xref: /openbmc/linux/net/ipv4/ip_output.c (revision 5d0e4d78)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	skb->protocol = htons(ETH_P_IP);
112 
113 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 		       net, sk, skb, NULL, skb_dst(skb)->dev,
115 		       dst_output);
116 }
117 
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 	int err;
121 
122 	err = __ip_local_out(net, sk, skb);
123 	if (likely(err == 1))
124 		err = dst_output(net, sk, skb);
125 
126 	return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129 
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 	int ttl = inet->uc_ttl;
133 
134 	if (ttl < 0)
135 		ttl = ip4_dst_hoplimit(dst);
136 	return ttl;
137 }
138 
139 /*
140  *		Add an ip header to a skbuff and send it out.
141  *
142  */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct rtable *rt = skb_rtable(skb);
148 	struct net *net = sock_net(sk);
149 	struct iphdr *iph;
150 
151 	/* Build the IP header. */
152 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 	skb_reset_network_header(skb);
154 	iph = ip_hdr(skb);
155 	iph->version  = 4;
156 	iph->ihl      = 5;
157 	iph->tos      = inet->tos;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	if (ip_dont_fragment(sk, &rt->dst)) {
163 		iph->frag_off = htons(IP_DF);
164 		iph->id = 0;
165 	} else {
166 		iph->frag_off = 0;
167 		__ip_select_ident(net, iph, 1);
168 	}
169 
170 	if (opt && opt->opt.optlen) {
171 		iph->ihl += opt->opt.optlen>>2;
172 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 	}
174 
175 	skb->priority = sk->sk_priority;
176 	if (!skb->mark)
177 		skb->mark = sk->sk_mark;
178 
179 	/* Send it out. */
180 	return ip_local_out(net, skb->sk, skb);
181 }
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 
184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 {
186 	struct dst_entry *dst = skb_dst(skb);
187 	struct rtable *rt = (struct rtable *)dst;
188 	struct net_device *dev = dst->dev;
189 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 	struct neighbour *neigh;
191 	u32 nexthop;
192 
193 	if (rt->rt_type == RTN_MULTICAST) {
194 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 	} else if (rt->rt_type == RTN_BROADCAST)
196 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 
198 	/* Be paranoid, rather than too clever. */
199 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 		struct sk_buff *skb2;
201 
202 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 		if (!skb2) {
204 			kfree_skb(skb);
205 			return -ENOMEM;
206 		}
207 		if (skb->sk)
208 			skb_set_owner_w(skb2, skb->sk);
209 		consume_skb(skb);
210 		skb = skb2;
211 	}
212 
213 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 		int res = lwtunnel_xmit(skb);
215 
216 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 			return res;
218 	}
219 
220 	rcu_read_lock_bh();
221 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 	if (unlikely(!neigh))
224 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 	if (!IS_ERR(neigh)) {
226 		int res;
227 
228 		sock_confirm_neigh(skb, neigh);
229 		res = neigh_output(neigh, skb);
230 
231 		rcu_read_unlock_bh();
232 		return res;
233 	}
234 	rcu_read_unlock_bh();
235 
236 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 			    __func__);
238 	kfree_skb(skb);
239 	return -EINVAL;
240 }
241 
242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 				struct sk_buff *skb, unsigned int mtu)
244 {
245 	netdev_features_t features;
246 	struct sk_buff *segs;
247 	int ret = 0;
248 
249 	/* common case: seglen is <= mtu
250 	 */
251 	if (skb_gso_validate_mtu(skb, mtu))
252 		return ip_finish_output2(net, sk, skb);
253 
254 	/* Slowpath -  GSO segment length exceeds the egress MTU.
255 	 *
256 	 * This can happen in several cases:
257 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
258 	 *  - Forwarding of an skb that arrived on a virtualization interface
259 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 	 *    stack.
261 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 	 *    interface with a smaller MTU.
263 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 	 *    insufficent MTU.
266 	 */
267 	features = netif_skb_features(skb);
268 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 	if (IS_ERR_OR_NULL(segs)) {
271 		kfree_skb(skb);
272 		return -ENOMEM;
273 	}
274 
275 	consume_skb(skb);
276 
277 	do {
278 		struct sk_buff *nskb = segs->next;
279 		int err;
280 
281 		segs->next = NULL;
282 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283 
284 		if (err && ret == 0)
285 			ret = err;
286 		segs = nskb;
287 	} while (segs);
288 
289 	return ret;
290 }
291 
292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 {
294 	unsigned int mtu;
295 	int ret;
296 
297 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 	if (ret) {
299 		kfree_skb(skb);
300 		return ret;
301 	}
302 
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 	/* Policy lookup after SNAT yielded a new policy */
305 	if (skb_dst(skb)->xfrm) {
306 		IPCB(skb)->flags |= IPSKB_REROUTED;
307 		return dst_output(net, sk, skb);
308 	}
309 #endif
310 	mtu = ip_skb_dst_mtu(sk, skb);
311 	if (skb_is_gso(skb))
312 		return ip_finish_output_gso(net, sk, skb, mtu);
313 
314 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316 
317 	return ip_finish_output2(net, sk, skb);
318 }
319 
320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 			       struct sk_buff *skb)
322 {
323 	int ret;
324 
325 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 	if (ret) {
327 		kfree_skb(skb);
328 		return ret;
329 	}
330 
331 	return dev_loopback_xmit(net, sk, skb);
332 }
333 
334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 {
336 	struct rtable *rt = skb_rtable(skb);
337 	struct net_device *dev = rt->dst.dev;
338 
339 	/*
340 	 *	If the indicated interface is up and running, send the packet.
341 	 */
342 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343 
344 	skb->dev = dev;
345 	skb->protocol = htons(ETH_P_IP);
346 
347 	/*
348 	 *	Multicasts are looped back for other local users
349 	 */
350 
351 	if (rt->rt_flags&RTCF_MULTICAST) {
352 		if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 		/* Small optimization: do not loopback not local frames,
355 		   which returned after forwarding; they will be  dropped
356 		   by ip_mr_input in any case.
357 		   Note, that local frames are looped back to be delivered
358 		   to local recipients.
359 
360 		   This check is duplicated in ip_mr_input at the moment.
361 		 */
362 		    &&
363 		    ((rt->rt_flags & RTCF_LOCAL) ||
364 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
366 		   ) {
367 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 			if (newskb)
369 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 					net, sk, newskb, NULL, newskb->dev,
371 					ip_mc_finish_output);
372 		}
373 
374 		/* Multicasts with ttl 0 must not go beyond the host */
375 
376 		if (ip_hdr(skb)->ttl == 0) {
377 			kfree_skb(skb);
378 			return 0;
379 		}
380 	}
381 
382 	if (rt->rt_flags&RTCF_BROADCAST) {
383 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 		if (newskb)
385 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 				net, sk, newskb, NULL, newskb->dev,
387 				ip_mc_finish_output);
388 	}
389 
390 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 			    net, sk, skb, NULL, skb->dev,
392 			    ip_finish_output,
393 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
394 }
395 
396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	struct net_device *dev = skb_dst(skb)->dev;
399 
400 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401 
402 	skb->dev = dev;
403 	skb->protocol = htons(ETH_P_IP);
404 
405 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 			    net, sk, skb, NULL, dev,
407 			    ip_finish_output,
408 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
409 }
410 
411 /*
412  * copy saddr and daddr, possibly using 64bit load/stores
413  * Equivalent to :
414  *   iph->saddr = fl4->saddr;
415  *   iph->daddr = fl4->daddr;
416  */
417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 {
419 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 	memcpy(&iph->saddr, &fl4->saddr,
422 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
423 }
424 
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
427 {
428 	struct inet_sock *inet = inet_sk(sk);
429 	struct net *net = sock_net(sk);
430 	struct ip_options_rcu *inet_opt;
431 	struct flowi4 *fl4;
432 	struct rtable *rt;
433 	struct iphdr *iph;
434 	int res;
435 
436 	/* Skip all of this if the packet is already routed,
437 	 * f.e. by something like SCTP.
438 	 */
439 	rcu_read_lock();
440 	inet_opt = rcu_dereference(inet->inet_opt);
441 	fl4 = &fl->u.ip4;
442 	rt = skb_rtable(skb);
443 	if (rt)
444 		goto packet_routed;
445 
446 	/* Make sure we can route this packet. */
447 	rt = (struct rtable *)__sk_dst_check(sk, 0);
448 	if (!rt) {
449 		__be32 daddr;
450 
451 		/* Use correct destination address if we have options. */
452 		daddr = inet->inet_daddr;
453 		if (inet_opt && inet_opt->opt.srr)
454 			daddr = inet_opt->opt.faddr;
455 
456 		/* If this fails, retransmit mechanism of transport layer will
457 		 * keep trying until route appears or the connection times
458 		 * itself out.
459 		 */
460 		rt = ip_route_output_ports(net, fl4, sk,
461 					   daddr, inet->inet_saddr,
462 					   inet->inet_dport,
463 					   inet->inet_sport,
464 					   sk->sk_protocol,
465 					   RT_CONN_FLAGS(sk),
466 					   sk->sk_bound_dev_if);
467 		if (IS_ERR(rt))
468 			goto no_route;
469 		sk_setup_caps(sk, &rt->dst);
470 	}
471 	skb_dst_set_noref(skb, &rt->dst);
472 
473 packet_routed:
474 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
475 		goto no_route;
476 
477 	/* OK, we know where to send it, allocate and build IP header. */
478 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
479 	skb_reset_network_header(skb);
480 	iph = ip_hdr(skb);
481 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
482 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
483 		iph->frag_off = htons(IP_DF);
484 	else
485 		iph->frag_off = 0;
486 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
487 	iph->protocol = sk->sk_protocol;
488 	ip_copy_addrs(iph, fl4);
489 
490 	/* Transport layer set skb->h.foo itself. */
491 
492 	if (inet_opt && inet_opt->opt.optlen) {
493 		iph->ihl += inet_opt->opt.optlen >> 2;
494 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
495 	}
496 
497 	ip_select_ident_segs(net, skb, sk,
498 			     skb_shinfo(skb)->gso_segs ?: 1);
499 
500 	/* TODO : should we use skb->sk here instead of sk ? */
501 	skb->priority = sk->sk_priority;
502 	skb->mark = sk->sk_mark;
503 
504 	res = ip_local_out(net, sk, skb);
505 	rcu_read_unlock();
506 	return res;
507 
508 no_route:
509 	rcu_read_unlock();
510 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
511 	kfree_skb(skb);
512 	return -EHOSTUNREACH;
513 }
514 EXPORT_SYMBOL(ip_queue_xmit);
515 
516 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
517 {
518 	to->pkt_type = from->pkt_type;
519 	to->priority = from->priority;
520 	to->protocol = from->protocol;
521 	skb_dst_drop(to);
522 	skb_dst_copy(to, from);
523 	to->dev = from->dev;
524 	to->mark = from->mark;
525 
526 	/* Copy the flags to each fragment. */
527 	IPCB(to)->flags = IPCB(from)->flags;
528 
529 #ifdef CONFIG_NET_SCHED
530 	to->tc_index = from->tc_index;
531 #endif
532 	nf_copy(to, from);
533 #if IS_ENABLED(CONFIG_IP_VS)
534 	to->ipvs_property = from->ipvs_property;
535 #endif
536 	skb_copy_secmark(to, from);
537 }
538 
539 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
540 		       unsigned int mtu,
541 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
542 {
543 	struct iphdr *iph = ip_hdr(skb);
544 
545 	if ((iph->frag_off & htons(IP_DF)) == 0)
546 		return ip_do_fragment(net, sk, skb, output);
547 
548 	if (unlikely(!skb->ignore_df ||
549 		     (IPCB(skb)->frag_max_size &&
550 		      IPCB(skb)->frag_max_size > mtu))) {
551 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
552 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
553 			  htonl(mtu));
554 		kfree_skb(skb);
555 		return -EMSGSIZE;
556 	}
557 
558 	return ip_do_fragment(net, sk, skb, output);
559 }
560 
561 /*
562  *	This IP datagram is too large to be sent in one piece.  Break it up into
563  *	smaller pieces (each of size equal to IP header plus
564  *	a block of the data of the original IP data part) that will yet fit in a
565  *	single device frame, and queue such a frame for sending.
566  */
567 
568 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
570 {
571 	struct iphdr *iph;
572 	int ptr;
573 	struct sk_buff *skb2;
574 	unsigned int mtu, hlen, left, len, ll_rs;
575 	int offset;
576 	__be16 not_last_frag;
577 	struct rtable *rt = skb_rtable(skb);
578 	int err = 0;
579 
580 	/* for offloaded checksums cleanup checksum before fragmentation */
581 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
582 	    (err = skb_checksum_help(skb)))
583 		goto fail;
584 
585 	/*
586 	 *	Point into the IP datagram header.
587 	 */
588 
589 	iph = ip_hdr(skb);
590 
591 	mtu = ip_skb_dst_mtu(sk, skb);
592 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
593 		mtu = IPCB(skb)->frag_max_size;
594 
595 	/*
596 	 *	Setup starting values.
597 	 */
598 
599 	hlen = iph->ihl * 4;
600 	mtu = mtu - hlen;	/* Size of data space */
601 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
602 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
603 
604 	/* When frag_list is given, use it. First, check its validity:
605 	 * some transformers could create wrong frag_list or break existing
606 	 * one, it is not prohibited. In this case fall back to copying.
607 	 *
608 	 * LATER: this step can be merged to real generation of fragments,
609 	 * we can switch to copy when see the first bad fragment.
610 	 */
611 	if (skb_has_frag_list(skb)) {
612 		struct sk_buff *frag, *frag2;
613 		unsigned int first_len = skb_pagelen(skb);
614 
615 		if (first_len - hlen > mtu ||
616 		    ((first_len - hlen) & 7) ||
617 		    ip_is_fragment(iph) ||
618 		    skb_cloned(skb) ||
619 		    skb_headroom(skb) < ll_rs)
620 			goto slow_path;
621 
622 		skb_walk_frags(skb, frag) {
623 			/* Correct geometry. */
624 			if (frag->len > mtu ||
625 			    ((frag->len & 7) && frag->next) ||
626 			    skb_headroom(frag) < hlen + ll_rs)
627 				goto slow_path_clean;
628 
629 			/* Partially cloned skb? */
630 			if (skb_shared(frag))
631 				goto slow_path_clean;
632 
633 			BUG_ON(frag->sk);
634 			if (skb->sk) {
635 				frag->sk = skb->sk;
636 				frag->destructor = sock_wfree;
637 			}
638 			skb->truesize -= frag->truesize;
639 		}
640 
641 		/* Everything is OK. Generate! */
642 
643 		err = 0;
644 		offset = 0;
645 		frag = skb_shinfo(skb)->frag_list;
646 		skb_frag_list_init(skb);
647 		skb->data_len = first_len - skb_headlen(skb);
648 		skb->len = first_len;
649 		iph->tot_len = htons(first_len);
650 		iph->frag_off = htons(IP_MF);
651 		ip_send_check(iph);
652 
653 		for (;;) {
654 			/* Prepare header of the next frame,
655 			 * before previous one went down. */
656 			if (frag) {
657 				frag->ip_summed = CHECKSUM_NONE;
658 				skb_reset_transport_header(frag);
659 				__skb_push(frag, hlen);
660 				skb_reset_network_header(frag);
661 				memcpy(skb_network_header(frag), iph, hlen);
662 				iph = ip_hdr(frag);
663 				iph->tot_len = htons(frag->len);
664 				ip_copy_metadata(frag, skb);
665 				if (offset == 0)
666 					ip_options_fragment(frag);
667 				offset += skb->len - hlen;
668 				iph->frag_off = htons(offset>>3);
669 				if (frag->next)
670 					iph->frag_off |= htons(IP_MF);
671 				/* Ready, complete checksum */
672 				ip_send_check(iph);
673 			}
674 
675 			err = output(net, sk, skb);
676 
677 			if (!err)
678 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
679 			if (err || !frag)
680 				break;
681 
682 			skb = frag;
683 			frag = skb->next;
684 			skb->next = NULL;
685 		}
686 
687 		if (err == 0) {
688 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
689 			return 0;
690 		}
691 
692 		while (frag) {
693 			skb = frag->next;
694 			kfree_skb(frag);
695 			frag = skb;
696 		}
697 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
698 		return err;
699 
700 slow_path_clean:
701 		skb_walk_frags(skb, frag2) {
702 			if (frag2 == frag)
703 				break;
704 			frag2->sk = NULL;
705 			frag2->destructor = NULL;
706 			skb->truesize += frag2->truesize;
707 		}
708 	}
709 
710 slow_path:
711 	iph = ip_hdr(skb);
712 
713 	left = skb->len - hlen;		/* Space per frame */
714 	ptr = hlen;		/* Where to start from */
715 
716 	/*
717 	 *	Fragment the datagram.
718 	 */
719 
720 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
721 	not_last_frag = iph->frag_off & htons(IP_MF);
722 
723 	/*
724 	 *	Keep copying data until we run out.
725 	 */
726 
727 	while (left > 0) {
728 		len = left;
729 		/* IF: it doesn't fit, use 'mtu' - the data space left */
730 		if (len > mtu)
731 			len = mtu;
732 		/* IF: we are not sending up to and including the packet end
733 		   then align the next start on an eight byte boundary */
734 		if (len < left)	{
735 			len &= ~7;
736 		}
737 
738 		/* Allocate buffer */
739 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
740 		if (!skb2) {
741 			err = -ENOMEM;
742 			goto fail;
743 		}
744 
745 		/*
746 		 *	Set up data on packet
747 		 */
748 
749 		ip_copy_metadata(skb2, skb);
750 		skb_reserve(skb2, ll_rs);
751 		skb_put(skb2, len + hlen);
752 		skb_reset_network_header(skb2);
753 		skb2->transport_header = skb2->network_header + hlen;
754 
755 		/*
756 		 *	Charge the memory for the fragment to any owner
757 		 *	it might possess
758 		 */
759 
760 		if (skb->sk)
761 			skb_set_owner_w(skb2, skb->sk);
762 
763 		/*
764 		 *	Copy the packet header into the new buffer.
765 		 */
766 
767 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
768 
769 		/*
770 		 *	Copy a block of the IP datagram.
771 		 */
772 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
773 			BUG();
774 		left -= len;
775 
776 		/*
777 		 *	Fill in the new header fields.
778 		 */
779 		iph = ip_hdr(skb2);
780 		iph->frag_off = htons((offset >> 3));
781 
782 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
783 			iph->frag_off |= htons(IP_DF);
784 
785 		/* ANK: dirty, but effective trick. Upgrade options only if
786 		 * the segment to be fragmented was THE FIRST (otherwise,
787 		 * options are already fixed) and make it ONCE
788 		 * on the initial skb, so that all the following fragments
789 		 * will inherit fixed options.
790 		 */
791 		if (offset == 0)
792 			ip_options_fragment(skb);
793 
794 		/*
795 		 *	Added AC : If we are fragmenting a fragment that's not the
796 		 *		   last fragment then keep MF on each bit
797 		 */
798 		if (left > 0 || not_last_frag)
799 			iph->frag_off |= htons(IP_MF);
800 		ptr += len;
801 		offset += len;
802 
803 		/*
804 		 *	Put this fragment into the sending queue.
805 		 */
806 		iph->tot_len = htons(len + hlen);
807 
808 		ip_send_check(iph);
809 
810 		err = output(net, sk, skb2);
811 		if (err)
812 			goto fail;
813 
814 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
815 	}
816 	consume_skb(skb);
817 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
818 	return err;
819 
820 fail:
821 	kfree_skb(skb);
822 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
823 	return err;
824 }
825 EXPORT_SYMBOL(ip_do_fragment);
826 
827 int
828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
829 {
830 	struct msghdr *msg = from;
831 
832 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
834 			return -EFAULT;
835 	} else {
836 		__wsum csum = 0;
837 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
838 			return -EFAULT;
839 		skb->csum = csum_block_add(skb->csum, csum, odd);
840 	}
841 	return 0;
842 }
843 EXPORT_SYMBOL(ip_generic_getfrag);
844 
845 static inline __wsum
846 csum_page(struct page *page, int offset, int copy)
847 {
848 	char *kaddr;
849 	__wsum csum;
850 	kaddr = kmap(page);
851 	csum = csum_partial(kaddr + offset, copy, 0);
852 	kunmap(page);
853 	return csum;
854 }
855 
856 static inline int ip_ufo_append_data(struct sock *sk,
857 			struct sk_buff_head *queue,
858 			int getfrag(void *from, char *to, int offset, int len,
859 			       int odd, struct sk_buff *skb),
860 			void *from, int length, int hh_len, int fragheaderlen,
861 			int transhdrlen, int maxfraglen, unsigned int flags)
862 {
863 	struct sk_buff *skb;
864 	int err;
865 
866 	/* There is support for UDP fragmentation offload by network
867 	 * device, so create one single skb packet containing complete
868 	 * udp datagram
869 	 */
870 	skb = skb_peek_tail(queue);
871 	if (!skb) {
872 		skb = sock_alloc_send_skb(sk,
873 			hh_len + fragheaderlen + transhdrlen + 20,
874 			(flags & MSG_DONTWAIT), &err);
875 
876 		if (!skb)
877 			return err;
878 
879 		/* reserve space for Hardware header */
880 		skb_reserve(skb, hh_len);
881 
882 		/* create space for UDP/IP header */
883 		skb_put(skb, fragheaderlen + transhdrlen);
884 
885 		/* initialize network header pointer */
886 		skb_reset_network_header(skb);
887 
888 		/* initialize protocol header pointer */
889 		skb->transport_header = skb->network_header + fragheaderlen;
890 
891 		skb->csum = 0;
892 
893 		if (flags & MSG_CONFIRM)
894 			skb_set_dst_pending_confirm(skb, 1);
895 
896 		__skb_queue_tail(queue, skb);
897 	} else if (skb_is_gso(skb)) {
898 		goto append;
899 	}
900 
901 	skb->ip_summed = CHECKSUM_PARTIAL;
902 	/* specify the length of each IP datagram fragment */
903 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
904 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
905 
906 append:
907 	return skb_append_datato_frags(sk, skb, getfrag, from,
908 				       (length - transhdrlen));
909 }
910 
911 static int __ip_append_data(struct sock *sk,
912 			    struct flowi4 *fl4,
913 			    struct sk_buff_head *queue,
914 			    struct inet_cork *cork,
915 			    struct page_frag *pfrag,
916 			    int getfrag(void *from, char *to, int offset,
917 					int len, int odd, struct sk_buff *skb),
918 			    void *from, int length, int transhdrlen,
919 			    unsigned int flags)
920 {
921 	struct inet_sock *inet = inet_sk(sk);
922 	struct sk_buff *skb;
923 
924 	struct ip_options *opt = cork->opt;
925 	int hh_len;
926 	int exthdrlen;
927 	int mtu;
928 	int copy;
929 	int err;
930 	int offset = 0;
931 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
932 	int csummode = CHECKSUM_NONE;
933 	struct rtable *rt = (struct rtable *)cork->dst;
934 	u32 tskey = 0;
935 
936 	skb = skb_peek_tail(queue);
937 
938 	exthdrlen = !skb ? rt->dst.header_len : 0;
939 	mtu = cork->fragsize;
940 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
941 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
942 		tskey = sk->sk_tskey++;
943 
944 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
945 
946 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
947 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
948 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
949 
950 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
951 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
952 			       mtu - (opt ? opt->optlen : 0));
953 		return -EMSGSIZE;
954 	}
955 
956 	/*
957 	 * transhdrlen > 0 means that this is the first fragment and we wish
958 	 * it won't be fragmented in the future.
959 	 */
960 	if (transhdrlen &&
961 	    length + fragheaderlen <= mtu &&
962 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
963 	    !(flags & MSG_MORE) &&
964 	    !exthdrlen)
965 		csummode = CHECKSUM_PARTIAL;
966 
967 	cork->length += length;
968 	if ((((length + (skb ? skb->len : fragheaderlen)) > mtu) ||
969 	     (skb && skb_is_gso(skb))) &&
970 	    (sk->sk_protocol == IPPROTO_UDP) &&
971 	    (rt->dst.dev->features & NETIF_F_UFO) && !dst_xfrm(&rt->dst) &&
972 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
973 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
974 					 hh_len, fragheaderlen, transhdrlen,
975 					 maxfraglen, flags);
976 		if (err)
977 			goto error;
978 		return 0;
979 	}
980 
981 	/* So, what's going on in the loop below?
982 	 *
983 	 * We use calculated fragment length to generate chained skb,
984 	 * each of segments is IP fragment ready for sending to network after
985 	 * adding appropriate IP header.
986 	 */
987 
988 	if (!skb)
989 		goto alloc_new_skb;
990 
991 	while (length > 0) {
992 		/* Check if the remaining data fits into current packet. */
993 		copy = mtu - skb->len;
994 		if (copy < length)
995 			copy = maxfraglen - skb->len;
996 		if (copy <= 0) {
997 			char *data;
998 			unsigned int datalen;
999 			unsigned int fraglen;
1000 			unsigned int fraggap;
1001 			unsigned int alloclen;
1002 			struct sk_buff *skb_prev;
1003 alloc_new_skb:
1004 			skb_prev = skb;
1005 			if (skb_prev)
1006 				fraggap = skb_prev->len - maxfraglen;
1007 			else
1008 				fraggap = 0;
1009 
1010 			/*
1011 			 * If remaining data exceeds the mtu,
1012 			 * we know we need more fragment(s).
1013 			 */
1014 			datalen = length + fraggap;
1015 			if (datalen > mtu - fragheaderlen)
1016 				datalen = maxfraglen - fragheaderlen;
1017 			fraglen = datalen + fragheaderlen;
1018 
1019 			if ((flags & MSG_MORE) &&
1020 			    !(rt->dst.dev->features&NETIF_F_SG))
1021 				alloclen = mtu;
1022 			else
1023 				alloclen = fraglen;
1024 
1025 			alloclen += exthdrlen;
1026 
1027 			/* The last fragment gets additional space at tail.
1028 			 * Note, with MSG_MORE we overallocate on fragments,
1029 			 * because we have no idea what fragment will be
1030 			 * the last.
1031 			 */
1032 			if (datalen == length + fraggap)
1033 				alloclen += rt->dst.trailer_len;
1034 
1035 			if (transhdrlen) {
1036 				skb = sock_alloc_send_skb(sk,
1037 						alloclen + hh_len + 15,
1038 						(flags & MSG_DONTWAIT), &err);
1039 			} else {
1040 				skb = NULL;
1041 				if (refcount_read(&sk->sk_wmem_alloc) <=
1042 				    2 * sk->sk_sndbuf)
1043 					skb = sock_wmalloc(sk,
1044 							   alloclen + hh_len + 15, 1,
1045 							   sk->sk_allocation);
1046 				if (unlikely(!skb))
1047 					err = -ENOBUFS;
1048 			}
1049 			if (!skb)
1050 				goto error;
1051 
1052 			/*
1053 			 *	Fill in the control structures
1054 			 */
1055 			skb->ip_summed = csummode;
1056 			skb->csum = 0;
1057 			skb_reserve(skb, hh_len);
1058 
1059 			/* only the initial fragment is time stamped */
1060 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1061 			cork->tx_flags = 0;
1062 			skb_shinfo(skb)->tskey = tskey;
1063 			tskey = 0;
1064 
1065 			/*
1066 			 *	Find where to start putting bytes.
1067 			 */
1068 			data = skb_put(skb, fraglen + exthdrlen);
1069 			skb_set_network_header(skb, exthdrlen);
1070 			skb->transport_header = (skb->network_header +
1071 						 fragheaderlen);
1072 			data += fragheaderlen + exthdrlen;
1073 
1074 			if (fraggap) {
1075 				skb->csum = skb_copy_and_csum_bits(
1076 					skb_prev, maxfraglen,
1077 					data + transhdrlen, fraggap, 0);
1078 				skb_prev->csum = csum_sub(skb_prev->csum,
1079 							  skb->csum);
1080 				data += fraggap;
1081 				pskb_trim_unique(skb_prev, maxfraglen);
1082 			}
1083 
1084 			copy = datalen - transhdrlen - fraggap;
1085 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1086 				err = -EFAULT;
1087 				kfree_skb(skb);
1088 				goto error;
1089 			}
1090 
1091 			offset += copy;
1092 			length -= datalen - fraggap;
1093 			transhdrlen = 0;
1094 			exthdrlen = 0;
1095 			csummode = CHECKSUM_NONE;
1096 
1097 			if ((flags & MSG_CONFIRM) && !skb_prev)
1098 				skb_set_dst_pending_confirm(skb, 1);
1099 
1100 			/*
1101 			 * Put the packet on the pending queue.
1102 			 */
1103 			__skb_queue_tail(queue, skb);
1104 			continue;
1105 		}
1106 
1107 		if (copy > length)
1108 			copy = length;
1109 
1110 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1111 			unsigned int off;
1112 
1113 			off = skb->len;
1114 			if (getfrag(from, skb_put(skb, copy),
1115 					offset, copy, off, skb) < 0) {
1116 				__skb_trim(skb, off);
1117 				err = -EFAULT;
1118 				goto error;
1119 			}
1120 		} else {
1121 			int i = skb_shinfo(skb)->nr_frags;
1122 
1123 			err = -ENOMEM;
1124 			if (!sk_page_frag_refill(sk, pfrag))
1125 				goto error;
1126 
1127 			if (!skb_can_coalesce(skb, i, pfrag->page,
1128 					      pfrag->offset)) {
1129 				err = -EMSGSIZE;
1130 				if (i == MAX_SKB_FRAGS)
1131 					goto error;
1132 
1133 				__skb_fill_page_desc(skb, i, pfrag->page,
1134 						     pfrag->offset, 0);
1135 				skb_shinfo(skb)->nr_frags = ++i;
1136 				get_page(pfrag->page);
1137 			}
1138 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1139 			if (getfrag(from,
1140 				    page_address(pfrag->page) + pfrag->offset,
1141 				    offset, copy, skb->len, skb) < 0)
1142 				goto error_efault;
1143 
1144 			pfrag->offset += copy;
1145 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1146 			skb->len += copy;
1147 			skb->data_len += copy;
1148 			skb->truesize += copy;
1149 			refcount_add(copy, &sk->sk_wmem_alloc);
1150 		}
1151 		offset += copy;
1152 		length -= copy;
1153 	}
1154 
1155 	return 0;
1156 
1157 error_efault:
1158 	err = -EFAULT;
1159 error:
1160 	cork->length -= length;
1161 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1162 	return err;
1163 }
1164 
1165 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1166 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1167 {
1168 	struct ip_options_rcu *opt;
1169 	struct rtable *rt;
1170 
1171 	/*
1172 	 * setup for corking.
1173 	 */
1174 	opt = ipc->opt;
1175 	if (opt) {
1176 		if (!cork->opt) {
1177 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1178 					    sk->sk_allocation);
1179 			if (unlikely(!cork->opt))
1180 				return -ENOBUFS;
1181 		}
1182 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1183 		cork->flags |= IPCORK_OPT;
1184 		cork->addr = ipc->addr;
1185 	}
1186 	rt = *rtp;
1187 	if (unlikely(!rt))
1188 		return -EFAULT;
1189 	/*
1190 	 * We steal reference to this route, caller should not release it
1191 	 */
1192 	*rtp = NULL;
1193 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1194 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1195 	cork->dst = &rt->dst;
1196 	cork->length = 0;
1197 	cork->ttl = ipc->ttl;
1198 	cork->tos = ipc->tos;
1199 	cork->priority = ipc->priority;
1200 	cork->tx_flags = ipc->tx_flags;
1201 
1202 	return 0;
1203 }
1204 
1205 /*
1206  *	ip_append_data() and ip_append_page() can make one large IP datagram
1207  *	from many pieces of data. Each pieces will be holded on the socket
1208  *	until ip_push_pending_frames() is called. Each piece can be a page
1209  *	or non-page data.
1210  *
1211  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1212  *	this interface potentially.
1213  *
1214  *	LATER: length must be adjusted by pad at tail, when it is required.
1215  */
1216 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1217 		   int getfrag(void *from, char *to, int offset, int len,
1218 			       int odd, struct sk_buff *skb),
1219 		   void *from, int length, int transhdrlen,
1220 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1221 		   unsigned int flags)
1222 {
1223 	struct inet_sock *inet = inet_sk(sk);
1224 	int err;
1225 
1226 	if (flags&MSG_PROBE)
1227 		return 0;
1228 
1229 	if (skb_queue_empty(&sk->sk_write_queue)) {
1230 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1231 		if (err)
1232 			return err;
1233 	} else {
1234 		transhdrlen = 0;
1235 	}
1236 
1237 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1238 				sk_page_frag(sk), getfrag,
1239 				from, length, transhdrlen, flags);
1240 }
1241 
1242 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1243 		       int offset, size_t size, int flags)
1244 {
1245 	struct inet_sock *inet = inet_sk(sk);
1246 	struct sk_buff *skb;
1247 	struct rtable *rt;
1248 	struct ip_options *opt = NULL;
1249 	struct inet_cork *cork;
1250 	int hh_len;
1251 	int mtu;
1252 	int len;
1253 	int err;
1254 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1255 
1256 	if (inet->hdrincl)
1257 		return -EPERM;
1258 
1259 	if (flags&MSG_PROBE)
1260 		return 0;
1261 
1262 	if (skb_queue_empty(&sk->sk_write_queue))
1263 		return -EINVAL;
1264 
1265 	cork = &inet->cork.base;
1266 	rt = (struct rtable *)cork->dst;
1267 	if (cork->flags & IPCORK_OPT)
1268 		opt = cork->opt;
1269 
1270 	if (!(rt->dst.dev->features&NETIF_F_SG))
1271 		return -EOPNOTSUPP;
1272 
1273 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1274 	mtu = cork->fragsize;
1275 
1276 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1277 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1278 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1279 
1280 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1281 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1282 			       mtu - (opt ? opt->optlen : 0));
1283 		return -EMSGSIZE;
1284 	}
1285 
1286 	skb = skb_peek_tail(&sk->sk_write_queue);
1287 	if (!skb)
1288 		return -EINVAL;
1289 
1290 	if ((size + skb->len > mtu) &&
1291 	    (sk->sk_protocol == IPPROTO_UDP) &&
1292 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1293 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1294 			return -EOPNOTSUPP;
1295 
1296 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1297 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1298 	}
1299 	cork->length += size;
1300 
1301 	while (size > 0) {
1302 		if (skb_is_gso(skb)) {
1303 			len = size;
1304 		} else {
1305 
1306 			/* Check if the remaining data fits into current packet. */
1307 			len = mtu - skb->len;
1308 			if (len < size)
1309 				len = maxfraglen - skb->len;
1310 		}
1311 		if (len <= 0) {
1312 			struct sk_buff *skb_prev;
1313 			int alloclen;
1314 
1315 			skb_prev = skb;
1316 			fraggap = skb_prev->len - maxfraglen;
1317 
1318 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1319 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1320 			if (unlikely(!skb)) {
1321 				err = -ENOBUFS;
1322 				goto error;
1323 			}
1324 
1325 			/*
1326 			 *	Fill in the control structures
1327 			 */
1328 			skb->ip_summed = CHECKSUM_NONE;
1329 			skb->csum = 0;
1330 			skb_reserve(skb, hh_len);
1331 
1332 			/*
1333 			 *	Find where to start putting bytes.
1334 			 */
1335 			skb_put(skb, fragheaderlen + fraggap);
1336 			skb_reset_network_header(skb);
1337 			skb->transport_header = (skb->network_header +
1338 						 fragheaderlen);
1339 			if (fraggap) {
1340 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1341 								   maxfraglen,
1342 						    skb_transport_header(skb),
1343 								   fraggap, 0);
1344 				skb_prev->csum = csum_sub(skb_prev->csum,
1345 							  skb->csum);
1346 				pskb_trim_unique(skb_prev, maxfraglen);
1347 			}
1348 
1349 			/*
1350 			 * Put the packet on the pending queue.
1351 			 */
1352 			__skb_queue_tail(&sk->sk_write_queue, skb);
1353 			continue;
1354 		}
1355 
1356 		if (len > size)
1357 			len = size;
1358 
1359 		if (skb_append_pagefrags(skb, page, offset, len)) {
1360 			err = -EMSGSIZE;
1361 			goto error;
1362 		}
1363 
1364 		if (skb->ip_summed == CHECKSUM_NONE) {
1365 			__wsum csum;
1366 			csum = csum_page(page, offset, len);
1367 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1368 		}
1369 
1370 		skb->len += len;
1371 		skb->data_len += len;
1372 		skb->truesize += len;
1373 		refcount_add(len, &sk->sk_wmem_alloc);
1374 		offset += len;
1375 		size -= len;
1376 	}
1377 	return 0;
1378 
1379 error:
1380 	cork->length -= size;
1381 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1382 	return err;
1383 }
1384 
1385 static void ip_cork_release(struct inet_cork *cork)
1386 {
1387 	cork->flags &= ~IPCORK_OPT;
1388 	kfree(cork->opt);
1389 	cork->opt = NULL;
1390 	dst_release(cork->dst);
1391 	cork->dst = NULL;
1392 }
1393 
1394 /*
1395  *	Combined all pending IP fragments on the socket as one IP datagram
1396  *	and push them out.
1397  */
1398 struct sk_buff *__ip_make_skb(struct sock *sk,
1399 			      struct flowi4 *fl4,
1400 			      struct sk_buff_head *queue,
1401 			      struct inet_cork *cork)
1402 {
1403 	struct sk_buff *skb, *tmp_skb;
1404 	struct sk_buff **tail_skb;
1405 	struct inet_sock *inet = inet_sk(sk);
1406 	struct net *net = sock_net(sk);
1407 	struct ip_options *opt = NULL;
1408 	struct rtable *rt = (struct rtable *)cork->dst;
1409 	struct iphdr *iph;
1410 	__be16 df = 0;
1411 	__u8 ttl;
1412 
1413 	skb = __skb_dequeue(queue);
1414 	if (!skb)
1415 		goto out;
1416 	tail_skb = &(skb_shinfo(skb)->frag_list);
1417 
1418 	/* move skb->data to ip header from ext header */
1419 	if (skb->data < skb_network_header(skb))
1420 		__skb_pull(skb, skb_network_offset(skb));
1421 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1422 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1423 		*tail_skb = tmp_skb;
1424 		tail_skb = &(tmp_skb->next);
1425 		skb->len += tmp_skb->len;
1426 		skb->data_len += tmp_skb->len;
1427 		skb->truesize += tmp_skb->truesize;
1428 		tmp_skb->destructor = NULL;
1429 		tmp_skb->sk = NULL;
1430 	}
1431 
1432 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1433 	 * to fragment the frame generated here. No matter, what transforms
1434 	 * how transforms change size of the packet, it will come out.
1435 	 */
1436 	skb->ignore_df = ip_sk_ignore_df(sk);
1437 
1438 	/* DF bit is set when we want to see DF on outgoing frames.
1439 	 * If ignore_df is set too, we still allow to fragment this frame
1440 	 * locally. */
1441 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1442 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1443 	    (skb->len <= dst_mtu(&rt->dst) &&
1444 	     ip_dont_fragment(sk, &rt->dst)))
1445 		df = htons(IP_DF);
1446 
1447 	if (cork->flags & IPCORK_OPT)
1448 		opt = cork->opt;
1449 
1450 	if (cork->ttl != 0)
1451 		ttl = cork->ttl;
1452 	else if (rt->rt_type == RTN_MULTICAST)
1453 		ttl = inet->mc_ttl;
1454 	else
1455 		ttl = ip_select_ttl(inet, &rt->dst);
1456 
1457 	iph = ip_hdr(skb);
1458 	iph->version = 4;
1459 	iph->ihl = 5;
1460 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1461 	iph->frag_off = df;
1462 	iph->ttl = ttl;
1463 	iph->protocol = sk->sk_protocol;
1464 	ip_copy_addrs(iph, fl4);
1465 	ip_select_ident(net, skb, sk);
1466 
1467 	if (opt) {
1468 		iph->ihl += opt->optlen>>2;
1469 		ip_options_build(skb, opt, cork->addr, rt, 0);
1470 	}
1471 
1472 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1473 	skb->mark = sk->sk_mark;
1474 	/*
1475 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1476 	 * on dst refcount
1477 	 */
1478 	cork->dst = NULL;
1479 	skb_dst_set(skb, &rt->dst);
1480 
1481 	if (iph->protocol == IPPROTO_ICMP)
1482 		icmp_out_count(net, ((struct icmphdr *)
1483 			skb_transport_header(skb))->type);
1484 
1485 	ip_cork_release(cork);
1486 out:
1487 	return skb;
1488 }
1489 
1490 int ip_send_skb(struct net *net, struct sk_buff *skb)
1491 {
1492 	int err;
1493 
1494 	err = ip_local_out(net, skb->sk, skb);
1495 	if (err) {
1496 		if (err > 0)
1497 			err = net_xmit_errno(err);
1498 		if (err)
1499 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1500 	}
1501 
1502 	return err;
1503 }
1504 
1505 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1506 {
1507 	struct sk_buff *skb;
1508 
1509 	skb = ip_finish_skb(sk, fl4);
1510 	if (!skb)
1511 		return 0;
1512 
1513 	/* Netfilter gets whole the not fragmented skb. */
1514 	return ip_send_skb(sock_net(sk), skb);
1515 }
1516 
1517 /*
1518  *	Throw away all pending data on the socket.
1519  */
1520 static void __ip_flush_pending_frames(struct sock *sk,
1521 				      struct sk_buff_head *queue,
1522 				      struct inet_cork *cork)
1523 {
1524 	struct sk_buff *skb;
1525 
1526 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1527 		kfree_skb(skb);
1528 
1529 	ip_cork_release(cork);
1530 }
1531 
1532 void ip_flush_pending_frames(struct sock *sk)
1533 {
1534 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1535 }
1536 
1537 struct sk_buff *ip_make_skb(struct sock *sk,
1538 			    struct flowi4 *fl4,
1539 			    int getfrag(void *from, char *to, int offset,
1540 					int len, int odd, struct sk_buff *skb),
1541 			    void *from, int length, int transhdrlen,
1542 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1543 			    unsigned int flags)
1544 {
1545 	struct inet_cork cork;
1546 	struct sk_buff_head queue;
1547 	int err;
1548 
1549 	if (flags & MSG_PROBE)
1550 		return NULL;
1551 
1552 	__skb_queue_head_init(&queue);
1553 
1554 	cork.flags = 0;
1555 	cork.addr = 0;
1556 	cork.opt = NULL;
1557 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1558 	if (err)
1559 		return ERR_PTR(err);
1560 
1561 	err = __ip_append_data(sk, fl4, &queue, &cork,
1562 			       &current->task_frag, getfrag,
1563 			       from, length, transhdrlen, flags);
1564 	if (err) {
1565 		__ip_flush_pending_frames(sk, &queue, &cork);
1566 		return ERR_PTR(err);
1567 	}
1568 
1569 	return __ip_make_skb(sk, fl4, &queue, &cork);
1570 }
1571 
1572 /*
1573  *	Fetch data from kernel space and fill in checksum if needed.
1574  */
1575 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1576 			      int len, int odd, struct sk_buff *skb)
1577 {
1578 	__wsum csum;
1579 
1580 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1581 	skb->csum = csum_block_add(skb->csum, csum, odd);
1582 	return 0;
1583 }
1584 
1585 /*
1586  *	Generic function to send a packet as reply to another packet.
1587  *	Used to send some TCP resets/acks so far.
1588  */
1589 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1590 			   const struct ip_options *sopt,
1591 			   __be32 daddr, __be32 saddr,
1592 			   const struct ip_reply_arg *arg,
1593 			   unsigned int len)
1594 {
1595 	struct ip_options_data replyopts;
1596 	struct ipcm_cookie ipc;
1597 	struct flowi4 fl4;
1598 	struct rtable *rt = skb_rtable(skb);
1599 	struct net *net = sock_net(sk);
1600 	struct sk_buff *nskb;
1601 	int err;
1602 	int oif;
1603 
1604 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1605 		return;
1606 
1607 	ipc.addr = daddr;
1608 	ipc.opt = NULL;
1609 	ipc.tx_flags = 0;
1610 	ipc.ttl = 0;
1611 	ipc.tos = -1;
1612 
1613 	if (replyopts.opt.opt.optlen) {
1614 		ipc.opt = &replyopts.opt;
1615 
1616 		if (replyopts.opt.opt.srr)
1617 			daddr = replyopts.opt.opt.faddr;
1618 	}
1619 
1620 	oif = arg->bound_dev_if;
1621 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1622 		oif = skb->skb_iif;
1623 
1624 	flowi4_init_output(&fl4, oif,
1625 			   IP4_REPLY_MARK(net, skb->mark),
1626 			   RT_TOS(arg->tos),
1627 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1628 			   ip_reply_arg_flowi_flags(arg),
1629 			   daddr, saddr,
1630 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1631 			   arg->uid);
1632 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1633 	rt = ip_route_output_key(net, &fl4);
1634 	if (IS_ERR(rt))
1635 		return;
1636 
1637 	inet_sk(sk)->tos = arg->tos;
1638 
1639 	sk->sk_priority = skb->priority;
1640 	sk->sk_protocol = ip_hdr(skb)->protocol;
1641 	sk->sk_bound_dev_if = arg->bound_dev_if;
1642 	sk->sk_sndbuf = sysctl_wmem_default;
1643 	sk->sk_mark = fl4.flowi4_mark;
1644 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1645 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1646 	if (unlikely(err)) {
1647 		ip_flush_pending_frames(sk);
1648 		goto out;
1649 	}
1650 
1651 	nskb = skb_peek(&sk->sk_write_queue);
1652 	if (nskb) {
1653 		if (arg->csumoffset >= 0)
1654 			*((__sum16 *)skb_transport_header(nskb) +
1655 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1656 								arg->csum));
1657 		nskb->ip_summed = CHECKSUM_NONE;
1658 		ip_push_pending_frames(sk, &fl4);
1659 	}
1660 out:
1661 	ip_rt_put(rt);
1662 }
1663 
1664 void __init ip_init(void)
1665 {
1666 	ip_rt_init();
1667 	inet_initpeers();
1668 
1669 #if defined(CONFIG_IP_MULTICAST)
1670 	igmp_mc_init();
1671 #endif
1672 }
1673