1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The Internet Protocol (IP) output module. 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Donald Becker, <becker@super.org> 12 * Alan Cox, <Alan.Cox@linux.org> 13 * Richard Underwood 14 * Stefan Becker, <stefanb@yello.ping.de> 15 * Jorge Cwik, <jorge@laser.satlink.net> 16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 17 * Hirokazu Takahashi, <taka@valinux.co.jp> 18 * 19 * See ip_input.c for original log 20 * 21 * Fixes: 22 * Alan Cox : Missing nonblock feature in ip_build_xmit. 23 * Mike Kilburn : htons() missing in ip_build_xmit. 24 * Bradford Johnson: Fix faulty handling of some frames when 25 * no route is found. 26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 27 * (in case if packet not accepted by 28 * output firewall rules) 29 * Mike McLagan : Routing by source 30 * Alexey Kuznetsov: use new route cache 31 * Andi Kleen: Fix broken PMTU recovery and remove 32 * some redundant tests. 33 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 34 * Andi Kleen : Replace ip_reply with ip_send_reply. 35 * Andi Kleen : Split fast and slow ip_build_xmit path 36 * for decreased register pressure on x86 37 * and more readibility. 38 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 39 * silently drop skb instead of failing with -EPERM. 40 * Detlev Wengorz : Copy protocol for fragments. 41 * Hirokazu Takahashi: HW checksumming for outgoing UDP 42 * datagrams. 43 * Hirokazu Takahashi: sendfile() on UDP works now. 44 */ 45 46 #include <linux/uaccess.h> 47 #include <linux/module.h> 48 #include <linux/types.h> 49 #include <linux/kernel.h> 50 #include <linux/mm.h> 51 #include <linux/string.h> 52 #include <linux/errno.h> 53 #include <linux/highmem.h> 54 #include <linux/slab.h> 55 56 #include <linux/socket.h> 57 #include <linux/sockios.h> 58 #include <linux/in.h> 59 #include <linux/inet.h> 60 #include <linux/netdevice.h> 61 #include <linux/etherdevice.h> 62 #include <linux/proc_fs.h> 63 #include <linux/stat.h> 64 #include <linux/init.h> 65 66 #include <net/snmp.h> 67 #include <net/ip.h> 68 #include <net/protocol.h> 69 #include <net/route.h> 70 #include <net/xfrm.h> 71 #include <linux/skbuff.h> 72 #include <net/sock.h> 73 #include <net/arp.h> 74 #include <net/icmp.h> 75 #include <net/checksum.h> 76 #include <net/inetpeer.h> 77 #include <net/lwtunnel.h> 78 #include <linux/bpf-cgroup.h> 79 #include <linux/igmp.h> 80 #include <linux/netfilter_ipv4.h> 81 #include <linux/netfilter_bridge.h> 82 #include <linux/netlink.h> 83 #include <linux/tcp.h> 84 85 static int 86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 87 unsigned int mtu, 88 int (*output)(struct net *, struct sock *, struct sk_buff *)); 89 90 /* Generate a checksum for an outgoing IP datagram. */ 91 void ip_send_check(struct iphdr *iph) 92 { 93 iph->check = 0; 94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 95 } 96 EXPORT_SYMBOL(ip_send_check); 97 98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 99 { 100 struct iphdr *iph = ip_hdr(skb); 101 102 iph->tot_len = htons(skb->len); 103 ip_send_check(iph); 104 105 /* if egress device is enslaved to an L3 master device pass the 106 * skb to its handler for processing 107 */ 108 skb = l3mdev_ip_out(sk, skb); 109 if (unlikely(!skb)) 110 return 0; 111 112 skb->protocol = htons(ETH_P_IP); 113 114 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 115 net, sk, skb, NULL, skb_dst(skb)->dev, 116 dst_output); 117 } 118 119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 120 { 121 int err; 122 123 err = __ip_local_out(net, sk, skb); 124 if (likely(err == 1)) 125 err = dst_output(net, sk, skb); 126 127 return err; 128 } 129 EXPORT_SYMBOL_GPL(ip_local_out); 130 131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 132 { 133 int ttl = inet->uc_ttl; 134 135 if (ttl < 0) 136 ttl = ip4_dst_hoplimit(dst); 137 return ttl; 138 } 139 140 /* 141 * Add an ip header to a skbuff and send it out. 142 * 143 */ 144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 145 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 146 { 147 struct inet_sock *inet = inet_sk(sk); 148 struct rtable *rt = skb_rtable(skb); 149 struct net *net = sock_net(sk); 150 struct iphdr *iph; 151 152 /* Build the IP header. */ 153 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 154 skb_reset_network_header(skb); 155 iph = ip_hdr(skb); 156 iph->version = 4; 157 iph->ihl = 5; 158 iph->tos = inet->tos; 159 iph->ttl = ip_select_ttl(inet, &rt->dst); 160 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 161 iph->saddr = saddr; 162 iph->protocol = sk->sk_protocol; 163 if (ip_dont_fragment(sk, &rt->dst)) { 164 iph->frag_off = htons(IP_DF); 165 iph->id = 0; 166 } else { 167 iph->frag_off = 0; 168 __ip_select_ident(net, iph, 1); 169 } 170 171 if (opt && opt->opt.optlen) { 172 iph->ihl += opt->opt.optlen>>2; 173 ip_options_build(skb, &opt->opt, daddr, rt, 0); 174 } 175 176 skb->priority = sk->sk_priority; 177 if (!skb->mark) 178 skb->mark = sk->sk_mark; 179 180 /* Send it out. */ 181 return ip_local_out(net, skb->sk, skb); 182 } 183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 184 185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 186 { 187 struct dst_entry *dst = skb_dst(skb); 188 struct rtable *rt = (struct rtable *)dst; 189 struct net_device *dev = dst->dev; 190 unsigned int hh_len = LL_RESERVED_SPACE(dev); 191 struct neighbour *neigh; 192 bool is_v6gw = false; 193 194 if (rt->rt_type == RTN_MULTICAST) { 195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 196 } else if (rt->rt_type == RTN_BROADCAST) 197 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 198 199 /* Be paranoid, rather than too clever. */ 200 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 201 struct sk_buff *skb2; 202 203 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 204 if (!skb2) { 205 kfree_skb(skb); 206 return -ENOMEM; 207 } 208 if (skb->sk) 209 skb_set_owner_w(skb2, skb->sk); 210 consume_skb(skb); 211 skb = skb2; 212 } 213 214 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 215 int res = lwtunnel_xmit(skb); 216 217 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 218 return res; 219 } 220 221 rcu_read_lock_bh(); 222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 223 if (!IS_ERR(neigh)) { 224 int res; 225 226 sock_confirm_neigh(skb, neigh); 227 /* if crossing protocols, can not use the cached header */ 228 res = neigh_output(neigh, skb, is_v6gw); 229 rcu_read_unlock_bh(); 230 return res; 231 } 232 rcu_read_unlock_bh(); 233 234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 235 __func__); 236 kfree_skb(skb); 237 return -EINVAL; 238 } 239 240 static int ip_finish_output_gso(struct net *net, struct sock *sk, 241 struct sk_buff *skb, unsigned int mtu) 242 { 243 netdev_features_t features; 244 struct sk_buff *segs; 245 int ret = 0; 246 247 /* common case: seglen is <= mtu 248 */ 249 if (skb_gso_validate_network_len(skb, mtu)) 250 return ip_finish_output2(net, sk, skb); 251 252 /* Slowpath - GSO segment length exceeds the egress MTU. 253 * 254 * This can happen in several cases: 255 * - Forwarding of a TCP GRO skb, when DF flag is not set. 256 * - Forwarding of an skb that arrived on a virtualization interface 257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 258 * stack. 259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 260 * interface with a smaller MTU. 261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 263 * insufficent MTU. 264 */ 265 features = netif_skb_features(skb); 266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 268 if (IS_ERR_OR_NULL(segs)) { 269 kfree_skb(skb); 270 return -ENOMEM; 271 } 272 273 consume_skb(skb); 274 275 do { 276 struct sk_buff *nskb = segs->next; 277 int err; 278 279 skb_mark_not_on_list(segs); 280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 281 282 if (err && ret == 0) 283 ret = err; 284 segs = nskb; 285 } while (segs); 286 287 return ret; 288 } 289 290 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 291 { 292 unsigned int mtu; 293 int ret; 294 295 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 296 if (ret) { 297 kfree_skb(skb); 298 return ret; 299 } 300 301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 302 /* Policy lookup after SNAT yielded a new policy */ 303 if (skb_dst(skb)->xfrm) { 304 IPCB(skb)->flags |= IPSKB_REROUTED; 305 return dst_output(net, sk, skb); 306 } 307 #endif 308 mtu = ip_skb_dst_mtu(sk, skb); 309 if (skb_is_gso(skb)) 310 return ip_finish_output_gso(net, sk, skb, mtu); 311 312 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 313 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 314 315 return ip_finish_output2(net, sk, skb); 316 } 317 318 static int ip_mc_finish_output(struct net *net, struct sock *sk, 319 struct sk_buff *skb) 320 { 321 struct rtable *new_rt; 322 int ret; 323 324 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 325 if (ret) { 326 kfree_skb(skb); 327 return ret; 328 } 329 330 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting 331 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten, 332 * see ipv4_pktinfo_prepare(). 333 */ 334 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb)); 335 if (new_rt) { 336 new_rt->rt_iif = 0; 337 skb_dst_drop(skb); 338 skb_dst_set(skb, &new_rt->dst); 339 } 340 341 return dev_loopback_xmit(net, sk, skb); 342 } 343 344 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 345 { 346 struct rtable *rt = skb_rtable(skb); 347 struct net_device *dev = rt->dst.dev; 348 349 /* 350 * If the indicated interface is up and running, send the packet. 351 */ 352 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 353 354 skb->dev = dev; 355 skb->protocol = htons(ETH_P_IP); 356 357 /* 358 * Multicasts are looped back for other local users 359 */ 360 361 if (rt->rt_flags&RTCF_MULTICAST) { 362 if (sk_mc_loop(sk) 363 #ifdef CONFIG_IP_MROUTE 364 /* Small optimization: do not loopback not local frames, 365 which returned after forwarding; they will be dropped 366 by ip_mr_input in any case. 367 Note, that local frames are looped back to be delivered 368 to local recipients. 369 370 This check is duplicated in ip_mr_input at the moment. 371 */ 372 && 373 ((rt->rt_flags & RTCF_LOCAL) || 374 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 375 #endif 376 ) { 377 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 378 if (newskb) 379 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 380 net, sk, newskb, NULL, newskb->dev, 381 ip_mc_finish_output); 382 } 383 384 /* Multicasts with ttl 0 must not go beyond the host */ 385 386 if (ip_hdr(skb)->ttl == 0) { 387 kfree_skb(skb); 388 return 0; 389 } 390 } 391 392 if (rt->rt_flags&RTCF_BROADCAST) { 393 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 394 if (newskb) 395 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 396 net, sk, newskb, NULL, newskb->dev, 397 ip_mc_finish_output); 398 } 399 400 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 401 net, sk, skb, NULL, skb->dev, 402 ip_finish_output, 403 !(IPCB(skb)->flags & IPSKB_REROUTED)); 404 } 405 406 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 407 { 408 struct net_device *dev = skb_dst(skb)->dev; 409 410 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 411 412 skb->dev = dev; 413 skb->protocol = htons(ETH_P_IP); 414 415 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 416 net, sk, skb, NULL, dev, 417 ip_finish_output, 418 !(IPCB(skb)->flags & IPSKB_REROUTED)); 419 } 420 421 /* 422 * copy saddr and daddr, possibly using 64bit load/stores 423 * Equivalent to : 424 * iph->saddr = fl4->saddr; 425 * iph->daddr = fl4->daddr; 426 */ 427 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 428 { 429 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 430 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 431 memcpy(&iph->saddr, &fl4->saddr, 432 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 433 } 434 435 /* Note: skb->sk can be different from sk, in case of tunnels */ 436 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 437 __u8 tos) 438 { 439 struct inet_sock *inet = inet_sk(sk); 440 struct net *net = sock_net(sk); 441 struct ip_options_rcu *inet_opt; 442 struct flowi4 *fl4; 443 struct rtable *rt; 444 struct iphdr *iph; 445 int res; 446 447 /* Skip all of this if the packet is already routed, 448 * f.e. by something like SCTP. 449 */ 450 rcu_read_lock(); 451 inet_opt = rcu_dereference(inet->inet_opt); 452 fl4 = &fl->u.ip4; 453 rt = skb_rtable(skb); 454 if (rt) 455 goto packet_routed; 456 457 /* Make sure we can route this packet. */ 458 rt = (struct rtable *)__sk_dst_check(sk, 0); 459 if (!rt) { 460 __be32 daddr; 461 462 /* Use correct destination address if we have options. */ 463 daddr = inet->inet_daddr; 464 if (inet_opt && inet_opt->opt.srr) 465 daddr = inet_opt->opt.faddr; 466 467 /* If this fails, retransmit mechanism of transport layer will 468 * keep trying until route appears or the connection times 469 * itself out. 470 */ 471 rt = ip_route_output_ports(net, fl4, sk, 472 daddr, inet->inet_saddr, 473 inet->inet_dport, 474 inet->inet_sport, 475 sk->sk_protocol, 476 RT_CONN_FLAGS_TOS(sk, tos), 477 sk->sk_bound_dev_if); 478 if (IS_ERR(rt)) 479 goto no_route; 480 sk_setup_caps(sk, &rt->dst); 481 } 482 skb_dst_set_noref(skb, &rt->dst); 483 484 packet_routed: 485 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family) 486 goto no_route; 487 488 /* OK, we know where to send it, allocate and build IP header. */ 489 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 490 skb_reset_network_header(skb); 491 iph = ip_hdr(skb); 492 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 493 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 494 iph->frag_off = htons(IP_DF); 495 else 496 iph->frag_off = 0; 497 iph->ttl = ip_select_ttl(inet, &rt->dst); 498 iph->protocol = sk->sk_protocol; 499 ip_copy_addrs(iph, fl4); 500 501 /* Transport layer set skb->h.foo itself. */ 502 503 if (inet_opt && inet_opt->opt.optlen) { 504 iph->ihl += inet_opt->opt.optlen >> 2; 505 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 506 } 507 508 ip_select_ident_segs(net, skb, sk, 509 skb_shinfo(skb)->gso_segs ?: 1); 510 511 /* TODO : should we use skb->sk here instead of sk ? */ 512 skb->priority = sk->sk_priority; 513 skb->mark = sk->sk_mark; 514 515 res = ip_local_out(net, sk, skb); 516 rcu_read_unlock(); 517 return res; 518 519 no_route: 520 rcu_read_unlock(); 521 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 522 kfree_skb(skb); 523 return -EHOSTUNREACH; 524 } 525 EXPORT_SYMBOL(__ip_queue_xmit); 526 527 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 528 { 529 to->pkt_type = from->pkt_type; 530 to->priority = from->priority; 531 to->protocol = from->protocol; 532 to->skb_iif = from->skb_iif; 533 skb_dst_drop(to); 534 skb_dst_copy(to, from); 535 to->dev = from->dev; 536 to->mark = from->mark; 537 538 skb_copy_hash(to, from); 539 540 /* Copy the flags to each fragment. */ 541 IPCB(to)->flags = IPCB(from)->flags; 542 543 #ifdef CONFIG_NET_SCHED 544 to->tc_index = from->tc_index; 545 #endif 546 nf_copy(to, from); 547 skb_ext_copy(to, from); 548 #if IS_ENABLED(CONFIG_IP_VS) 549 to->ipvs_property = from->ipvs_property; 550 #endif 551 skb_copy_secmark(to, from); 552 } 553 554 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 555 unsigned int mtu, 556 int (*output)(struct net *, struct sock *, struct sk_buff *)) 557 { 558 struct iphdr *iph = ip_hdr(skb); 559 560 if ((iph->frag_off & htons(IP_DF)) == 0) 561 return ip_do_fragment(net, sk, skb, output); 562 563 if (unlikely(!skb->ignore_df || 564 (IPCB(skb)->frag_max_size && 565 IPCB(skb)->frag_max_size > mtu))) { 566 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 567 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 568 htonl(mtu)); 569 kfree_skb(skb); 570 return -EMSGSIZE; 571 } 572 573 return ip_do_fragment(net, sk, skb, output); 574 } 575 576 /* 577 * This IP datagram is too large to be sent in one piece. Break it up into 578 * smaller pieces (each of size equal to IP header plus 579 * a block of the data of the original IP data part) that will yet fit in a 580 * single device frame, and queue such a frame for sending. 581 */ 582 583 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 584 int (*output)(struct net *, struct sock *, struct sk_buff *)) 585 { 586 struct iphdr *iph; 587 int ptr; 588 struct sk_buff *skb2; 589 unsigned int mtu, hlen, left, len, ll_rs; 590 int offset; 591 __be16 not_last_frag; 592 struct rtable *rt = skb_rtable(skb); 593 int err = 0; 594 595 /* for offloaded checksums cleanup checksum before fragmentation */ 596 if (skb->ip_summed == CHECKSUM_PARTIAL && 597 (err = skb_checksum_help(skb))) 598 goto fail; 599 600 /* 601 * Point into the IP datagram header. 602 */ 603 604 iph = ip_hdr(skb); 605 606 mtu = ip_skb_dst_mtu(sk, skb); 607 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 608 mtu = IPCB(skb)->frag_max_size; 609 610 /* 611 * Setup starting values. 612 */ 613 614 hlen = iph->ihl * 4; 615 mtu = mtu - hlen; /* Size of data space */ 616 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 617 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 618 619 /* When frag_list is given, use it. First, check its validity: 620 * some transformers could create wrong frag_list or break existing 621 * one, it is not prohibited. In this case fall back to copying. 622 * 623 * LATER: this step can be merged to real generation of fragments, 624 * we can switch to copy when see the first bad fragment. 625 */ 626 if (skb_has_frag_list(skb)) { 627 struct sk_buff *frag, *frag2; 628 unsigned int first_len = skb_pagelen(skb); 629 630 if (first_len - hlen > mtu || 631 ((first_len - hlen) & 7) || 632 ip_is_fragment(iph) || 633 skb_cloned(skb) || 634 skb_headroom(skb) < ll_rs) 635 goto slow_path; 636 637 skb_walk_frags(skb, frag) { 638 /* Correct geometry. */ 639 if (frag->len > mtu || 640 ((frag->len & 7) && frag->next) || 641 skb_headroom(frag) < hlen + ll_rs) 642 goto slow_path_clean; 643 644 /* Partially cloned skb? */ 645 if (skb_shared(frag)) 646 goto slow_path_clean; 647 648 BUG_ON(frag->sk); 649 if (skb->sk) { 650 frag->sk = skb->sk; 651 frag->destructor = sock_wfree; 652 } 653 skb->truesize -= frag->truesize; 654 } 655 656 /* Everything is OK. Generate! */ 657 658 err = 0; 659 offset = 0; 660 frag = skb_shinfo(skb)->frag_list; 661 skb_frag_list_init(skb); 662 skb->data_len = first_len - skb_headlen(skb); 663 skb->len = first_len; 664 iph->tot_len = htons(first_len); 665 iph->frag_off = htons(IP_MF); 666 ip_send_check(iph); 667 668 for (;;) { 669 /* Prepare header of the next frame, 670 * before previous one went down. */ 671 if (frag) { 672 frag->ip_summed = CHECKSUM_NONE; 673 skb_reset_transport_header(frag); 674 __skb_push(frag, hlen); 675 skb_reset_network_header(frag); 676 memcpy(skb_network_header(frag), iph, hlen); 677 iph = ip_hdr(frag); 678 iph->tot_len = htons(frag->len); 679 ip_copy_metadata(frag, skb); 680 if (offset == 0) 681 ip_options_fragment(frag); 682 offset += skb->len - hlen; 683 iph->frag_off = htons(offset>>3); 684 if (frag->next) 685 iph->frag_off |= htons(IP_MF); 686 /* Ready, complete checksum */ 687 ip_send_check(iph); 688 } 689 690 err = output(net, sk, skb); 691 692 if (!err) 693 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 694 if (err || !frag) 695 break; 696 697 skb = frag; 698 frag = skb->next; 699 skb_mark_not_on_list(skb); 700 } 701 702 if (err == 0) { 703 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 704 return 0; 705 } 706 707 kfree_skb_list(frag); 708 709 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 710 return err; 711 712 slow_path_clean: 713 skb_walk_frags(skb, frag2) { 714 if (frag2 == frag) 715 break; 716 frag2->sk = NULL; 717 frag2->destructor = NULL; 718 skb->truesize += frag2->truesize; 719 } 720 } 721 722 slow_path: 723 iph = ip_hdr(skb); 724 725 left = skb->len - hlen; /* Space per frame */ 726 ptr = hlen; /* Where to start from */ 727 728 /* 729 * Fragment the datagram. 730 */ 731 732 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 733 not_last_frag = iph->frag_off & htons(IP_MF); 734 735 /* 736 * Keep copying data until we run out. 737 */ 738 739 while (left > 0) { 740 len = left; 741 /* IF: it doesn't fit, use 'mtu' - the data space left */ 742 if (len > mtu) 743 len = mtu; 744 /* IF: we are not sending up to and including the packet end 745 then align the next start on an eight byte boundary */ 746 if (len < left) { 747 len &= ~7; 748 } 749 750 /* Allocate buffer */ 751 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 752 if (!skb2) { 753 err = -ENOMEM; 754 goto fail; 755 } 756 757 /* 758 * Set up data on packet 759 */ 760 761 ip_copy_metadata(skb2, skb); 762 skb_reserve(skb2, ll_rs); 763 skb_put(skb2, len + hlen); 764 skb_reset_network_header(skb2); 765 skb2->transport_header = skb2->network_header + hlen; 766 767 /* 768 * Charge the memory for the fragment to any owner 769 * it might possess 770 */ 771 772 if (skb->sk) 773 skb_set_owner_w(skb2, skb->sk); 774 775 /* 776 * Copy the packet header into the new buffer. 777 */ 778 779 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 780 781 /* 782 * Copy a block of the IP datagram. 783 */ 784 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 785 BUG(); 786 left -= len; 787 788 /* 789 * Fill in the new header fields. 790 */ 791 iph = ip_hdr(skb2); 792 iph->frag_off = htons((offset >> 3)); 793 794 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 795 iph->frag_off |= htons(IP_DF); 796 797 /* ANK: dirty, but effective trick. Upgrade options only if 798 * the segment to be fragmented was THE FIRST (otherwise, 799 * options are already fixed) and make it ONCE 800 * on the initial skb, so that all the following fragments 801 * will inherit fixed options. 802 */ 803 if (offset == 0) 804 ip_options_fragment(skb); 805 806 /* 807 * Added AC : If we are fragmenting a fragment that's not the 808 * last fragment then keep MF on each bit 809 */ 810 if (left > 0 || not_last_frag) 811 iph->frag_off |= htons(IP_MF); 812 ptr += len; 813 offset += len; 814 815 /* 816 * Put this fragment into the sending queue. 817 */ 818 iph->tot_len = htons(len + hlen); 819 820 ip_send_check(iph); 821 822 err = output(net, sk, skb2); 823 if (err) 824 goto fail; 825 826 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 827 } 828 consume_skb(skb); 829 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 830 return err; 831 832 fail: 833 kfree_skb(skb); 834 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 835 return err; 836 } 837 EXPORT_SYMBOL(ip_do_fragment); 838 839 int 840 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 841 { 842 struct msghdr *msg = from; 843 844 if (skb->ip_summed == CHECKSUM_PARTIAL) { 845 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 846 return -EFAULT; 847 } else { 848 __wsum csum = 0; 849 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 850 return -EFAULT; 851 skb->csum = csum_block_add(skb->csum, csum, odd); 852 } 853 return 0; 854 } 855 EXPORT_SYMBOL(ip_generic_getfrag); 856 857 static inline __wsum 858 csum_page(struct page *page, int offset, int copy) 859 { 860 char *kaddr; 861 __wsum csum; 862 kaddr = kmap(page); 863 csum = csum_partial(kaddr + offset, copy, 0); 864 kunmap(page); 865 return csum; 866 } 867 868 static int __ip_append_data(struct sock *sk, 869 struct flowi4 *fl4, 870 struct sk_buff_head *queue, 871 struct inet_cork *cork, 872 struct page_frag *pfrag, 873 int getfrag(void *from, char *to, int offset, 874 int len, int odd, struct sk_buff *skb), 875 void *from, int length, int transhdrlen, 876 unsigned int flags) 877 { 878 struct inet_sock *inet = inet_sk(sk); 879 struct ubuf_info *uarg = NULL; 880 struct sk_buff *skb; 881 882 struct ip_options *opt = cork->opt; 883 int hh_len; 884 int exthdrlen; 885 int mtu; 886 int copy; 887 int err; 888 int offset = 0; 889 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 890 int csummode = CHECKSUM_NONE; 891 struct rtable *rt = (struct rtable *)cork->dst; 892 unsigned int wmem_alloc_delta = 0; 893 bool paged, extra_uref = false; 894 u32 tskey = 0; 895 896 skb = skb_peek_tail(queue); 897 898 exthdrlen = !skb ? rt->dst.header_len : 0; 899 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 900 paged = !!cork->gso_size; 901 902 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 903 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 904 tskey = sk->sk_tskey++; 905 906 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 907 908 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 909 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 910 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 911 912 if (cork->length + length > maxnonfragsize - fragheaderlen) { 913 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 914 mtu - (opt ? opt->optlen : 0)); 915 return -EMSGSIZE; 916 } 917 918 /* 919 * transhdrlen > 0 means that this is the first fragment and we wish 920 * it won't be fragmented in the future. 921 */ 922 if (transhdrlen && 923 length + fragheaderlen <= mtu && 924 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 925 (!(flags & MSG_MORE) || cork->gso_size) && 926 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 927 csummode = CHECKSUM_PARTIAL; 928 929 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 930 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 931 if (!uarg) 932 return -ENOBUFS; 933 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */ 934 if (rt->dst.dev->features & NETIF_F_SG && 935 csummode == CHECKSUM_PARTIAL) { 936 paged = true; 937 } else { 938 uarg->zerocopy = 0; 939 skb_zcopy_set(skb, uarg, &extra_uref); 940 } 941 } 942 943 cork->length += length; 944 945 /* So, what's going on in the loop below? 946 * 947 * We use calculated fragment length to generate chained skb, 948 * each of segments is IP fragment ready for sending to network after 949 * adding appropriate IP header. 950 */ 951 952 if (!skb) 953 goto alloc_new_skb; 954 955 while (length > 0) { 956 /* Check if the remaining data fits into current packet. */ 957 copy = mtu - skb->len; 958 if (copy < length) 959 copy = maxfraglen - skb->len; 960 if (copy <= 0) { 961 char *data; 962 unsigned int datalen; 963 unsigned int fraglen; 964 unsigned int fraggap; 965 unsigned int alloclen; 966 unsigned int pagedlen; 967 struct sk_buff *skb_prev; 968 alloc_new_skb: 969 skb_prev = skb; 970 if (skb_prev) 971 fraggap = skb_prev->len - maxfraglen; 972 else 973 fraggap = 0; 974 975 /* 976 * If remaining data exceeds the mtu, 977 * we know we need more fragment(s). 978 */ 979 datalen = length + fraggap; 980 if (datalen > mtu - fragheaderlen) 981 datalen = maxfraglen - fragheaderlen; 982 fraglen = datalen + fragheaderlen; 983 pagedlen = 0; 984 985 if ((flags & MSG_MORE) && 986 !(rt->dst.dev->features&NETIF_F_SG)) 987 alloclen = mtu; 988 else if (!paged) 989 alloclen = fraglen; 990 else { 991 alloclen = min_t(int, fraglen, MAX_HEADER); 992 pagedlen = fraglen - alloclen; 993 } 994 995 alloclen += exthdrlen; 996 997 /* The last fragment gets additional space at tail. 998 * Note, with MSG_MORE we overallocate on fragments, 999 * because we have no idea what fragment will be 1000 * the last. 1001 */ 1002 if (datalen == length + fraggap) 1003 alloclen += rt->dst.trailer_len; 1004 1005 if (transhdrlen) { 1006 skb = sock_alloc_send_skb(sk, 1007 alloclen + hh_len + 15, 1008 (flags & MSG_DONTWAIT), &err); 1009 } else { 1010 skb = NULL; 1011 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 1012 2 * sk->sk_sndbuf) 1013 skb = alloc_skb(alloclen + hh_len + 15, 1014 sk->sk_allocation); 1015 if (unlikely(!skb)) 1016 err = -ENOBUFS; 1017 } 1018 if (!skb) 1019 goto error; 1020 1021 /* 1022 * Fill in the control structures 1023 */ 1024 skb->ip_summed = csummode; 1025 skb->csum = 0; 1026 skb_reserve(skb, hh_len); 1027 1028 /* 1029 * Find where to start putting bytes. 1030 */ 1031 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1032 skb_set_network_header(skb, exthdrlen); 1033 skb->transport_header = (skb->network_header + 1034 fragheaderlen); 1035 data += fragheaderlen + exthdrlen; 1036 1037 if (fraggap) { 1038 skb->csum = skb_copy_and_csum_bits( 1039 skb_prev, maxfraglen, 1040 data + transhdrlen, fraggap, 0); 1041 skb_prev->csum = csum_sub(skb_prev->csum, 1042 skb->csum); 1043 data += fraggap; 1044 pskb_trim_unique(skb_prev, maxfraglen); 1045 } 1046 1047 copy = datalen - transhdrlen - fraggap - pagedlen; 1048 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1049 err = -EFAULT; 1050 kfree_skb(skb); 1051 goto error; 1052 } 1053 1054 offset += copy; 1055 length -= copy + transhdrlen; 1056 transhdrlen = 0; 1057 exthdrlen = 0; 1058 csummode = CHECKSUM_NONE; 1059 1060 /* only the initial fragment is time stamped */ 1061 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1062 cork->tx_flags = 0; 1063 skb_shinfo(skb)->tskey = tskey; 1064 tskey = 0; 1065 skb_zcopy_set(skb, uarg, &extra_uref); 1066 1067 if ((flags & MSG_CONFIRM) && !skb_prev) 1068 skb_set_dst_pending_confirm(skb, 1); 1069 1070 /* 1071 * Put the packet on the pending queue. 1072 */ 1073 if (!skb->destructor) { 1074 skb->destructor = sock_wfree; 1075 skb->sk = sk; 1076 wmem_alloc_delta += skb->truesize; 1077 } 1078 __skb_queue_tail(queue, skb); 1079 continue; 1080 } 1081 1082 if (copy > length) 1083 copy = length; 1084 1085 if (!(rt->dst.dev->features&NETIF_F_SG) && 1086 skb_tailroom(skb) >= copy) { 1087 unsigned int off; 1088 1089 off = skb->len; 1090 if (getfrag(from, skb_put(skb, copy), 1091 offset, copy, off, skb) < 0) { 1092 __skb_trim(skb, off); 1093 err = -EFAULT; 1094 goto error; 1095 } 1096 } else if (!uarg || !uarg->zerocopy) { 1097 int i = skb_shinfo(skb)->nr_frags; 1098 1099 err = -ENOMEM; 1100 if (!sk_page_frag_refill(sk, pfrag)) 1101 goto error; 1102 1103 if (!skb_can_coalesce(skb, i, pfrag->page, 1104 pfrag->offset)) { 1105 err = -EMSGSIZE; 1106 if (i == MAX_SKB_FRAGS) 1107 goto error; 1108 1109 __skb_fill_page_desc(skb, i, pfrag->page, 1110 pfrag->offset, 0); 1111 skb_shinfo(skb)->nr_frags = ++i; 1112 get_page(pfrag->page); 1113 } 1114 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1115 if (getfrag(from, 1116 page_address(pfrag->page) + pfrag->offset, 1117 offset, copy, skb->len, skb) < 0) 1118 goto error_efault; 1119 1120 pfrag->offset += copy; 1121 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1122 skb->len += copy; 1123 skb->data_len += copy; 1124 skb->truesize += copy; 1125 wmem_alloc_delta += copy; 1126 } else { 1127 err = skb_zerocopy_iter_dgram(skb, from, copy); 1128 if (err < 0) 1129 goto error; 1130 } 1131 offset += copy; 1132 length -= copy; 1133 } 1134 1135 if (wmem_alloc_delta) 1136 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1137 return 0; 1138 1139 error_efault: 1140 err = -EFAULT; 1141 error: 1142 if (uarg) 1143 sock_zerocopy_put_abort(uarg, extra_uref); 1144 cork->length -= length; 1145 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1146 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1147 return err; 1148 } 1149 1150 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1151 struct ipcm_cookie *ipc, struct rtable **rtp) 1152 { 1153 struct ip_options_rcu *opt; 1154 struct rtable *rt; 1155 1156 rt = *rtp; 1157 if (unlikely(!rt)) 1158 return -EFAULT; 1159 1160 /* 1161 * setup for corking. 1162 */ 1163 opt = ipc->opt; 1164 if (opt) { 1165 if (!cork->opt) { 1166 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1167 sk->sk_allocation); 1168 if (unlikely(!cork->opt)) 1169 return -ENOBUFS; 1170 } 1171 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1172 cork->flags |= IPCORK_OPT; 1173 cork->addr = ipc->addr; 1174 } 1175 1176 /* 1177 * We steal reference to this route, caller should not release it 1178 */ 1179 *rtp = NULL; 1180 cork->fragsize = ip_sk_use_pmtu(sk) ? 1181 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1182 1183 cork->gso_size = ipc->gso_size; 1184 cork->dst = &rt->dst; 1185 cork->length = 0; 1186 cork->ttl = ipc->ttl; 1187 cork->tos = ipc->tos; 1188 cork->priority = ipc->priority; 1189 cork->transmit_time = ipc->sockc.transmit_time; 1190 cork->tx_flags = 0; 1191 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1192 1193 return 0; 1194 } 1195 1196 /* 1197 * ip_append_data() and ip_append_page() can make one large IP datagram 1198 * from many pieces of data. Each pieces will be holded on the socket 1199 * until ip_push_pending_frames() is called. Each piece can be a page 1200 * or non-page data. 1201 * 1202 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1203 * this interface potentially. 1204 * 1205 * LATER: length must be adjusted by pad at tail, when it is required. 1206 */ 1207 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1208 int getfrag(void *from, char *to, int offset, int len, 1209 int odd, struct sk_buff *skb), 1210 void *from, int length, int transhdrlen, 1211 struct ipcm_cookie *ipc, struct rtable **rtp, 1212 unsigned int flags) 1213 { 1214 struct inet_sock *inet = inet_sk(sk); 1215 int err; 1216 1217 if (flags&MSG_PROBE) 1218 return 0; 1219 1220 if (skb_queue_empty(&sk->sk_write_queue)) { 1221 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1222 if (err) 1223 return err; 1224 } else { 1225 transhdrlen = 0; 1226 } 1227 1228 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1229 sk_page_frag(sk), getfrag, 1230 from, length, transhdrlen, flags); 1231 } 1232 1233 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1234 int offset, size_t size, int flags) 1235 { 1236 struct inet_sock *inet = inet_sk(sk); 1237 struct sk_buff *skb; 1238 struct rtable *rt; 1239 struct ip_options *opt = NULL; 1240 struct inet_cork *cork; 1241 int hh_len; 1242 int mtu; 1243 int len; 1244 int err; 1245 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1246 1247 if (inet->hdrincl) 1248 return -EPERM; 1249 1250 if (flags&MSG_PROBE) 1251 return 0; 1252 1253 if (skb_queue_empty(&sk->sk_write_queue)) 1254 return -EINVAL; 1255 1256 cork = &inet->cork.base; 1257 rt = (struct rtable *)cork->dst; 1258 if (cork->flags & IPCORK_OPT) 1259 opt = cork->opt; 1260 1261 if (!(rt->dst.dev->features&NETIF_F_SG)) 1262 return -EOPNOTSUPP; 1263 1264 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1265 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1266 1267 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1268 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1269 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1270 1271 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1272 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1273 mtu - (opt ? opt->optlen : 0)); 1274 return -EMSGSIZE; 1275 } 1276 1277 skb = skb_peek_tail(&sk->sk_write_queue); 1278 if (!skb) 1279 return -EINVAL; 1280 1281 cork->length += size; 1282 1283 while (size > 0) { 1284 /* Check if the remaining data fits into current packet. */ 1285 len = mtu - skb->len; 1286 if (len < size) 1287 len = maxfraglen - skb->len; 1288 1289 if (len <= 0) { 1290 struct sk_buff *skb_prev; 1291 int alloclen; 1292 1293 skb_prev = skb; 1294 fraggap = skb_prev->len - maxfraglen; 1295 1296 alloclen = fragheaderlen + hh_len + fraggap + 15; 1297 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1298 if (unlikely(!skb)) { 1299 err = -ENOBUFS; 1300 goto error; 1301 } 1302 1303 /* 1304 * Fill in the control structures 1305 */ 1306 skb->ip_summed = CHECKSUM_NONE; 1307 skb->csum = 0; 1308 skb_reserve(skb, hh_len); 1309 1310 /* 1311 * Find where to start putting bytes. 1312 */ 1313 skb_put(skb, fragheaderlen + fraggap); 1314 skb_reset_network_header(skb); 1315 skb->transport_header = (skb->network_header + 1316 fragheaderlen); 1317 if (fraggap) { 1318 skb->csum = skb_copy_and_csum_bits(skb_prev, 1319 maxfraglen, 1320 skb_transport_header(skb), 1321 fraggap, 0); 1322 skb_prev->csum = csum_sub(skb_prev->csum, 1323 skb->csum); 1324 pskb_trim_unique(skb_prev, maxfraglen); 1325 } 1326 1327 /* 1328 * Put the packet on the pending queue. 1329 */ 1330 __skb_queue_tail(&sk->sk_write_queue, skb); 1331 continue; 1332 } 1333 1334 if (len > size) 1335 len = size; 1336 1337 if (skb_append_pagefrags(skb, page, offset, len)) { 1338 err = -EMSGSIZE; 1339 goto error; 1340 } 1341 1342 if (skb->ip_summed == CHECKSUM_NONE) { 1343 __wsum csum; 1344 csum = csum_page(page, offset, len); 1345 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1346 } 1347 1348 skb->len += len; 1349 skb->data_len += len; 1350 skb->truesize += len; 1351 refcount_add(len, &sk->sk_wmem_alloc); 1352 offset += len; 1353 size -= len; 1354 } 1355 return 0; 1356 1357 error: 1358 cork->length -= size; 1359 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1360 return err; 1361 } 1362 1363 static void ip_cork_release(struct inet_cork *cork) 1364 { 1365 cork->flags &= ~IPCORK_OPT; 1366 kfree(cork->opt); 1367 cork->opt = NULL; 1368 dst_release(cork->dst); 1369 cork->dst = NULL; 1370 } 1371 1372 /* 1373 * Combined all pending IP fragments on the socket as one IP datagram 1374 * and push them out. 1375 */ 1376 struct sk_buff *__ip_make_skb(struct sock *sk, 1377 struct flowi4 *fl4, 1378 struct sk_buff_head *queue, 1379 struct inet_cork *cork) 1380 { 1381 struct sk_buff *skb, *tmp_skb; 1382 struct sk_buff **tail_skb; 1383 struct inet_sock *inet = inet_sk(sk); 1384 struct net *net = sock_net(sk); 1385 struct ip_options *opt = NULL; 1386 struct rtable *rt = (struct rtable *)cork->dst; 1387 struct iphdr *iph; 1388 __be16 df = 0; 1389 __u8 ttl; 1390 1391 skb = __skb_dequeue(queue); 1392 if (!skb) 1393 goto out; 1394 tail_skb = &(skb_shinfo(skb)->frag_list); 1395 1396 /* move skb->data to ip header from ext header */ 1397 if (skb->data < skb_network_header(skb)) 1398 __skb_pull(skb, skb_network_offset(skb)); 1399 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1400 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1401 *tail_skb = tmp_skb; 1402 tail_skb = &(tmp_skb->next); 1403 skb->len += tmp_skb->len; 1404 skb->data_len += tmp_skb->len; 1405 skb->truesize += tmp_skb->truesize; 1406 tmp_skb->destructor = NULL; 1407 tmp_skb->sk = NULL; 1408 } 1409 1410 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1411 * to fragment the frame generated here. No matter, what transforms 1412 * how transforms change size of the packet, it will come out. 1413 */ 1414 skb->ignore_df = ip_sk_ignore_df(sk); 1415 1416 /* DF bit is set when we want to see DF on outgoing frames. 1417 * If ignore_df is set too, we still allow to fragment this frame 1418 * locally. */ 1419 if (inet->pmtudisc == IP_PMTUDISC_DO || 1420 inet->pmtudisc == IP_PMTUDISC_PROBE || 1421 (skb->len <= dst_mtu(&rt->dst) && 1422 ip_dont_fragment(sk, &rt->dst))) 1423 df = htons(IP_DF); 1424 1425 if (cork->flags & IPCORK_OPT) 1426 opt = cork->opt; 1427 1428 if (cork->ttl != 0) 1429 ttl = cork->ttl; 1430 else if (rt->rt_type == RTN_MULTICAST) 1431 ttl = inet->mc_ttl; 1432 else 1433 ttl = ip_select_ttl(inet, &rt->dst); 1434 1435 iph = ip_hdr(skb); 1436 iph->version = 4; 1437 iph->ihl = 5; 1438 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1439 iph->frag_off = df; 1440 iph->ttl = ttl; 1441 iph->protocol = sk->sk_protocol; 1442 ip_copy_addrs(iph, fl4); 1443 ip_select_ident(net, skb, sk); 1444 1445 if (opt) { 1446 iph->ihl += opt->optlen>>2; 1447 ip_options_build(skb, opt, cork->addr, rt, 0); 1448 } 1449 1450 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1451 skb->mark = sk->sk_mark; 1452 skb->tstamp = cork->transmit_time; 1453 /* 1454 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1455 * on dst refcount 1456 */ 1457 cork->dst = NULL; 1458 skb_dst_set(skb, &rt->dst); 1459 1460 if (iph->protocol == IPPROTO_ICMP) 1461 icmp_out_count(net, ((struct icmphdr *) 1462 skb_transport_header(skb))->type); 1463 1464 ip_cork_release(cork); 1465 out: 1466 return skb; 1467 } 1468 1469 int ip_send_skb(struct net *net, struct sk_buff *skb) 1470 { 1471 int err; 1472 1473 err = ip_local_out(net, skb->sk, skb); 1474 if (err) { 1475 if (err > 0) 1476 err = net_xmit_errno(err); 1477 if (err) 1478 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1479 } 1480 1481 return err; 1482 } 1483 1484 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1485 { 1486 struct sk_buff *skb; 1487 1488 skb = ip_finish_skb(sk, fl4); 1489 if (!skb) 1490 return 0; 1491 1492 /* Netfilter gets whole the not fragmented skb. */ 1493 return ip_send_skb(sock_net(sk), skb); 1494 } 1495 1496 /* 1497 * Throw away all pending data on the socket. 1498 */ 1499 static void __ip_flush_pending_frames(struct sock *sk, 1500 struct sk_buff_head *queue, 1501 struct inet_cork *cork) 1502 { 1503 struct sk_buff *skb; 1504 1505 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1506 kfree_skb(skb); 1507 1508 ip_cork_release(cork); 1509 } 1510 1511 void ip_flush_pending_frames(struct sock *sk) 1512 { 1513 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1514 } 1515 1516 struct sk_buff *ip_make_skb(struct sock *sk, 1517 struct flowi4 *fl4, 1518 int getfrag(void *from, char *to, int offset, 1519 int len, int odd, struct sk_buff *skb), 1520 void *from, int length, int transhdrlen, 1521 struct ipcm_cookie *ipc, struct rtable **rtp, 1522 struct inet_cork *cork, unsigned int flags) 1523 { 1524 struct sk_buff_head queue; 1525 int err; 1526 1527 if (flags & MSG_PROBE) 1528 return NULL; 1529 1530 __skb_queue_head_init(&queue); 1531 1532 cork->flags = 0; 1533 cork->addr = 0; 1534 cork->opt = NULL; 1535 err = ip_setup_cork(sk, cork, ipc, rtp); 1536 if (err) 1537 return ERR_PTR(err); 1538 1539 err = __ip_append_data(sk, fl4, &queue, cork, 1540 ¤t->task_frag, getfrag, 1541 from, length, transhdrlen, flags); 1542 if (err) { 1543 __ip_flush_pending_frames(sk, &queue, cork); 1544 return ERR_PTR(err); 1545 } 1546 1547 return __ip_make_skb(sk, fl4, &queue, cork); 1548 } 1549 1550 /* 1551 * Fetch data from kernel space and fill in checksum if needed. 1552 */ 1553 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1554 int len, int odd, struct sk_buff *skb) 1555 { 1556 __wsum csum; 1557 1558 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1559 skb->csum = csum_block_add(skb->csum, csum, odd); 1560 return 0; 1561 } 1562 1563 /* 1564 * Generic function to send a packet as reply to another packet. 1565 * Used to send some TCP resets/acks so far. 1566 */ 1567 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1568 const struct ip_options *sopt, 1569 __be32 daddr, __be32 saddr, 1570 const struct ip_reply_arg *arg, 1571 unsigned int len) 1572 { 1573 struct ip_options_data replyopts; 1574 struct ipcm_cookie ipc; 1575 struct flowi4 fl4; 1576 struct rtable *rt = skb_rtable(skb); 1577 struct net *net = sock_net(sk); 1578 struct sk_buff *nskb; 1579 int err; 1580 int oif; 1581 1582 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1583 return; 1584 1585 ipcm_init(&ipc); 1586 ipc.addr = daddr; 1587 1588 if (replyopts.opt.opt.optlen) { 1589 ipc.opt = &replyopts.opt; 1590 1591 if (replyopts.opt.opt.srr) 1592 daddr = replyopts.opt.opt.faddr; 1593 } 1594 1595 oif = arg->bound_dev_if; 1596 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1597 oif = skb->skb_iif; 1598 1599 flowi4_init_output(&fl4, oif, 1600 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1601 RT_TOS(arg->tos), 1602 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1603 ip_reply_arg_flowi_flags(arg), 1604 daddr, saddr, 1605 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1606 arg->uid); 1607 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1608 rt = ip_route_output_key(net, &fl4); 1609 if (IS_ERR(rt)) 1610 return; 1611 1612 inet_sk(sk)->tos = arg->tos; 1613 1614 sk->sk_priority = skb->priority; 1615 sk->sk_protocol = ip_hdr(skb)->protocol; 1616 sk->sk_bound_dev_if = arg->bound_dev_if; 1617 sk->sk_sndbuf = sysctl_wmem_default; 1618 sk->sk_mark = fl4.flowi4_mark; 1619 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1620 len, 0, &ipc, &rt, MSG_DONTWAIT); 1621 if (unlikely(err)) { 1622 ip_flush_pending_frames(sk); 1623 goto out; 1624 } 1625 1626 nskb = skb_peek(&sk->sk_write_queue); 1627 if (nskb) { 1628 if (arg->csumoffset >= 0) 1629 *((__sum16 *)skb_transport_header(nskb) + 1630 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1631 arg->csum)); 1632 nskb->ip_summed = CHECKSUM_NONE; 1633 ip_push_pending_frames(sk, &fl4); 1634 } 1635 out: 1636 ip_rt_put(rt); 1637 } 1638 1639 void __init ip_init(void) 1640 { 1641 ip_rt_init(); 1642 inet_initpeers(); 1643 1644 #if defined(CONFIG_IP_MULTICAST) 1645 igmp_mc_init(); 1646 #endif 1647 } 1648