1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readability. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/gso.h> 77 #include <net/inetpeer.h> 78 #include <net/inet_ecn.h> 79 #include <net/lwtunnel.h> 80 #include <linux/bpf-cgroup.h> 81 #include <linux/igmp.h> 82 #include <linux/netfilter_ipv4.h> 83 #include <linux/netfilter_bridge.h> 84 #include <linux/netlink.h> 85 #include <linux/tcp.h> 86 87 static int 88 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 89 unsigned int mtu, 90 int (*output)(struct net *, struct sock *, struct sk_buff *)); 91 92 /* Generate a checksum for an outgoing IP datagram. */ 93 void ip_send_check(struct iphdr *iph) 94 { 95 iph->check = 0; 96 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 97 } 98 EXPORT_SYMBOL(ip_send_check); 99 100 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 101 { 102 struct iphdr *iph = ip_hdr(skb); 103 104 iph_set_totlen(iph, skb->len); 105 ip_send_check(iph); 106 107 /* if egress device is enslaved to an L3 master device pass the 108 * skb to its handler for processing 109 */ 110 skb = l3mdev_ip_out(sk, skb); 111 if (unlikely(!skb)) 112 return 0; 113 114 skb->protocol = htons(ETH_P_IP); 115 116 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 117 net, sk, skb, NULL, skb_dst(skb)->dev, 118 dst_output); 119 } 120 121 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 122 { 123 int err; 124 125 err = __ip_local_out(net, sk, skb); 126 if (likely(err == 1)) 127 err = dst_output(net, sk, skb); 128 129 return err; 130 } 131 EXPORT_SYMBOL_GPL(ip_local_out); 132 133 static inline int ip_select_ttl(const struct inet_sock *inet, 134 const struct dst_entry *dst) 135 { 136 int ttl = inet->uc_ttl; 137 138 if (ttl < 0) 139 ttl = ip4_dst_hoplimit(dst); 140 return ttl; 141 } 142 143 /* 144 * Add an ip header to a skbuff and send it out. 145 * 146 */ 147 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 148 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt, 149 u8 tos) 150 { 151 const struct inet_sock *inet = inet_sk(sk); 152 struct rtable *rt = skb_rtable(skb); 153 struct net *net = sock_net(sk); 154 struct iphdr *iph; 155 156 /* Build the IP header. */ 157 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 158 skb_reset_network_header(skb); 159 iph = ip_hdr(skb); 160 iph->version = 4; 161 iph->ihl = 5; 162 iph->tos = tos; 163 iph->ttl = ip_select_ttl(inet, &rt->dst); 164 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 165 iph->saddr = saddr; 166 iph->protocol = sk->sk_protocol; 167 /* Do not bother generating IPID for small packets (eg SYNACK) */ 168 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) { 169 iph->frag_off = htons(IP_DF); 170 iph->id = 0; 171 } else { 172 iph->frag_off = 0; 173 /* TCP packets here are SYNACK with fat IPv4/TCP options. 174 * Avoid using the hashed IP ident generator. 175 */ 176 if (sk->sk_protocol == IPPROTO_TCP) 177 iph->id = (__force __be16)get_random_u16(); 178 else 179 __ip_select_ident(net, iph, 1); 180 } 181 182 if (opt && opt->opt.optlen) { 183 iph->ihl += opt->opt.optlen>>2; 184 ip_options_build(skb, &opt->opt, daddr, rt); 185 } 186 187 skb->priority = sk->sk_priority; 188 if (!skb->mark) 189 skb->mark = sk->sk_mark; 190 191 /* Send it out. */ 192 return ip_local_out(net, skb->sk, skb); 193 } 194 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 195 196 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 197 { 198 struct dst_entry *dst = skb_dst(skb); 199 struct rtable *rt = (struct rtable *)dst; 200 struct net_device *dev = dst->dev; 201 unsigned int hh_len = LL_RESERVED_SPACE(dev); 202 struct neighbour *neigh; 203 bool is_v6gw = false; 204 205 if (rt->rt_type == RTN_MULTICAST) { 206 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 207 } else if (rt->rt_type == RTN_BROADCAST) 208 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 209 210 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 211 skb = skb_expand_head(skb, hh_len); 212 if (!skb) 213 return -ENOMEM; 214 } 215 216 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 217 int res = lwtunnel_xmit(skb); 218 219 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 220 return res; 221 } 222 223 rcu_read_lock(); 224 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 /* if crossing protocols, can not use the cached header */ 230 res = neigh_output(neigh, skb, is_v6gw); 231 rcu_read_unlock(); 232 return res; 233 } 234 rcu_read_unlock(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 struct sk_buff *segs, *nskb; 246 netdev_features_t features; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_network_len(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficient MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 skb_list_walk_safe(segs, segs, nskb) { 278 int err; 279 280 skb_mark_not_on_list(segs); 281 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 282 283 if (err && ret == 0) 284 ret = err; 285 } 286 287 return ret; 288 } 289 290 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 291 { 292 unsigned int mtu; 293 294 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 295 /* Policy lookup after SNAT yielded a new policy */ 296 if (skb_dst(skb)->xfrm) { 297 IPCB(skb)->flags |= IPSKB_REROUTED; 298 return dst_output(net, sk, skb); 299 } 300 #endif 301 mtu = ip_skb_dst_mtu(sk, skb); 302 if (skb_is_gso(skb)) 303 return ip_finish_output_gso(net, sk, skb, mtu); 304 305 if (skb->len > mtu || IPCB(skb)->frag_max_size) 306 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 307 308 return ip_finish_output2(net, sk, skb); 309 } 310 311 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 312 { 313 int ret; 314 315 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 316 switch (ret) { 317 case NET_XMIT_SUCCESS: 318 return __ip_finish_output(net, sk, skb); 319 case NET_XMIT_CN: 320 return __ip_finish_output(net, sk, skb) ? : ret; 321 default: 322 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 323 return ret; 324 } 325 } 326 327 static int ip_mc_finish_output(struct net *net, struct sock *sk, 328 struct sk_buff *skb) 329 { 330 struct rtable *new_rt; 331 bool do_cn = false; 332 int ret, err; 333 334 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 335 switch (ret) { 336 case NET_XMIT_CN: 337 do_cn = true; 338 fallthrough; 339 case NET_XMIT_SUCCESS: 340 break; 341 default: 342 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS); 343 return ret; 344 } 345 346 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 347 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 348 * see ipv4_pktinfo_prepare(). 349 */ 350 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 351 if (new_rt) { 352 new_rt->rt_iif = 0; 353 skb_dst_drop(skb); 354 skb_dst_set(skb, &new_rt->dst); 355 } 356 357 err = dev_loopback_xmit(net, sk, skb); 358 return (do_cn && err) ? ret : err; 359 } 360 361 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 362 { 363 struct rtable *rt = skb_rtable(skb); 364 struct net_device *dev = rt->dst.dev; 365 366 /* 367 * If the indicated interface is up and running, send the packet. 368 */ 369 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 370 371 skb->dev = dev; 372 skb->protocol = htons(ETH_P_IP); 373 374 /* 375 * Multicasts are looped back for other local users 376 */ 377 378 if (rt->rt_flags&RTCF_MULTICAST) { 379 if (sk_mc_loop(sk) 380 #ifdef CONFIG_IP_MROUTE 381 /* Small optimization: do not loopback not local frames, 382 which returned after forwarding; they will be dropped 383 by ip_mr_input in any case. 384 Note, that local frames are looped back to be delivered 385 to local recipients. 386 387 This check is duplicated in ip_mr_input at the moment. 388 */ 389 && 390 ((rt->rt_flags & RTCF_LOCAL) || 391 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 392 #endif 393 ) { 394 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 395 if (newskb) 396 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 397 net, sk, newskb, NULL, newskb->dev, 398 ip_mc_finish_output); 399 } 400 401 /* Multicasts with ttl 0 must not go beyond the host */ 402 403 if (ip_hdr(skb)->ttl == 0) { 404 kfree_skb(skb); 405 return 0; 406 } 407 } 408 409 if (rt->rt_flags&RTCF_BROADCAST) { 410 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 411 if (newskb) 412 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 413 net, sk, newskb, NULL, newskb->dev, 414 ip_mc_finish_output); 415 } 416 417 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 418 net, sk, skb, NULL, skb->dev, 419 ip_finish_output, 420 !(IPCB(skb)->flags & IPSKB_REROUTED)); 421 } 422 423 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 424 { 425 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev; 426 427 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 428 429 skb->dev = dev; 430 skb->protocol = htons(ETH_P_IP); 431 432 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 433 net, sk, skb, indev, dev, 434 ip_finish_output, 435 !(IPCB(skb)->flags & IPSKB_REROUTED)); 436 } 437 EXPORT_SYMBOL(ip_output); 438 439 /* 440 * copy saddr and daddr, possibly using 64bit load/stores 441 * Equivalent to : 442 * iph->saddr = fl4->saddr; 443 * iph->daddr = fl4->daddr; 444 */ 445 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 446 { 447 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 448 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 449 450 iph->saddr = fl4->saddr; 451 iph->daddr = fl4->daddr; 452 } 453 454 /* Note: skb->sk can be different from sk, in case of tunnels */ 455 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 456 __u8 tos) 457 { 458 struct inet_sock *inet = inet_sk(sk); 459 struct net *net = sock_net(sk); 460 struct ip_options_rcu *inet_opt; 461 struct flowi4 *fl4; 462 struct rtable *rt; 463 struct iphdr *iph; 464 int res; 465 466 /* Skip all of this if the packet is already routed, 467 * f.e. by something like SCTP. 468 */ 469 rcu_read_lock(); 470 inet_opt = rcu_dereference(inet->inet_opt); 471 fl4 = &fl->u.ip4; 472 rt = skb_rtable(skb); 473 if (rt) 474 goto packet_routed; 475 476 /* Make sure we can route this packet. */ 477 rt = (struct rtable *)__sk_dst_check(sk, 0); 478 if (!rt) { 479 __be32 daddr; 480 481 /* Use correct destination address if we have options. */ 482 daddr = inet->inet_daddr; 483 if (inet_opt && inet_opt->opt.srr) 484 daddr = inet_opt->opt.faddr; 485 486 /* If this fails, retransmit mechanism of transport layer will 487 * keep trying until route appears or the connection times 488 * itself out. 489 */ 490 rt = ip_route_output_ports(net, fl4, sk, 491 daddr, inet->inet_saddr, 492 inet->inet_dport, 493 inet->inet_sport, 494 sk->sk_protocol, 495 RT_CONN_FLAGS_TOS(sk, tos), 496 sk->sk_bound_dev_if); 497 if (IS_ERR(rt)) 498 goto no_route; 499 sk_setup_caps(sk, &rt->dst); 500 } 501 skb_dst_set_noref(skb, &rt->dst); 502 503 packet_routed: 504 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 505 goto no_route; 506 507 /* OK, we know where to send it, allocate and build IP header. */ 508 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 509 skb_reset_network_header(skb); 510 iph = ip_hdr(skb); 511 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 512 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 513 iph->frag_off = htons(IP_DF); 514 else 515 iph->frag_off = 0; 516 iph->ttl = ip_select_ttl(inet, &rt->dst); 517 iph->protocol = sk->sk_protocol; 518 ip_copy_addrs(iph, fl4); 519 520 /* Transport layer set skb->h.foo itself. */ 521 522 if (inet_opt && inet_opt->opt.optlen) { 523 iph->ihl += inet_opt->opt.optlen >> 2; 524 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt); 525 } 526 527 ip_select_ident_segs(net, skb, sk, 528 skb_shinfo(skb)->gso_segs ?: 1); 529 530 /* TODO : should we use skb->sk here instead of sk ? */ 531 skb->priority = sk->sk_priority; 532 skb->mark = sk->sk_mark; 533 534 res = ip_local_out(net, sk, skb); 535 rcu_read_unlock(); 536 return res; 537 538 no_route: 539 rcu_read_unlock(); 540 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 541 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES); 542 return -EHOSTUNREACH; 543 } 544 EXPORT_SYMBOL(__ip_queue_xmit); 545 546 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 547 { 548 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos); 549 } 550 EXPORT_SYMBOL(ip_queue_xmit); 551 552 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 553 { 554 to->pkt_type = from->pkt_type; 555 to->priority = from->priority; 556 to->protocol = from->protocol; 557 to->skb_iif = from->skb_iif; 558 skb_dst_drop(to); 559 skb_dst_copy(to, from); 560 to->dev = from->dev; 561 to->mark = from->mark; 562 563 skb_copy_hash(to, from); 564 565 #ifdef CONFIG_NET_SCHED 566 to->tc_index = from->tc_index; 567 #endif 568 nf_copy(to, from); 569 skb_ext_copy(to, from); 570 #if IS_ENABLED(CONFIG_IP_VS) 571 to->ipvs_property = from->ipvs_property; 572 #endif 573 skb_copy_secmark(to, from); 574 } 575 576 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 577 unsigned int mtu, 578 int (*output)(struct net *, struct sock *, struct sk_buff *)) 579 { 580 struct iphdr *iph = ip_hdr(skb); 581 582 if ((iph->frag_off & htons(IP_DF)) == 0) 583 return ip_do_fragment(net, sk, skb, output); 584 585 if (unlikely(!skb->ignore_df || 586 (IPCB(skb)->frag_max_size && 587 IPCB(skb)->frag_max_size > mtu))) { 588 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 589 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 590 htonl(mtu)); 591 kfree_skb(skb); 592 return -EMSGSIZE; 593 } 594 595 return ip_do_fragment(net, sk, skb, output); 596 } 597 598 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph, 599 unsigned int hlen, struct ip_fraglist_iter *iter) 600 { 601 unsigned int first_len = skb_pagelen(skb); 602 603 iter->frag = skb_shinfo(skb)->frag_list; 604 skb_frag_list_init(skb); 605 606 iter->offset = 0; 607 iter->iph = iph; 608 iter->hlen = hlen; 609 610 skb->data_len = first_len - skb_headlen(skb); 611 skb->len = first_len; 612 iph->tot_len = htons(first_len); 613 iph->frag_off = htons(IP_MF); 614 ip_send_check(iph); 615 } 616 EXPORT_SYMBOL(ip_fraglist_init); 617 618 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter) 619 { 620 unsigned int hlen = iter->hlen; 621 struct iphdr *iph = iter->iph; 622 struct sk_buff *frag; 623 624 frag = iter->frag; 625 frag->ip_summed = CHECKSUM_NONE; 626 skb_reset_transport_header(frag); 627 __skb_push(frag, hlen); 628 skb_reset_network_header(frag); 629 memcpy(skb_network_header(frag), iph, hlen); 630 iter->iph = ip_hdr(frag); 631 iph = iter->iph; 632 iph->tot_len = htons(frag->len); 633 ip_copy_metadata(frag, skb); 634 iter->offset += skb->len - hlen; 635 iph->frag_off = htons(iter->offset >> 3); 636 if (frag->next) 637 iph->frag_off |= htons(IP_MF); 638 /* Ready, complete checksum */ 639 ip_send_check(iph); 640 } 641 EXPORT_SYMBOL(ip_fraglist_prepare); 642 643 void ip_frag_init(struct sk_buff *skb, unsigned int hlen, 644 unsigned int ll_rs, unsigned int mtu, bool DF, 645 struct ip_frag_state *state) 646 { 647 struct iphdr *iph = ip_hdr(skb); 648 649 state->DF = DF; 650 state->hlen = hlen; 651 state->ll_rs = ll_rs; 652 state->mtu = mtu; 653 654 state->left = skb->len - hlen; /* Space per frame */ 655 state->ptr = hlen; /* Where to start from */ 656 657 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 658 state->not_last_frag = iph->frag_off & htons(IP_MF); 659 } 660 EXPORT_SYMBOL(ip_frag_init); 661 662 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to, 663 bool first_frag) 664 { 665 /* Copy the flags to each fragment. */ 666 IPCB(to)->flags = IPCB(from)->flags; 667 668 /* ANK: dirty, but effective trick. Upgrade options only if 669 * the segment to be fragmented was THE FIRST (otherwise, 670 * options are already fixed) and make it ONCE 671 * on the initial skb, so that all the following fragments 672 * will inherit fixed options. 673 */ 674 if (first_frag) 675 ip_options_fragment(from); 676 } 677 678 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state) 679 { 680 unsigned int len = state->left; 681 struct sk_buff *skb2; 682 struct iphdr *iph; 683 684 /* IF: it doesn't fit, use 'mtu' - the data space left */ 685 if (len > state->mtu) 686 len = state->mtu; 687 /* IF: we are not sending up to and including the packet end 688 then align the next start on an eight byte boundary */ 689 if (len < state->left) { 690 len &= ~7; 691 } 692 693 /* Allocate buffer */ 694 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC); 695 if (!skb2) 696 return ERR_PTR(-ENOMEM); 697 698 /* 699 * Set up data on packet 700 */ 701 702 ip_copy_metadata(skb2, skb); 703 skb_reserve(skb2, state->ll_rs); 704 skb_put(skb2, len + state->hlen); 705 skb_reset_network_header(skb2); 706 skb2->transport_header = skb2->network_header + state->hlen; 707 708 /* 709 * Charge the memory for the fragment to any owner 710 * it might possess 711 */ 712 713 if (skb->sk) 714 skb_set_owner_w(skb2, skb->sk); 715 716 /* 717 * Copy the packet header into the new buffer. 718 */ 719 720 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen); 721 722 /* 723 * Copy a block of the IP datagram. 724 */ 725 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len)) 726 BUG(); 727 state->left -= len; 728 729 /* 730 * Fill in the new header fields. 731 */ 732 iph = ip_hdr(skb2); 733 iph->frag_off = htons((state->offset >> 3)); 734 if (state->DF) 735 iph->frag_off |= htons(IP_DF); 736 737 /* 738 * Added AC : If we are fragmenting a fragment that's not the 739 * last fragment then keep MF on each bit 740 */ 741 if (state->left > 0 || state->not_last_frag) 742 iph->frag_off |= htons(IP_MF); 743 state->ptr += len; 744 state->offset += len; 745 746 iph->tot_len = htons(len + state->hlen); 747 748 ip_send_check(iph); 749 750 return skb2; 751 } 752 EXPORT_SYMBOL(ip_frag_next); 753 754 /* 755 * This IP datagram is too large to be sent in one piece. Break it up into 756 * smaller pieces (each of size equal to IP header plus 757 * a block of the data of the original IP data part) that will yet fit in a 758 * single device frame, and queue such a frame for sending. 759 */ 760 761 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 762 int (*output)(struct net *, struct sock *, struct sk_buff *)) 763 { 764 struct iphdr *iph; 765 struct sk_buff *skb2; 766 bool mono_delivery_time = skb->mono_delivery_time; 767 struct rtable *rt = skb_rtable(skb); 768 unsigned int mtu, hlen, ll_rs; 769 struct ip_fraglist_iter iter; 770 ktime_t tstamp = skb->tstamp; 771 struct ip_frag_state state; 772 int err = 0; 773 774 /* for offloaded checksums cleanup checksum before fragmentation */ 775 if (skb->ip_summed == CHECKSUM_PARTIAL && 776 (err = skb_checksum_help(skb))) 777 goto fail; 778 779 /* 780 * Point into the IP datagram header. 781 */ 782 783 iph = ip_hdr(skb); 784 785 mtu = ip_skb_dst_mtu(sk, skb); 786 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 787 mtu = IPCB(skb)->frag_max_size; 788 789 /* 790 * Setup starting values. 791 */ 792 793 hlen = iph->ihl * 4; 794 mtu = mtu - hlen; /* Size of data space */ 795 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 796 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 797 798 /* When frag_list is given, use it. First, check its validity: 799 * some transformers could create wrong frag_list or break existing 800 * one, it is not prohibited. In this case fall back to copying. 801 * 802 * LATER: this step can be merged to real generation of fragments, 803 * we can switch to copy when see the first bad fragment. 804 */ 805 if (skb_has_frag_list(skb)) { 806 struct sk_buff *frag, *frag2; 807 unsigned int first_len = skb_pagelen(skb); 808 809 if (first_len - hlen > mtu || 810 ((first_len - hlen) & 7) || 811 ip_is_fragment(iph) || 812 skb_cloned(skb) || 813 skb_headroom(skb) < ll_rs) 814 goto slow_path; 815 816 skb_walk_frags(skb, frag) { 817 /* Correct geometry. */ 818 if (frag->len > mtu || 819 ((frag->len & 7) && frag->next) || 820 skb_headroom(frag) < hlen + ll_rs) 821 goto slow_path_clean; 822 823 /* Partially cloned skb? */ 824 if (skb_shared(frag)) 825 goto slow_path_clean; 826 827 BUG_ON(frag->sk); 828 if (skb->sk) { 829 frag->sk = skb->sk; 830 frag->destructor = sock_wfree; 831 } 832 skb->truesize -= frag->truesize; 833 } 834 835 /* Everything is OK. Generate! */ 836 ip_fraglist_init(skb, iph, hlen, &iter); 837 838 for (;;) { 839 /* Prepare header of the next frame, 840 * before previous one went down. */ 841 if (iter.frag) { 842 bool first_frag = (iter.offset == 0); 843 844 IPCB(iter.frag)->flags = IPCB(skb)->flags; 845 ip_fraglist_prepare(skb, &iter); 846 if (first_frag && IPCB(skb)->opt.optlen) { 847 /* ipcb->opt is not populated for frags 848 * coming from __ip_make_skb(), 849 * ip_options_fragment() needs optlen 850 */ 851 IPCB(iter.frag)->opt.optlen = 852 IPCB(skb)->opt.optlen; 853 ip_options_fragment(iter.frag); 854 ip_send_check(iter.iph); 855 } 856 } 857 858 skb_set_delivery_time(skb, tstamp, mono_delivery_time); 859 err = output(net, sk, skb); 860 861 if (!err) 862 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 863 if (err || !iter.frag) 864 break; 865 866 skb = ip_fraglist_next(&iter); 867 } 868 869 if (err == 0) { 870 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 871 return 0; 872 } 873 874 kfree_skb_list(iter.frag); 875 876 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 877 return err; 878 879 slow_path_clean: 880 skb_walk_frags(skb, frag2) { 881 if (frag2 == frag) 882 break; 883 frag2->sk = NULL; 884 frag2->destructor = NULL; 885 skb->truesize += frag2->truesize; 886 } 887 } 888 889 slow_path: 890 /* 891 * Fragment the datagram. 892 */ 893 894 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU, 895 &state); 896 897 /* 898 * Keep copying data until we run out. 899 */ 900 901 while (state.left > 0) { 902 bool first_frag = (state.offset == 0); 903 904 skb2 = ip_frag_next(skb, &state); 905 if (IS_ERR(skb2)) { 906 err = PTR_ERR(skb2); 907 goto fail; 908 } 909 ip_frag_ipcb(skb, skb2, first_frag); 910 911 /* 912 * Put this fragment into the sending queue. 913 */ 914 skb_set_delivery_time(skb2, tstamp, mono_delivery_time); 915 err = output(net, sk, skb2); 916 if (err) 917 goto fail; 918 919 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 920 } 921 consume_skb(skb); 922 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 923 return err; 924 925 fail: 926 kfree_skb(skb); 927 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 928 return err; 929 } 930 EXPORT_SYMBOL(ip_do_fragment); 931 932 int 933 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 934 { 935 struct msghdr *msg = from; 936 937 if (skb->ip_summed == CHECKSUM_PARTIAL) { 938 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 939 return -EFAULT; 940 } else { 941 __wsum csum = 0; 942 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 943 return -EFAULT; 944 skb->csum = csum_block_add(skb->csum, csum, odd); 945 } 946 return 0; 947 } 948 EXPORT_SYMBOL(ip_generic_getfrag); 949 950 static int __ip_append_data(struct sock *sk, 951 struct flowi4 *fl4, 952 struct sk_buff_head *queue, 953 struct inet_cork *cork, 954 struct page_frag *pfrag, 955 int getfrag(void *from, char *to, int offset, 956 int len, int odd, struct sk_buff *skb), 957 void *from, int length, int transhdrlen, 958 unsigned int flags) 959 { 960 struct inet_sock *inet = inet_sk(sk); 961 struct ubuf_info *uarg = NULL; 962 struct sk_buff *skb; 963 struct ip_options *opt = cork->opt; 964 int hh_len; 965 int exthdrlen; 966 int mtu; 967 int copy; 968 int err; 969 int offset = 0; 970 bool zc = false; 971 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 972 int csummode = CHECKSUM_NONE; 973 struct rtable *rt = (struct rtable *)cork->dst; 974 unsigned int wmem_alloc_delta = 0; 975 bool paged, extra_uref = false; 976 u32 tskey = 0; 977 978 skb = skb_peek_tail(queue); 979 980 exthdrlen = !skb ? rt->dst.header_len : 0; 981 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 982 paged = !!cork->gso_size; 983 984 if (cork->tx_flags & SKBTX_ANY_TSTAMP && 985 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 986 tskey = atomic_inc_return(&sk->sk_tskey) - 1; 987 988 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 989 990 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 991 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 992 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu; 993 994 if (cork->length + length > maxnonfragsize - fragheaderlen) { 995 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 996 mtu - (opt ? opt->optlen : 0)); 997 return -EMSGSIZE; 998 } 999 1000 /* 1001 * transhdrlen > 0 means that this is the first fragment and we wish 1002 * it won't be fragmented in the future. 1003 */ 1004 if (transhdrlen && 1005 length + fragheaderlen <= mtu && 1006 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 1007 (!(flags & MSG_MORE) || cork->gso_size) && 1008 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 1009 csummode = CHECKSUM_PARTIAL; 1010 1011 if ((flags & MSG_ZEROCOPY) && length) { 1012 struct msghdr *msg = from; 1013 1014 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) { 1015 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb)) 1016 return -EINVAL; 1017 1018 /* Leave uarg NULL if can't zerocopy, callers should 1019 * be able to handle it. 1020 */ 1021 if ((rt->dst.dev->features & NETIF_F_SG) && 1022 csummode == CHECKSUM_PARTIAL) { 1023 paged = true; 1024 zc = true; 1025 uarg = msg->msg_ubuf; 1026 } 1027 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1028 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb)); 1029 if (!uarg) 1030 return -ENOBUFS; 1031 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 1032 if (rt->dst.dev->features & NETIF_F_SG && 1033 csummode == CHECKSUM_PARTIAL) { 1034 paged = true; 1035 zc = true; 1036 } else { 1037 uarg_to_msgzc(uarg)->zerocopy = 0; 1038 skb_zcopy_set(skb, uarg, &extra_uref); 1039 } 1040 } 1041 } else if ((flags & MSG_SPLICE_PAGES) && length) { 1042 if (inet->hdrincl) 1043 return -EPERM; 1044 if (rt->dst.dev->features & NETIF_F_SG) 1045 /* We need an empty buffer to attach stuff to */ 1046 paged = true; 1047 else 1048 flags &= ~MSG_SPLICE_PAGES; 1049 } 1050 1051 cork->length += length; 1052 1053 /* So, what's going on in the loop below? 1054 * 1055 * We use calculated fragment length to generate chained skb, 1056 * each of segments is IP fragment ready for sending to network after 1057 * adding appropriate IP header. 1058 */ 1059 1060 if (!skb) 1061 goto alloc_new_skb; 1062 1063 while (length > 0) { 1064 /* Check if the remaining data fits into current packet. */ 1065 copy = mtu - skb->len; 1066 if (copy < length) 1067 copy = maxfraglen - skb->len; 1068 if (copy <= 0) { 1069 char *data; 1070 unsigned int datalen; 1071 unsigned int fraglen; 1072 unsigned int fraggap; 1073 unsigned int alloclen, alloc_extra; 1074 unsigned int pagedlen; 1075 struct sk_buff *skb_prev; 1076 alloc_new_skb: 1077 skb_prev = skb; 1078 if (skb_prev) 1079 fraggap = skb_prev->len - maxfraglen; 1080 else 1081 fraggap = 0; 1082 1083 /* 1084 * If remaining data exceeds the mtu, 1085 * we know we need more fragment(s). 1086 */ 1087 datalen = length + fraggap; 1088 if (datalen > mtu - fragheaderlen) 1089 datalen = maxfraglen - fragheaderlen; 1090 fraglen = datalen + fragheaderlen; 1091 pagedlen = 0; 1092 1093 alloc_extra = hh_len + 15; 1094 alloc_extra += exthdrlen; 1095 1096 /* The last fragment gets additional space at tail. 1097 * Note, with MSG_MORE we overallocate on fragments, 1098 * because we have no idea what fragment will be 1099 * the last. 1100 */ 1101 if (datalen == length + fraggap) 1102 alloc_extra += rt->dst.trailer_len; 1103 1104 if ((flags & MSG_MORE) && 1105 !(rt->dst.dev->features&NETIF_F_SG)) 1106 alloclen = mtu; 1107 else if (!paged && 1108 (fraglen + alloc_extra < SKB_MAX_ALLOC || 1109 !(rt->dst.dev->features & NETIF_F_SG))) 1110 alloclen = fraglen; 1111 else { 1112 alloclen = fragheaderlen + transhdrlen; 1113 pagedlen = datalen - transhdrlen; 1114 } 1115 1116 alloclen += alloc_extra; 1117 1118 if (transhdrlen) { 1119 skb = sock_alloc_send_skb(sk, alloclen, 1120 (flags & MSG_DONTWAIT), &err); 1121 } else { 1122 skb = NULL; 1123 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1124 2 * sk->sk_sndbuf) 1125 skb = alloc_skb(alloclen, 1126 sk->sk_allocation); 1127 if (unlikely(!skb)) 1128 err = -ENOBUFS; 1129 } 1130 if (!skb) 1131 goto error; 1132 1133 /* 1134 * Fill in the control structures 1135 */ 1136 skb->ip_summed = csummode; 1137 skb->csum = 0; 1138 skb_reserve(skb, hh_len); 1139 1140 /* 1141 * Find where to start putting bytes. 1142 */ 1143 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1144 skb_set_network_header(skb, exthdrlen); 1145 skb->transport_header = (skb->network_header + 1146 fragheaderlen); 1147 data += fragheaderlen + exthdrlen; 1148 1149 if (fraggap) { 1150 skb->csum = skb_copy_and_csum_bits( 1151 skb_prev, maxfraglen, 1152 data + transhdrlen, fraggap); 1153 skb_prev->csum = csum_sub(skb_prev->csum, 1154 skb->csum); 1155 data += fraggap; 1156 pskb_trim_unique(skb_prev, maxfraglen); 1157 } 1158 1159 copy = datalen - transhdrlen - fraggap - pagedlen; 1160 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1161 err = -EFAULT; 1162 kfree_skb(skb); 1163 goto error; 1164 } 1165 1166 offset += copy; 1167 length -= copy + transhdrlen; 1168 transhdrlen = 0; 1169 exthdrlen = 0; 1170 csummode = CHECKSUM_NONE; 1171 1172 /* only the initial fragment is time stamped */ 1173 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1174 cork->tx_flags = 0; 1175 skb_shinfo(skb)->tskey = tskey; 1176 tskey = 0; 1177 skb_zcopy_set(skb, uarg, &extra_uref); 1178 1179 if ((flags & MSG_CONFIRM) && !skb_prev) 1180 skb_set_dst_pending_confirm(skb, 1); 1181 1182 /* 1183 * Put the packet on the pending queue. 1184 */ 1185 if (!skb->destructor) { 1186 skb->destructor = sock_wfree; 1187 skb->sk = sk; 1188 wmem_alloc_delta += skb->truesize; 1189 } 1190 __skb_queue_tail(queue, skb); 1191 continue; 1192 } 1193 1194 if (copy > length) 1195 copy = length; 1196 1197 if (!(rt->dst.dev->features&NETIF_F_SG) && 1198 skb_tailroom(skb) >= copy) { 1199 unsigned int off; 1200 1201 off = skb->len; 1202 if (getfrag(from, skb_put(skb, copy), 1203 offset, copy, off, skb) < 0) { 1204 __skb_trim(skb, off); 1205 err = -EFAULT; 1206 goto error; 1207 } 1208 } else if (flags & MSG_SPLICE_PAGES) { 1209 struct msghdr *msg = from; 1210 1211 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1212 sk->sk_allocation); 1213 if (err < 0) 1214 goto error; 1215 copy = err; 1216 wmem_alloc_delta += copy; 1217 } else if (!zc) { 1218 int i = skb_shinfo(skb)->nr_frags; 1219 1220 err = -ENOMEM; 1221 if (!sk_page_frag_refill(sk, pfrag)) 1222 goto error; 1223 1224 skb_zcopy_downgrade_managed(skb); 1225 if (!skb_can_coalesce(skb, i, pfrag->page, 1226 pfrag->offset)) { 1227 err = -EMSGSIZE; 1228 if (i == MAX_SKB_FRAGS) 1229 goto error; 1230 1231 __skb_fill_page_desc(skb, i, pfrag->page, 1232 pfrag->offset, 0); 1233 skb_shinfo(skb)->nr_frags = ++i; 1234 get_page(pfrag->page); 1235 } 1236 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1237 if (getfrag(from, 1238 page_address(pfrag->page) + pfrag->offset, 1239 offset, copy, skb->len, skb) < 0) 1240 goto error_efault; 1241 1242 pfrag->offset += copy; 1243 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1244 skb_len_add(skb, copy); 1245 wmem_alloc_delta += copy; 1246 } else { 1247 err = skb_zerocopy_iter_dgram(skb, from, copy); 1248 if (err < 0) 1249 goto error; 1250 } 1251 offset += copy; 1252 length -= copy; 1253 } 1254 1255 if (wmem_alloc_delta) 1256 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1257 return 0; 1258 1259 error_efault: 1260 err = -EFAULT; 1261 error: 1262 net_zcopy_put_abort(uarg, extra_uref); 1263 cork->length -= length; 1264 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1265 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1266 return err; 1267 } 1268 1269 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1270 struct ipcm_cookie *ipc, struct rtable **rtp) 1271 { 1272 struct ip_options_rcu *opt; 1273 struct rtable *rt; 1274 1275 rt = *rtp; 1276 if (unlikely(!rt)) 1277 return -EFAULT; 1278 1279 /* 1280 * setup for corking. 1281 */ 1282 opt = ipc->opt; 1283 if (opt) { 1284 if (!cork->opt) { 1285 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1286 sk->sk_allocation); 1287 if (unlikely(!cork->opt)) 1288 return -ENOBUFS; 1289 } 1290 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1291 cork->flags |= IPCORK_OPT; 1292 cork->addr = ipc->addr; 1293 } 1294 1295 cork->fragsize = ip_sk_use_pmtu(sk) ? 1296 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu); 1297 1298 if (!inetdev_valid_mtu(cork->fragsize)) 1299 return -ENETUNREACH; 1300 1301 cork->gso_size = ipc->gso_size; 1302 1303 cork->dst = &rt->dst; 1304 /* We stole this route, caller should not release it. */ 1305 *rtp = NULL; 1306 1307 cork->length = 0; 1308 cork->ttl = ipc->ttl; 1309 cork->tos = ipc->tos; 1310 cork->mark = ipc->sockc.mark; 1311 cork->priority = ipc->priority; 1312 cork->transmit_time = ipc->sockc.transmit_time; 1313 cork->tx_flags = 0; 1314 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1315 1316 return 0; 1317 } 1318 1319 /* 1320 * ip_append_data() can make one large IP datagram from many pieces of 1321 * data. Each piece will be held on the socket until 1322 * ip_push_pending_frames() is called. Each piece can be a page or 1323 * non-page data. 1324 * 1325 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1326 * this interface potentially. 1327 * 1328 * LATER: length must be adjusted by pad at tail, when it is required. 1329 */ 1330 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1331 int getfrag(void *from, char *to, int offset, int len, 1332 int odd, struct sk_buff *skb), 1333 void *from, int length, int transhdrlen, 1334 struct ipcm_cookie *ipc, struct rtable **rtp, 1335 unsigned int flags) 1336 { 1337 struct inet_sock *inet = inet_sk(sk); 1338 int err; 1339 1340 if (flags&MSG_PROBE) 1341 return 0; 1342 1343 if (skb_queue_empty(&sk->sk_write_queue)) { 1344 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1345 if (err) 1346 return err; 1347 } else { 1348 transhdrlen = 0; 1349 } 1350 1351 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1352 sk_page_frag(sk), getfrag, 1353 from, length, transhdrlen, flags); 1354 } 1355 1356 static void ip_cork_release(struct inet_cork *cork) 1357 { 1358 cork->flags &= ~IPCORK_OPT; 1359 kfree(cork->opt); 1360 cork->opt = NULL; 1361 dst_release(cork->dst); 1362 cork->dst = NULL; 1363 } 1364 1365 /* 1366 * Combined all pending IP fragments on the socket as one IP datagram 1367 * and push them out. 1368 */ 1369 struct sk_buff *__ip_make_skb(struct sock *sk, 1370 struct flowi4 *fl4, 1371 struct sk_buff_head *queue, 1372 struct inet_cork *cork) 1373 { 1374 struct sk_buff *skb, *tmp_skb; 1375 struct sk_buff **tail_skb; 1376 struct inet_sock *inet = inet_sk(sk); 1377 struct net *net = sock_net(sk); 1378 struct ip_options *opt = NULL; 1379 struct rtable *rt = (struct rtable *)cork->dst; 1380 struct iphdr *iph; 1381 __be16 df = 0; 1382 __u8 ttl; 1383 1384 skb = __skb_dequeue(queue); 1385 if (!skb) 1386 goto out; 1387 tail_skb = &(skb_shinfo(skb)->frag_list); 1388 1389 /* move skb->data to ip header from ext header */ 1390 if (skb->data < skb_network_header(skb)) 1391 __skb_pull(skb, skb_network_offset(skb)); 1392 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1393 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1394 *tail_skb = tmp_skb; 1395 tail_skb = &(tmp_skb->next); 1396 skb->len += tmp_skb->len; 1397 skb->data_len += tmp_skb->len; 1398 skb->truesize += tmp_skb->truesize; 1399 tmp_skb->destructor = NULL; 1400 tmp_skb->sk = NULL; 1401 } 1402 1403 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1404 * to fragment the frame generated here. No matter, what transforms 1405 * how transforms change size of the packet, it will come out. 1406 */ 1407 skb->ignore_df = ip_sk_ignore_df(sk); 1408 1409 /* DF bit is set when we want to see DF on outgoing frames. 1410 * If ignore_df is set too, we still allow to fragment this frame 1411 * locally. */ 1412 if (inet->pmtudisc == IP_PMTUDISC_DO || 1413 inet->pmtudisc == IP_PMTUDISC_PROBE || 1414 (skb->len <= dst_mtu(&rt->dst) && 1415 ip_dont_fragment(sk, &rt->dst))) 1416 df = htons(IP_DF); 1417 1418 if (cork->flags & IPCORK_OPT) 1419 opt = cork->opt; 1420 1421 if (cork->ttl != 0) 1422 ttl = cork->ttl; 1423 else if (rt->rt_type == RTN_MULTICAST) 1424 ttl = inet->mc_ttl; 1425 else 1426 ttl = ip_select_ttl(inet, &rt->dst); 1427 1428 iph = ip_hdr(skb); 1429 iph->version = 4; 1430 iph->ihl = 5; 1431 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1432 iph->frag_off = df; 1433 iph->ttl = ttl; 1434 iph->protocol = sk->sk_protocol; 1435 ip_copy_addrs(iph, fl4); 1436 ip_select_ident(net, skb, sk); 1437 1438 if (opt) { 1439 iph->ihl += opt->optlen >> 2; 1440 ip_options_build(skb, opt, cork->addr, rt); 1441 } 1442 1443 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1444 skb->mark = cork->mark; 1445 skb->tstamp = cork->transmit_time; 1446 /* 1447 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1448 * on dst refcount 1449 */ 1450 cork->dst = NULL; 1451 skb_dst_set(skb, &rt->dst); 1452 1453 if (iph->protocol == IPPROTO_ICMP) { 1454 u8 icmp_type; 1455 1456 /* For such sockets, transhdrlen is zero when do ip_append_data(), 1457 * so icmphdr does not in skb linear region and can not get icmp_type 1458 * by icmp_hdr(skb)->type. 1459 */ 1460 if (sk->sk_type == SOCK_RAW && !inet_sk(sk)->hdrincl) 1461 icmp_type = fl4->fl4_icmp_type; 1462 else 1463 icmp_type = icmp_hdr(skb)->type; 1464 icmp_out_count(net, icmp_type); 1465 } 1466 1467 ip_cork_release(cork); 1468 out: 1469 return skb; 1470 } 1471 1472 int ip_send_skb(struct net *net, struct sk_buff *skb) 1473 { 1474 int err; 1475 1476 err = ip_local_out(net, skb->sk, skb); 1477 if (err) { 1478 if (err > 0) 1479 err = net_xmit_errno(err); 1480 if (err) 1481 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1482 } 1483 1484 return err; 1485 } 1486 1487 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1488 { 1489 struct sk_buff *skb; 1490 1491 skb = ip_finish_skb(sk, fl4); 1492 if (!skb) 1493 return 0; 1494 1495 /* Netfilter gets whole the not fragmented skb. */ 1496 return ip_send_skb(sock_net(sk), skb); 1497 } 1498 1499 /* 1500 * Throw away all pending data on the socket. 1501 */ 1502 static void __ip_flush_pending_frames(struct sock *sk, 1503 struct sk_buff_head *queue, 1504 struct inet_cork *cork) 1505 { 1506 struct sk_buff *skb; 1507 1508 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1509 kfree_skb(skb); 1510 1511 ip_cork_release(cork); 1512 } 1513 1514 void ip_flush_pending_frames(struct sock *sk) 1515 { 1516 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1517 } 1518 1519 struct sk_buff *ip_make_skb(struct sock *sk, 1520 struct flowi4 *fl4, 1521 int getfrag(void *from, char *to, int offset, 1522 int len, int odd, struct sk_buff *skb), 1523 void *from, int length, int transhdrlen, 1524 struct ipcm_cookie *ipc, struct rtable **rtp, 1525 struct inet_cork *cork, unsigned int flags) 1526 { 1527 struct sk_buff_head queue; 1528 int err; 1529 1530 if (flags & MSG_PROBE) 1531 return NULL; 1532 1533 __skb_queue_head_init(&queue); 1534 1535 cork->flags = 0; 1536 cork->addr = 0; 1537 cork->opt = NULL; 1538 err = ip_setup_cork(sk, cork, ipc, rtp); 1539 if (err) 1540 return ERR_PTR(err); 1541 1542 err = __ip_append_data(sk, fl4, &queue, cork, 1543 ¤t->task_frag, getfrag, 1544 from, length, transhdrlen, flags); 1545 if (err) { 1546 __ip_flush_pending_frames(sk, &queue, cork); 1547 return ERR_PTR(err); 1548 } 1549 1550 return __ip_make_skb(sk, fl4, &queue, cork); 1551 } 1552 1553 /* 1554 * Fetch data from kernel space and fill in checksum if needed. 1555 */ 1556 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1557 int len, int odd, struct sk_buff *skb) 1558 { 1559 __wsum csum; 1560 1561 csum = csum_partial_copy_nocheck(dptr+offset, to, len); 1562 skb->csum = csum_block_add(skb->csum, csum, odd); 1563 return 0; 1564 } 1565 1566 /* 1567 * Generic function to send a packet as reply to another packet. 1568 * Used to send some TCP resets/acks so far. 1569 */ 1570 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1571 const struct ip_options *sopt, 1572 __be32 daddr, __be32 saddr, 1573 const struct ip_reply_arg *arg, 1574 unsigned int len, u64 transmit_time, u32 txhash) 1575 { 1576 struct ip_options_data replyopts; 1577 struct ipcm_cookie ipc; 1578 struct flowi4 fl4; 1579 struct rtable *rt = skb_rtable(skb); 1580 struct net *net = sock_net(sk); 1581 struct sk_buff *nskb; 1582 int err; 1583 int oif; 1584 1585 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1586 return; 1587 1588 ipcm_init(&ipc); 1589 ipc.addr = daddr; 1590 ipc.sockc.transmit_time = transmit_time; 1591 1592 if (replyopts.opt.opt.optlen) { 1593 ipc.opt = &replyopts.opt; 1594 1595 if (replyopts.opt.opt.srr) 1596 daddr = replyopts.opt.opt.faddr; 1597 } 1598 1599 oif = arg->bound_dev_if; 1600 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1601 oif = skb->skb_iif; 1602 1603 flowi4_init_output(&fl4, oif, 1604 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1605 RT_TOS(arg->tos), 1606 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1607 ip_reply_arg_flowi_flags(arg), 1608 daddr, saddr, 1609 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1610 arg->uid); 1611 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4)); 1612 rt = ip_route_output_flow(net, &fl4, sk); 1613 if (IS_ERR(rt)) 1614 return; 1615 1616 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK; 1617 1618 sk->sk_protocol = ip_hdr(skb)->protocol; 1619 sk->sk_bound_dev_if = arg->bound_dev_if; 1620 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default); 1621 ipc.sockc.mark = fl4.flowi4_mark; 1622 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1623 len, 0, &ipc, &rt, MSG_DONTWAIT); 1624 if (unlikely(err)) { 1625 ip_flush_pending_frames(sk); 1626 goto out; 1627 } 1628 1629 nskb = skb_peek(&sk->sk_write_queue); 1630 if (nskb) { 1631 if (arg->csumoffset >= 0) 1632 *((__sum16 *)skb_transport_header(nskb) + 1633 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1634 arg->csum)); 1635 nskb->ip_summed = CHECKSUM_NONE; 1636 nskb->mono_delivery_time = !!transmit_time; 1637 if (txhash) 1638 skb_set_hash(nskb, txhash, PKT_HASH_TYPE_L4); 1639 ip_push_pending_frames(sk, &fl4); 1640 } 1641 out: 1642 ip_rt_put(rt); 1643 } 1644 1645 void __init ip_init(void) 1646 { 1647 ip_rt_init(); 1648 inet_initpeers(); 1649 1650 #if defined(CONFIG_IP_MULTICAST) 1651 igmp_mc_init(); 1652 #endif 1653 } 1654