_sndmsg_off += copy;
1062 			frag->size += copy;
1063 			skb->len += copy;
1064 			skb->data_len += copy;
1065 			skb->truesize += copy;
1066 			atomic_add(copy, &sk->sk_wmem_alloc);
1067 		}
1068 		offset += copy;
1069 		length -= copy;
1070 	}
1071 
1072 	return 0;
1073 
1074 error:
1075 	inet->cork.length -= length;
1076 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1077 	return err;
1078 }
1079 
1080 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1081 		       int offset, size_t size, int flags)
1082 {
1083 	struct inet_sock *inet = inet_sk(sk);
1084 	struct sk_buff *skb;
1085 	struct rtable *rt;
1086 	struct ip_options *opt = NULL;
1087 	int hh_len;
1088 	int mtu;
1089 	int len;
1090 	int err;
1091 	unsigned int maxfraglen, fragheaderlen, fraggap;
1092 
1093 	if (inet->hdrincl)
1094 		return -EPERM;
1095 
1096 	if (flags&MSG_PROBE)
1097 		return 0;
1098 
1099 	if (skb_queue_empty(&sk->sk_write_queue))
1100 		return -EINVAL;
1101 
1102 	rt = (struct rtable *)inet->cork.dst;
1103 	if (inet->cork.flags & IPCORK_OPT)
1104 		opt = inet->cork.opt;
1105 
1106 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1107 		return -EOPNOTSUPP;
1108 
1109 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1110 	mtu = inet->cork.fragsize;
1111 
1112 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1113 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1114 
1115 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1116 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1117 		return -EMSGSIZE;
1118 	}
1119 
1120 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1121 		return -EINVAL;
1122 
1123 	inet->cork.length += size;
1124 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1125 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1126 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1127 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1128 	}
1129 
1130 
1131 	while (size > 0) {
1132 		int i;
1133 
1134 		if (skb_is_gso(skb))
1135 			len = size;
1136 		else {
1137 
1138 			/* Check if the remaining data fits into current packet. */
1139 			len = mtu - skb->len;
1140 			if (len < size)
1141 				len = maxfraglen - skb->len;
1142 		}
1143 		if (len <= 0) {
1144 			struct sk_buff *skb_prev;
1145 			int alloclen;
1146 
1147 			skb_prev = skb;
1148 			fraggap = skb_prev->len - maxfraglen;
1149 
1150 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1151 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1152 			if (unlikely(!skb)) {
1153 				err = -ENOBUFS;
1154 				goto error;
1155 			}
1156 
1157 			/*
1158 			 *	Fill in the control structures
1159 			 */
1160 			skb->ip_summed = CHECKSUM_NONE;
1161 			skb->csum = 0;
1162 			skb_reserve(skb, hh_len);
1163 
1164 			/*
1165 			 *	Find where to start putting bytes.
1166 			 */
1167 			skb_put(skb, fragheaderlen + fraggap);
1168 			skb_reset_network_header(skb);
1169 			skb->transport_header = (skb->network_header +
1170 						 fragheaderlen);
1171 			if (fraggap) {
1172 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1173 								   maxfraglen,
1174 						    skb_transport_header(skb),
1175 								   fraggap, 0);
1176 				skb_prev->csum = csum_sub(skb_prev->csum,
1177 							  skb->csum);
1178 				pskb_trim_unique(skb_prev, maxfraglen);
1179 			}
1180 
1181 			/*
1182 			 * Put the packet on the pending queue.
1183 			 */
1184 			__skb_queue_tail(&sk->sk_write_queue, skb);
1185 			continue;
1186 		}
1187 
1188 		i = skb_shinfo(skb)->nr_frags;
1189 		if (len > size)
1190 			len = size;
1191 		if (skb_can_coalesce(skb, i, page, offset)) {
1192 			skb_shinfo(skb)->frags[i-1].size += len;
1193 		} else if (i < MAX_SKB_FRAGS) {
1194 			get_page(page);
1195 			skb_fill_page_desc(skb, i, page, offset, len);
1196 		} else {
1197 			err = -EMSGSIZE;
1198 			goto error;
1199 		}
1200 
1201 		if (skb->ip_summed == CHECKSUM_NONE) {
1202 			__wsum csum;
1203 			csum = csum_page(page, offset, len);
1204 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1205 		}
1206 
1207 		skb->len += len;
1208 		skb->data_len += len;
1209 		skb->truesize += len;
1210 		atomic_add(len, &sk->sk_wmem_alloc);
1211 		offset += len;
1212 		size -= len;
1213 	}
1214 	return 0;
1215 
1216 error:
1217 	inet->cork.length -= size;
1218 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1219 	return err;
1220 }
1221 
1222 static void ip_cork_release(struct inet_sock *inet)
1223 {
1224 	inet->cork.flags &= ~IPCORK_OPT;
1225 	kfree(inet->cork.opt);
1226 	inet->cork.opt = NULL;
1227 	dst_release(inet->cork.dst);
1228 	inet->cork.dst = NULL;
1229 }
1230 
1231 /*
1232  *	Combined all pending IP fragments on the socket as one IP datagram
1233  *	and push them out.
1234  */
1235 int ip_push_pending_frames(struct sock *sk)
1236 {
1237 	struct sk_buff *skb, *tmp_skb;
1238 	struct sk_buff **tail_skb;
1239 	struct inet_sock *inet = inet_sk(sk);
1240 	struct net *net = sock_net(sk);
1241 	struct ip_options *opt = NULL;
1242 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1243 	struct iphdr *iph;
1244 	__be16 df = 0;
1245 	__u8 ttl;
1246 	int err = 0;
1247 
1248 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1249 		goto out;
1250 	tail_skb = &(skb_shinfo(skb)->frag_list);
1251 
1252 	/* move skb->data to ip header from ext header */
1253 	if (skb->data < skb_network_header(skb))
1254 		__skb_pull(skb, skb_network_offset(skb));
1255 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1256 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1257 		*tail_skb = tmp_skb;
1258 		tail_skb = &(tmp_skb->next);
1259 		skb->len += tmp_skb->len;
1260 		skb->data_len += tmp_skb->len;
1261 		skb->truesize += tmp_skb->truesize;
1262 		tmp_skb->destructor = NULL;
1263 		tmp_skb->sk = NULL;
1264 	}
1265 
1266 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1267 	 * to fragment the frame generated here. No matter, what transforms
1268 	 * how transforms change size of the packet, it will come out.
1269 	 */
1270 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1271 		skb->local_df = 1;
1272 
1273 	/* DF bit is set when we want to see DF on outgoing frames.
1274 	 * If local_df is set too, we still allow to fragment this frame
1275 	 * locally. */
1276 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1277 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1278 	     ip_dont_fragment(sk, &rt->u.dst)))
1279 		df = htons(IP_DF);
1280 
1281 	if (inet->cork.flags & IPCORK_OPT)
1282 		opt = inet->cork.opt;
1283 
1284 	if (rt->rt_type == RTN_MULTICAST)
1285 		ttl = inet->mc_ttl;
1286 	else
1287 		ttl = ip_select_ttl(inet, &rt->u.dst);
1288 
1289 	iph = (struct iphdr *)skb->data;
1290 	iph->version = 4;
1291 	iph->ihl = 5;
1292 	if (opt) {
1293 		iph->ihl += opt->optlen>>2;
1294 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1295 	}
1296 	iph->tos = inet->tos;
1297 	iph->frag_off = df;
1298 	ip_select_ident(iph, &rt->u.dst, sk);
1299 	iph->ttl = ttl;
1300 	iph->protocol = sk->sk_protocol;
1301 	iph->saddr = rt->rt_src;
1302 	iph->daddr = rt->rt_dst;
1303 
1304 	skb->priority = sk->sk_priority;
1305 	skb->mark = sk->sk_mark;
1306 	/*
1307 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1308 	 * on dst refcount
1309 	 */
1310 	inet->cork.dst = NULL;
1311 	skb_dst_set(skb, &rt->u.dst);
1312 
1313 	if (iph->protocol == IPPROTO_ICMP)
1314 		icmp_out_count(net, ((struct icmphdr *)
1315 			skb_transport_header(skb))->type);
1316 
1317 	/* Netfilter gets whole the not fragmented skb. */
1318 	err = ip_local_out(skb);
1319 	if (err) {
1320 		if (err > 0)
1321 			err = net_xmit_errno(err);
1322 		if (err)
1323 			goto error;
1324 	}
1325 
1326 out:
1327 	ip_cork_release(inet);
1328 	return err;
1329 
1330 error:
1331 	IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1332 	goto out;
1333 }
1334 
1335 /*
1336  *	Throw away all pending data on the socket.
1337  */
1338 void ip_flush_pending_frames(struct sock *sk)
1339 {
1340 	struct sk_buff *skb;
1341 
1342 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1343 		kfree_skb(skb);
1344 
1345 	ip_cork_release(inet_sk(sk));
1346 }
1347 
1348 
1349 /*
1350  *	Fetch data from kernel space and fill in checksum if needed.
1351  */
1352 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1353 			      int len, int odd, struct sk_buff *skb)
1354 {
1355 	__wsum csum;
1356 
1357 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1358 	skb->csum = csum_block_add(skb->csum, csum, odd);
1359 	return 0;
1360 }
1361 
1362 /*
1363  *	Generic function to send a packet as reply to another packet.
1364  *	Used to send TCP resets so far. ICMP should use this function too.
1365  *
1366  *	Should run single threaded per socket because it uses the sock
1367  *     	structure to pass arguments.
1368  */
1369 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1370 		   unsigned int len)
1371 {
1372 	struct inet_sock *inet = inet_sk(sk);
1373 	struct {
1374 		struct ip_options	opt;
1375 		char			data[40];
1376 	} replyopts;
1377 	struct ipcm_cookie ipc;
1378 	__be32 daddr;
1379 	struct rtable *rt = skb_rtable(skb);
1380 
1381 	if (ip_options_echo(&replyopts.opt, skb))
1382 		return;
1383 
1384 	daddr = ipc.addr = rt->rt_src;
1385 	ipc.opt = NULL;
1386 	ipc.shtx.flags = 0;
1387 
1388 	if (replyopts.opt.optlen) {
1389 		ipc.opt = &replyopts.opt;
1390 
1391 		if (ipc.opt->srr)
1392 			daddr = replyopts.opt.faddr;
1393 	}
1394 
1395 	{
1396 		struct flowi fl = { .oif = arg->bound_dev_if,
1397 				    .nl_u = { .ip4_u =
1398 					      { .daddr = daddr,
1399 						.saddr = rt->rt_spec_dst,
1400 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1401 				    /* Not quite clean, but right. */
1402 				    .uli_u = { .ports =
1403 					       { .sport = tcp_hdr(skb)->dest,
1404 						 .dport = tcp_hdr(skb)->source } },
1405 				    .proto = sk->sk_protocol,
1406 				    .flags = ip_reply_arg_flowi_flags(arg) };
1407 		security_skb_classify_flow(skb, &fl);
1408 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1409 			return;
1410 	}
1411 
1412 	/* And let IP do all the hard work.
1413 
1414 	   This chunk is not reenterable, hence spinlock.
1415 	   Note that it uses the fact, that this function is called
1416 	   with locally disabled BH and that sk cannot be already spinlocked.
1417 	 */
1418 	bh_lock_sock(sk);
1419 	inet->tos = ip_hdr(skb)->tos;
1420 	sk->sk_priority = skb->priority;
1421 	sk->sk_protocol = ip_hdr(skb)->protocol;
1422 	sk->sk_bound_dev_if = arg->bound_dev_if;
1423 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1424 		       &ipc, &rt, MSG_DONTWAIT);
1425 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1426 		if (arg->csumoffset >= 0)
1427 			*((__sum16 *)skb_transport_header(skb) +
1428 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1429 								arg->csum));
1430 		skb->ip_summed = CHECKSUM_NONE;
1431 		ip_push_pending_frames(sk);
1432 	}
1433 
1434 	bh_unlock_sock(sk);
1435 
1436 	ip_rt_put(rt);
1437 }
1438 
1439 void __init ip_init(void)
1440 {
1441 	ip_rt_init();
1442 	inet_initpeers();
1443 
1444 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1445 	igmp_mc_proc_init();
1446 #endif
1447 }
1448 
1449 EXPORT_SYMBOL(ip_generic_getfrag);
1450 EXPORT_SYMBOL(ip_queue_xmit);
1451 EXPORT_SYMBOL(ip_send_check);
1452