xref: /openbmc/linux/net/ipv4/ip_output.c (revision 3d92aa45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	netdev_features_t features;
244 	struct sk_buff *segs;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	do {
276 		struct sk_buff *nskb = segs->next;
277 		int err;
278 
279 		skb_mark_not_on_list(segs);
280 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 
282 		if (err && ret == 0)
283 			ret = err;
284 		segs = nskb;
285 	} while (segs);
286 
287 	return ret;
288 }
289 
290 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291 {
292 	unsigned int mtu;
293 	int ret;
294 
295 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
296 	if (ret) {
297 		kfree_skb(skb);
298 		return ret;
299 	}
300 
301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
302 	/* Policy lookup after SNAT yielded a new policy */
303 	if (skb_dst(skb)->xfrm) {
304 		IPCB(skb)->flags |= IPSKB_REROUTED;
305 		return dst_output(net, sk, skb);
306 	}
307 #endif
308 	mtu = ip_skb_dst_mtu(sk, skb);
309 	if (skb_is_gso(skb))
310 		return ip_finish_output_gso(net, sk, skb, mtu);
311 
312 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
313 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
314 
315 	return ip_finish_output2(net, sk, skb);
316 }
317 
318 static int ip_mc_finish_output(struct net *net, struct sock *sk,
319 			       struct sk_buff *skb)
320 {
321 	struct rtable *new_rt;
322 	int ret;
323 
324 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
325 	if (ret) {
326 		kfree_skb(skb);
327 		return ret;
328 	}
329 
330 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
331 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
332 	 * see ipv4_pktinfo_prepare().
333 	 */
334 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
335 	if (new_rt) {
336 		new_rt->rt_iif = 0;
337 		skb_dst_drop(skb);
338 		skb_dst_set(skb, &new_rt->dst);
339 	}
340 
341 	return dev_loopback_xmit(net, sk, skb);
342 }
343 
344 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
345 {
346 	struct rtable *rt = skb_rtable(skb);
347 	struct net_device *dev = rt->dst.dev;
348 
349 	/*
350 	 *	If the indicated interface is up and running, send the packet.
351 	 */
352 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
353 
354 	skb->dev = dev;
355 	skb->protocol = htons(ETH_P_IP);
356 
357 	/*
358 	 *	Multicasts are looped back for other local users
359 	 */
360 
361 	if (rt->rt_flags&RTCF_MULTICAST) {
362 		if (sk_mc_loop(sk)
363 #ifdef CONFIG_IP_MROUTE
364 		/* Small optimization: do not loopback not local frames,
365 		   which returned after forwarding; they will be  dropped
366 		   by ip_mr_input in any case.
367 		   Note, that local frames are looped back to be delivered
368 		   to local recipients.
369 
370 		   This check is duplicated in ip_mr_input at the moment.
371 		 */
372 		    &&
373 		    ((rt->rt_flags & RTCF_LOCAL) ||
374 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
375 #endif
376 		   ) {
377 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
378 			if (newskb)
379 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
380 					net, sk, newskb, NULL, newskb->dev,
381 					ip_mc_finish_output);
382 		}
383 
384 		/* Multicasts with ttl 0 must not go beyond the host */
385 
386 		if (ip_hdr(skb)->ttl == 0) {
387 			kfree_skb(skb);
388 			return 0;
389 		}
390 	}
391 
392 	if (rt->rt_flags&RTCF_BROADCAST) {
393 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
394 		if (newskb)
395 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
396 				net, sk, newskb, NULL, newskb->dev,
397 				ip_mc_finish_output);
398 	}
399 
400 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
401 			    net, sk, skb, NULL, skb->dev,
402 			    ip_finish_output,
403 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
404 }
405 
406 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
407 {
408 	struct net_device *dev = skb_dst(skb)->dev;
409 
410 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
411 
412 	skb->dev = dev;
413 	skb->protocol = htons(ETH_P_IP);
414 
415 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 			    net, sk, skb, NULL, dev,
417 			    ip_finish_output,
418 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
419 }
420 
421 /*
422  * copy saddr and daddr, possibly using 64bit load/stores
423  * Equivalent to :
424  *   iph->saddr = fl4->saddr;
425  *   iph->daddr = fl4->daddr;
426  */
427 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
428 {
429 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
430 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
431 	memcpy(&iph->saddr, &fl4->saddr,
432 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
433 }
434 
435 /* Note: skb->sk can be different from sk, in case of tunnels */
436 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
437 		    __u8 tos)
438 {
439 	struct inet_sock *inet = inet_sk(sk);
440 	struct net *net = sock_net(sk);
441 	struct ip_options_rcu *inet_opt;
442 	struct flowi4 *fl4;
443 	struct rtable *rt;
444 	struct iphdr *iph;
445 	int res;
446 
447 	/* Skip all of this if the packet is already routed,
448 	 * f.e. by something like SCTP.
449 	 */
450 	rcu_read_lock();
451 	inet_opt = rcu_dereference(inet->inet_opt);
452 	fl4 = &fl->u.ip4;
453 	rt = skb_rtable(skb);
454 	if (rt)
455 		goto packet_routed;
456 
457 	/* Make sure we can route this packet. */
458 	rt = (struct rtable *)__sk_dst_check(sk, 0);
459 	if (!rt) {
460 		__be32 daddr;
461 
462 		/* Use correct destination address if we have options. */
463 		daddr = inet->inet_daddr;
464 		if (inet_opt && inet_opt->opt.srr)
465 			daddr = inet_opt->opt.faddr;
466 
467 		/* If this fails, retransmit mechanism of transport layer will
468 		 * keep trying until route appears or the connection times
469 		 * itself out.
470 		 */
471 		rt = ip_route_output_ports(net, fl4, sk,
472 					   daddr, inet->inet_saddr,
473 					   inet->inet_dport,
474 					   inet->inet_sport,
475 					   sk->sk_protocol,
476 					   RT_CONN_FLAGS_TOS(sk, tos),
477 					   sk->sk_bound_dev_if);
478 		if (IS_ERR(rt))
479 			goto no_route;
480 		sk_setup_caps(sk, &rt->dst);
481 	}
482 	skb_dst_set_noref(skb, &rt->dst);
483 
484 packet_routed:
485 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family)
486 		goto no_route;
487 
488 	/* OK, we know where to send it, allocate and build IP header. */
489 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
490 	skb_reset_network_header(skb);
491 	iph = ip_hdr(skb);
492 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
493 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
494 		iph->frag_off = htons(IP_DF);
495 	else
496 		iph->frag_off = 0;
497 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
498 	iph->protocol = sk->sk_protocol;
499 	ip_copy_addrs(iph, fl4);
500 
501 	/* Transport layer set skb->h.foo itself. */
502 
503 	if (inet_opt && inet_opt->opt.optlen) {
504 		iph->ihl += inet_opt->opt.optlen >> 2;
505 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
506 	}
507 
508 	ip_select_ident_segs(net, skb, sk,
509 			     skb_shinfo(skb)->gso_segs ?: 1);
510 
511 	/* TODO : should we use skb->sk here instead of sk ? */
512 	skb->priority = sk->sk_priority;
513 	skb->mark = sk->sk_mark;
514 
515 	res = ip_local_out(net, sk, skb);
516 	rcu_read_unlock();
517 	return res;
518 
519 no_route:
520 	rcu_read_unlock();
521 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
522 	kfree_skb(skb);
523 	return -EHOSTUNREACH;
524 }
525 EXPORT_SYMBOL(__ip_queue_xmit);
526 
527 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
528 {
529 	to->pkt_type = from->pkt_type;
530 	to->priority = from->priority;
531 	to->protocol = from->protocol;
532 	to->skb_iif = from->skb_iif;
533 	skb_dst_drop(to);
534 	skb_dst_copy(to, from);
535 	to->dev = from->dev;
536 	to->mark = from->mark;
537 
538 	skb_copy_hash(to, from);
539 
540 	/* Copy the flags to each fragment. */
541 	IPCB(to)->flags = IPCB(from)->flags;
542 
543 #ifdef CONFIG_NET_SCHED
544 	to->tc_index = from->tc_index;
545 #endif
546 	nf_copy(to, from);
547 	skb_ext_copy(to, from);
548 #if IS_ENABLED(CONFIG_IP_VS)
549 	to->ipvs_property = from->ipvs_property;
550 #endif
551 	skb_copy_secmark(to, from);
552 }
553 
554 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
555 		       unsigned int mtu,
556 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
557 {
558 	struct iphdr *iph = ip_hdr(skb);
559 
560 	if ((iph->frag_off & htons(IP_DF)) == 0)
561 		return ip_do_fragment(net, sk, skb, output);
562 
563 	if (unlikely(!skb->ignore_df ||
564 		     (IPCB(skb)->frag_max_size &&
565 		      IPCB(skb)->frag_max_size > mtu))) {
566 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
567 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
568 			  htonl(mtu));
569 		kfree_skb(skb);
570 		return -EMSGSIZE;
571 	}
572 
573 	return ip_do_fragment(net, sk, skb, output);
574 }
575 
576 /*
577  *	This IP datagram is too large to be sent in one piece.  Break it up into
578  *	smaller pieces (each of size equal to IP header plus
579  *	a block of the data of the original IP data part) that will yet fit in a
580  *	single device frame, and queue such a frame for sending.
581  */
582 
583 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
584 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
585 {
586 	struct iphdr *iph;
587 	int ptr;
588 	struct sk_buff *skb2;
589 	unsigned int mtu, hlen, left, len, ll_rs;
590 	int offset;
591 	__be16 not_last_frag;
592 	struct rtable *rt = skb_rtable(skb);
593 	int err = 0;
594 
595 	/* for offloaded checksums cleanup checksum before fragmentation */
596 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
597 	    (err = skb_checksum_help(skb)))
598 		goto fail;
599 
600 	/*
601 	 *	Point into the IP datagram header.
602 	 */
603 
604 	iph = ip_hdr(skb);
605 
606 	mtu = ip_skb_dst_mtu(sk, skb);
607 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
608 		mtu = IPCB(skb)->frag_max_size;
609 
610 	/*
611 	 *	Setup starting values.
612 	 */
613 
614 	hlen = iph->ihl * 4;
615 	mtu = mtu - hlen;	/* Size of data space */
616 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
617 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
618 
619 	/* When frag_list is given, use it. First, check its validity:
620 	 * some transformers could create wrong frag_list or break existing
621 	 * one, it is not prohibited. In this case fall back to copying.
622 	 *
623 	 * LATER: this step can be merged to real generation of fragments,
624 	 * we can switch to copy when see the first bad fragment.
625 	 */
626 	if (skb_has_frag_list(skb)) {
627 		struct sk_buff *frag, *frag2;
628 		unsigned int first_len = skb_pagelen(skb);
629 
630 		if (first_len - hlen > mtu ||
631 		    ((first_len - hlen) & 7) ||
632 		    ip_is_fragment(iph) ||
633 		    skb_cloned(skb) ||
634 		    skb_headroom(skb) < ll_rs)
635 			goto slow_path;
636 
637 		skb_walk_frags(skb, frag) {
638 			/* Correct geometry. */
639 			if (frag->len > mtu ||
640 			    ((frag->len & 7) && frag->next) ||
641 			    skb_headroom(frag) < hlen + ll_rs)
642 				goto slow_path_clean;
643 
644 			/* Partially cloned skb? */
645 			if (skb_shared(frag))
646 				goto slow_path_clean;
647 
648 			BUG_ON(frag->sk);
649 			if (skb->sk) {
650 				frag->sk = skb->sk;
651 				frag->destructor = sock_wfree;
652 			}
653 			skb->truesize -= frag->truesize;
654 		}
655 
656 		/* Everything is OK. Generate! */
657 
658 		err = 0;
659 		offset = 0;
660 		frag = skb_shinfo(skb)->frag_list;
661 		skb_frag_list_init(skb);
662 		skb->data_len = first_len - skb_headlen(skb);
663 		skb->len = first_len;
664 		iph->tot_len = htons(first_len);
665 		iph->frag_off = htons(IP_MF);
666 		ip_send_check(iph);
667 
668 		for (;;) {
669 			/* Prepare header of the next frame,
670 			 * before previous one went down. */
671 			if (frag) {
672 				frag->ip_summed = CHECKSUM_NONE;
673 				skb_reset_transport_header(frag);
674 				__skb_push(frag, hlen);
675 				skb_reset_network_header(frag);
676 				memcpy(skb_network_header(frag), iph, hlen);
677 				iph = ip_hdr(frag);
678 				iph->tot_len = htons(frag->len);
679 				ip_copy_metadata(frag, skb);
680 				if (offset == 0)
681 					ip_options_fragment(frag);
682 				offset += skb->len - hlen;
683 				iph->frag_off = htons(offset>>3);
684 				if (frag->next)
685 					iph->frag_off |= htons(IP_MF);
686 				/* Ready, complete checksum */
687 				ip_send_check(iph);
688 			}
689 
690 			err = output(net, sk, skb);
691 
692 			if (!err)
693 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
694 			if (err || !frag)
695 				break;
696 
697 			skb = frag;
698 			frag = skb->next;
699 			skb_mark_not_on_list(skb);
700 		}
701 
702 		if (err == 0) {
703 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
704 			return 0;
705 		}
706 
707 		kfree_skb_list(frag);
708 
709 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
710 		return err;
711 
712 slow_path_clean:
713 		skb_walk_frags(skb, frag2) {
714 			if (frag2 == frag)
715 				break;
716 			frag2->sk = NULL;
717 			frag2->destructor = NULL;
718 			skb->truesize += frag2->truesize;
719 		}
720 	}
721 
722 slow_path:
723 	iph = ip_hdr(skb);
724 
725 	left = skb->len - hlen;		/* Space per frame */
726 	ptr = hlen;		/* Where to start from */
727 
728 	/*
729 	 *	Fragment the datagram.
730 	 */
731 
732 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
733 	not_last_frag = iph->frag_off & htons(IP_MF);
734 
735 	/*
736 	 *	Keep copying data until we run out.
737 	 */
738 
739 	while (left > 0) {
740 		len = left;
741 		/* IF: it doesn't fit, use 'mtu' - the data space left */
742 		if (len > mtu)
743 			len = mtu;
744 		/* IF: we are not sending up to and including the packet end
745 		   then align the next start on an eight byte boundary */
746 		if (len < left)	{
747 			len &= ~7;
748 		}
749 
750 		/* Allocate buffer */
751 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
752 		if (!skb2) {
753 			err = -ENOMEM;
754 			goto fail;
755 		}
756 
757 		/*
758 		 *	Set up data on packet
759 		 */
760 
761 		ip_copy_metadata(skb2, skb);
762 		skb_reserve(skb2, ll_rs);
763 		skb_put(skb2, len + hlen);
764 		skb_reset_network_header(skb2);
765 		skb2->transport_header = skb2->network_header + hlen;
766 
767 		/*
768 		 *	Charge the memory for the fragment to any owner
769 		 *	it might possess
770 		 */
771 
772 		if (skb->sk)
773 			skb_set_owner_w(skb2, skb->sk);
774 
775 		/*
776 		 *	Copy the packet header into the new buffer.
777 		 */
778 
779 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
780 
781 		/*
782 		 *	Copy a block of the IP datagram.
783 		 */
784 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
785 			BUG();
786 		left -= len;
787 
788 		/*
789 		 *	Fill in the new header fields.
790 		 */
791 		iph = ip_hdr(skb2);
792 		iph->frag_off = htons((offset >> 3));
793 
794 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
795 			iph->frag_off |= htons(IP_DF);
796 
797 		/* ANK: dirty, but effective trick. Upgrade options only if
798 		 * the segment to be fragmented was THE FIRST (otherwise,
799 		 * options are already fixed) and make it ONCE
800 		 * on the initial skb, so that all the following fragments
801 		 * will inherit fixed options.
802 		 */
803 		if (offset == 0)
804 			ip_options_fragment(skb);
805 
806 		/*
807 		 *	Added AC : If we are fragmenting a fragment that's not the
808 		 *		   last fragment then keep MF on each bit
809 		 */
810 		if (left > 0 || not_last_frag)
811 			iph->frag_off |= htons(IP_MF);
812 		ptr += len;
813 		offset += len;
814 
815 		/*
816 		 *	Put this fragment into the sending queue.
817 		 */
818 		iph->tot_len = htons(len + hlen);
819 
820 		ip_send_check(iph);
821 
822 		err = output(net, sk, skb2);
823 		if (err)
824 			goto fail;
825 
826 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
827 	}
828 	consume_skb(skb);
829 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
830 	return err;
831 
832 fail:
833 	kfree_skb(skb);
834 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
835 	return err;
836 }
837 EXPORT_SYMBOL(ip_do_fragment);
838 
839 int
840 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
841 {
842 	struct msghdr *msg = from;
843 
844 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
845 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
846 			return -EFAULT;
847 	} else {
848 		__wsum csum = 0;
849 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
850 			return -EFAULT;
851 		skb->csum = csum_block_add(skb->csum, csum, odd);
852 	}
853 	return 0;
854 }
855 EXPORT_SYMBOL(ip_generic_getfrag);
856 
857 static inline __wsum
858 csum_page(struct page *page, int offset, int copy)
859 {
860 	char *kaddr;
861 	__wsum csum;
862 	kaddr = kmap(page);
863 	csum = csum_partial(kaddr + offset, copy, 0);
864 	kunmap(page);
865 	return csum;
866 }
867 
868 static int __ip_append_data(struct sock *sk,
869 			    struct flowi4 *fl4,
870 			    struct sk_buff_head *queue,
871 			    struct inet_cork *cork,
872 			    struct page_frag *pfrag,
873 			    int getfrag(void *from, char *to, int offset,
874 					int len, int odd, struct sk_buff *skb),
875 			    void *from, int length, int transhdrlen,
876 			    unsigned int flags)
877 {
878 	struct inet_sock *inet = inet_sk(sk);
879 	struct ubuf_info *uarg = NULL;
880 	struct sk_buff *skb;
881 
882 	struct ip_options *opt = cork->opt;
883 	int hh_len;
884 	int exthdrlen;
885 	int mtu;
886 	int copy;
887 	int err;
888 	int offset = 0;
889 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
890 	int csummode = CHECKSUM_NONE;
891 	struct rtable *rt = (struct rtable *)cork->dst;
892 	unsigned int wmem_alloc_delta = 0;
893 	bool paged, extra_uref = false;
894 	u32 tskey = 0;
895 
896 	skb = skb_peek_tail(queue);
897 
898 	exthdrlen = !skb ? rt->dst.header_len : 0;
899 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
900 	paged = !!cork->gso_size;
901 
902 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
903 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
904 		tskey = sk->sk_tskey++;
905 
906 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
907 
908 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
909 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
910 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
911 
912 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
913 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
914 			       mtu - (opt ? opt->optlen : 0));
915 		return -EMSGSIZE;
916 	}
917 
918 	/*
919 	 * transhdrlen > 0 means that this is the first fragment and we wish
920 	 * it won't be fragmented in the future.
921 	 */
922 	if (transhdrlen &&
923 	    length + fragheaderlen <= mtu &&
924 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
925 	    (!(flags & MSG_MORE) || cork->gso_size) &&
926 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
927 		csummode = CHECKSUM_PARTIAL;
928 
929 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
930 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
931 		if (!uarg)
932 			return -ENOBUFS;
933 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
934 		if (rt->dst.dev->features & NETIF_F_SG &&
935 		    csummode == CHECKSUM_PARTIAL) {
936 			paged = true;
937 		} else {
938 			uarg->zerocopy = 0;
939 			skb_zcopy_set(skb, uarg, &extra_uref);
940 		}
941 	}
942 
943 	cork->length += length;
944 
945 	/* So, what's going on in the loop below?
946 	 *
947 	 * We use calculated fragment length to generate chained skb,
948 	 * each of segments is IP fragment ready for sending to network after
949 	 * adding appropriate IP header.
950 	 */
951 
952 	if (!skb)
953 		goto alloc_new_skb;
954 
955 	while (length > 0) {
956 		/* Check if the remaining data fits into current packet. */
957 		copy = mtu - skb->len;
958 		if (copy < length)
959 			copy = maxfraglen - skb->len;
960 		if (copy <= 0) {
961 			char *data;
962 			unsigned int datalen;
963 			unsigned int fraglen;
964 			unsigned int fraggap;
965 			unsigned int alloclen;
966 			unsigned int pagedlen;
967 			struct sk_buff *skb_prev;
968 alloc_new_skb:
969 			skb_prev = skb;
970 			if (skb_prev)
971 				fraggap = skb_prev->len - maxfraglen;
972 			else
973 				fraggap = 0;
974 
975 			/*
976 			 * If remaining data exceeds the mtu,
977 			 * we know we need more fragment(s).
978 			 */
979 			datalen = length + fraggap;
980 			if (datalen > mtu - fragheaderlen)
981 				datalen = maxfraglen - fragheaderlen;
982 			fraglen = datalen + fragheaderlen;
983 			pagedlen = 0;
984 
985 			if ((flags & MSG_MORE) &&
986 			    !(rt->dst.dev->features&NETIF_F_SG))
987 				alloclen = mtu;
988 			else if (!paged)
989 				alloclen = fraglen;
990 			else {
991 				alloclen = min_t(int, fraglen, MAX_HEADER);
992 				pagedlen = fraglen - alloclen;
993 			}
994 
995 			alloclen += exthdrlen;
996 
997 			/* The last fragment gets additional space at tail.
998 			 * Note, with MSG_MORE we overallocate on fragments,
999 			 * because we have no idea what fragment will be
1000 			 * the last.
1001 			 */
1002 			if (datalen == length + fraggap)
1003 				alloclen += rt->dst.trailer_len;
1004 
1005 			if (transhdrlen) {
1006 				skb = sock_alloc_send_skb(sk,
1007 						alloclen + hh_len + 15,
1008 						(flags & MSG_DONTWAIT), &err);
1009 			} else {
1010 				skb = NULL;
1011 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1012 				    2 * sk->sk_sndbuf)
1013 					skb = alloc_skb(alloclen + hh_len + 15,
1014 							sk->sk_allocation);
1015 				if (unlikely(!skb))
1016 					err = -ENOBUFS;
1017 			}
1018 			if (!skb)
1019 				goto error;
1020 
1021 			/*
1022 			 *	Fill in the control structures
1023 			 */
1024 			skb->ip_summed = csummode;
1025 			skb->csum = 0;
1026 			skb_reserve(skb, hh_len);
1027 
1028 			/*
1029 			 *	Find where to start putting bytes.
1030 			 */
1031 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1032 			skb_set_network_header(skb, exthdrlen);
1033 			skb->transport_header = (skb->network_header +
1034 						 fragheaderlen);
1035 			data += fragheaderlen + exthdrlen;
1036 
1037 			if (fraggap) {
1038 				skb->csum = skb_copy_and_csum_bits(
1039 					skb_prev, maxfraglen,
1040 					data + transhdrlen, fraggap, 0);
1041 				skb_prev->csum = csum_sub(skb_prev->csum,
1042 							  skb->csum);
1043 				data += fraggap;
1044 				pskb_trim_unique(skb_prev, maxfraglen);
1045 			}
1046 
1047 			copy = datalen - transhdrlen - fraggap - pagedlen;
1048 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1049 				err = -EFAULT;
1050 				kfree_skb(skb);
1051 				goto error;
1052 			}
1053 
1054 			offset += copy;
1055 			length -= copy + transhdrlen;
1056 			transhdrlen = 0;
1057 			exthdrlen = 0;
1058 			csummode = CHECKSUM_NONE;
1059 
1060 			/* only the initial fragment is time stamped */
1061 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1062 			cork->tx_flags = 0;
1063 			skb_shinfo(skb)->tskey = tskey;
1064 			tskey = 0;
1065 			skb_zcopy_set(skb, uarg, &extra_uref);
1066 
1067 			if ((flags & MSG_CONFIRM) && !skb_prev)
1068 				skb_set_dst_pending_confirm(skb, 1);
1069 
1070 			/*
1071 			 * Put the packet on the pending queue.
1072 			 */
1073 			if (!skb->destructor) {
1074 				skb->destructor = sock_wfree;
1075 				skb->sk = sk;
1076 				wmem_alloc_delta += skb->truesize;
1077 			}
1078 			__skb_queue_tail(queue, skb);
1079 			continue;
1080 		}
1081 
1082 		if (copy > length)
1083 			copy = length;
1084 
1085 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1086 		    skb_tailroom(skb) >= copy) {
1087 			unsigned int off;
1088 
1089 			off = skb->len;
1090 			if (getfrag(from, skb_put(skb, copy),
1091 					offset, copy, off, skb) < 0) {
1092 				__skb_trim(skb, off);
1093 				err = -EFAULT;
1094 				goto error;
1095 			}
1096 		} else if (!uarg || !uarg->zerocopy) {
1097 			int i = skb_shinfo(skb)->nr_frags;
1098 
1099 			err = -ENOMEM;
1100 			if (!sk_page_frag_refill(sk, pfrag))
1101 				goto error;
1102 
1103 			if (!skb_can_coalesce(skb, i, pfrag->page,
1104 					      pfrag->offset)) {
1105 				err = -EMSGSIZE;
1106 				if (i == MAX_SKB_FRAGS)
1107 					goto error;
1108 
1109 				__skb_fill_page_desc(skb, i, pfrag->page,
1110 						     pfrag->offset, 0);
1111 				skb_shinfo(skb)->nr_frags = ++i;
1112 				get_page(pfrag->page);
1113 			}
1114 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1115 			if (getfrag(from,
1116 				    page_address(pfrag->page) + pfrag->offset,
1117 				    offset, copy, skb->len, skb) < 0)
1118 				goto error_efault;
1119 
1120 			pfrag->offset += copy;
1121 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1122 			skb->len += copy;
1123 			skb->data_len += copy;
1124 			skb->truesize += copy;
1125 			wmem_alloc_delta += copy;
1126 		} else {
1127 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1128 			if (err < 0)
1129 				goto error;
1130 		}
1131 		offset += copy;
1132 		length -= copy;
1133 	}
1134 
1135 	if (wmem_alloc_delta)
1136 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1137 	return 0;
1138 
1139 error_efault:
1140 	err = -EFAULT;
1141 error:
1142 	if (uarg)
1143 		sock_zerocopy_put_abort(uarg, extra_uref);
1144 	cork->length -= length;
1145 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1146 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1147 	return err;
1148 }
1149 
1150 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1151 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1152 {
1153 	struct ip_options_rcu *opt;
1154 	struct rtable *rt;
1155 
1156 	rt = *rtp;
1157 	if (unlikely(!rt))
1158 		return -EFAULT;
1159 
1160 	/*
1161 	 * setup for corking.
1162 	 */
1163 	opt = ipc->opt;
1164 	if (opt) {
1165 		if (!cork->opt) {
1166 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1167 					    sk->sk_allocation);
1168 			if (unlikely(!cork->opt))
1169 				return -ENOBUFS;
1170 		}
1171 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1172 		cork->flags |= IPCORK_OPT;
1173 		cork->addr = ipc->addr;
1174 	}
1175 
1176 	/*
1177 	 * We steal reference to this route, caller should not release it
1178 	 */
1179 	*rtp = NULL;
1180 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1181 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1182 
1183 	cork->gso_size = ipc->gso_size;
1184 	cork->dst = &rt->dst;
1185 	cork->length = 0;
1186 	cork->ttl = ipc->ttl;
1187 	cork->tos = ipc->tos;
1188 	cork->priority = ipc->priority;
1189 	cork->transmit_time = ipc->sockc.transmit_time;
1190 	cork->tx_flags = 0;
1191 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  *	ip_append_data() and ip_append_page() can make one large IP datagram
1198  *	from many pieces of data. Each pieces will be holded on the socket
1199  *	until ip_push_pending_frames() is called. Each piece can be a page
1200  *	or non-page data.
1201  *
1202  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1203  *	this interface potentially.
1204  *
1205  *	LATER: length must be adjusted by pad at tail, when it is required.
1206  */
1207 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1208 		   int getfrag(void *from, char *to, int offset, int len,
1209 			       int odd, struct sk_buff *skb),
1210 		   void *from, int length, int transhdrlen,
1211 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1212 		   unsigned int flags)
1213 {
1214 	struct inet_sock *inet = inet_sk(sk);
1215 	int err;
1216 
1217 	if (flags&MSG_PROBE)
1218 		return 0;
1219 
1220 	if (skb_queue_empty(&sk->sk_write_queue)) {
1221 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1222 		if (err)
1223 			return err;
1224 	} else {
1225 		transhdrlen = 0;
1226 	}
1227 
1228 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1229 				sk_page_frag(sk), getfrag,
1230 				from, length, transhdrlen, flags);
1231 }
1232 
1233 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1234 		       int offset, size_t size, int flags)
1235 {
1236 	struct inet_sock *inet = inet_sk(sk);
1237 	struct sk_buff *skb;
1238 	struct rtable *rt;
1239 	struct ip_options *opt = NULL;
1240 	struct inet_cork *cork;
1241 	int hh_len;
1242 	int mtu;
1243 	int len;
1244 	int err;
1245 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1246 
1247 	if (inet->hdrincl)
1248 		return -EPERM;
1249 
1250 	if (flags&MSG_PROBE)
1251 		return 0;
1252 
1253 	if (skb_queue_empty(&sk->sk_write_queue))
1254 		return -EINVAL;
1255 
1256 	cork = &inet->cork.base;
1257 	rt = (struct rtable *)cork->dst;
1258 	if (cork->flags & IPCORK_OPT)
1259 		opt = cork->opt;
1260 
1261 	if (!(rt->dst.dev->features&NETIF_F_SG))
1262 		return -EOPNOTSUPP;
1263 
1264 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1265 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1266 
1267 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1268 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1269 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1270 
1271 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1272 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1273 			       mtu - (opt ? opt->optlen : 0));
1274 		return -EMSGSIZE;
1275 	}
1276 
1277 	skb = skb_peek_tail(&sk->sk_write_queue);
1278 	if (!skb)
1279 		return -EINVAL;
1280 
1281 	cork->length += size;
1282 
1283 	while (size > 0) {
1284 		/* Check if the remaining data fits into current packet. */
1285 		len = mtu - skb->len;
1286 		if (len < size)
1287 			len = maxfraglen - skb->len;
1288 
1289 		if (len <= 0) {
1290 			struct sk_buff *skb_prev;
1291 			int alloclen;
1292 
1293 			skb_prev = skb;
1294 			fraggap = skb_prev->len - maxfraglen;
1295 
1296 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1297 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1298 			if (unlikely(!skb)) {
1299 				err = -ENOBUFS;
1300 				goto error;
1301 			}
1302 
1303 			/*
1304 			 *	Fill in the control structures
1305 			 */
1306 			skb->ip_summed = CHECKSUM_NONE;
1307 			skb->csum = 0;
1308 			skb_reserve(skb, hh_len);
1309 
1310 			/*
1311 			 *	Find where to start putting bytes.
1312 			 */
1313 			skb_put(skb, fragheaderlen + fraggap);
1314 			skb_reset_network_header(skb);
1315 			skb->transport_header = (skb->network_header +
1316 						 fragheaderlen);
1317 			if (fraggap) {
1318 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1319 								   maxfraglen,
1320 						    skb_transport_header(skb),
1321 								   fraggap, 0);
1322 				skb_prev->csum = csum_sub(skb_prev->csum,
1323 							  skb->csum);
1324 				pskb_trim_unique(skb_prev, maxfraglen);
1325 			}
1326 
1327 			/*
1328 			 * Put the packet on the pending queue.
1329 			 */
1330 			__skb_queue_tail(&sk->sk_write_queue, skb);
1331 			continue;
1332 		}
1333 
1334 		if (len > size)
1335 			len = size;
1336 
1337 		if (skb_append_pagefrags(skb, page, offset, len)) {
1338 			err = -EMSGSIZE;
1339 			goto error;
1340 		}
1341 
1342 		if (skb->ip_summed == CHECKSUM_NONE) {
1343 			__wsum csum;
1344 			csum = csum_page(page, offset, len);
1345 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1346 		}
1347 
1348 		skb->len += len;
1349 		skb->data_len += len;
1350 		skb->truesize += len;
1351 		refcount_add(len, &sk->sk_wmem_alloc);
1352 		offset += len;
1353 		size -= len;
1354 	}
1355 	return 0;
1356 
1357 error:
1358 	cork->length -= size;
1359 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1360 	return err;
1361 }
1362 
1363 static void ip_cork_release(struct inet_cork *cork)
1364 {
1365 	cork->flags &= ~IPCORK_OPT;
1366 	kfree(cork->opt);
1367 	cork->opt = NULL;
1368 	dst_release(cork->dst);
1369 	cork->dst = NULL;
1370 }
1371 
1372 /*
1373  *	Combined all pending IP fragments on the socket as one IP datagram
1374  *	and push them out.
1375  */
1376 struct sk_buff *__ip_make_skb(struct sock *sk,
1377 			      struct flowi4 *fl4,
1378 			      struct sk_buff_head *queue,
1379 			      struct inet_cork *cork)
1380 {
1381 	struct sk_buff *skb, *tmp_skb;
1382 	struct sk_buff **tail_skb;
1383 	struct inet_sock *inet = inet_sk(sk);
1384 	struct net *net = sock_net(sk);
1385 	struct ip_options *opt = NULL;
1386 	struct rtable *rt = (struct rtable *)cork->dst;
1387 	struct iphdr *iph;
1388 	__be16 df = 0;
1389 	__u8 ttl;
1390 
1391 	skb = __skb_dequeue(queue);
1392 	if (!skb)
1393 		goto out;
1394 	tail_skb = &(skb_shinfo(skb)->frag_list);
1395 
1396 	/* move skb->data to ip header from ext header */
1397 	if (skb->data < skb_network_header(skb))
1398 		__skb_pull(skb, skb_network_offset(skb));
1399 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1400 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1401 		*tail_skb = tmp_skb;
1402 		tail_skb = &(tmp_skb->next);
1403 		skb->len += tmp_skb->len;
1404 		skb->data_len += tmp_skb->len;
1405 		skb->truesize += tmp_skb->truesize;
1406 		tmp_skb->destructor = NULL;
1407 		tmp_skb->sk = NULL;
1408 	}
1409 
1410 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1411 	 * to fragment the frame generated here. No matter, what transforms
1412 	 * how transforms change size of the packet, it will come out.
1413 	 */
1414 	skb->ignore_df = ip_sk_ignore_df(sk);
1415 
1416 	/* DF bit is set when we want to see DF on outgoing frames.
1417 	 * If ignore_df is set too, we still allow to fragment this frame
1418 	 * locally. */
1419 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1420 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1421 	    (skb->len <= dst_mtu(&rt->dst) &&
1422 	     ip_dont_fragment(sk, &rt->dst)))
1423 		df = htons(IP_DF);
1424 
1425 	if (cork->flags & IPCORK_OPT)
1426 		opt = cork->opt;
1427 
1428 	if (cork->ttl != 0)
1429 		ttl = cork->ttl;
1430 	else if (rt->rt_type == RTN_MULTICAST)
1431 		ttl = inet->mc_ttl;
1432 	else
1433 		ttl = ip_select_ttl(inet, &rt->dst);
1434 
1435 	iph = ip_hdr(skb);
1436 	iph->version = 4;
1437 	iph->ihl = 5;
1438 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1439 	iph->frag_off = df;
1440 	iph->ttl = ttl;
1441 	iph->protocol = sk->sk_protocol;
1442 	ip_copy_addrs(iph, fl4);
1443 	ip_select_ident(net, skb, sk);
1444 
1445 	if (opt) {
1446 		iph->ihl += opt->optlen>>2;
1447 		ip_options_build(skb, opt, cork->addr, rt, 0);
1448 	}
1449 
1450 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1451 	skb->mark = sk->sk_mark;
1452 	skb->tstamp = cork->transmit_time;
1453 	/*
1454 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1455 	 * on dst refcount
1456 	 */
1457 	cork->dst = NULL;
1458 	skb_dst_set(skb, &rt->dst);
1459 
1460 	if (iph->protocol == IPPROTO_ICMP)
1461 		icmp_out_count(net, ((struct icmphdr *)
1462 			skb_transport_header(skb))->type);
1463 
1464 	ip_cork_release(cork);
1465 out:
1466 	return skb;
1467 }
1468 
1469 int ip_send_skb(struct net *net, struct sk_buff *skb)
1470 {
1471 	int err;
1472 
1473 	err = ip_local_out(net, skb->sk, skb);
1474 	if (err) {
1475 		if (err > 0)
1476 			err = net_xmit_errno(err);
1477 		if (err)
1478 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1479 	}
1480 
1481 	return err;
1482 }
1483 
1484 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1485 {
1486 	struct sk_buff *skb;
1487 
1488 	skb = ip_finish_skb(sk, fl4);
1489 	if (!skb)
1490 		return 0;
1491 
1492 	/* Netfilter gets whole the not fragmented skb. */
1493 	return ip_send_skb(sock_net(sk), skb);
1494 }
1495 
1496 /*
1497  *	Throw away all pending data on the socket.
1498  */
1499 static void __ip_flush_pending_frames(struct sock *sk,
1500 				      struct sk_buff_head *queue,
1501 				      struct inet_cork *cork)
1502 {
1503 	struct sk_buff *skb;
1504 
1505 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1506 		kfree_skb(skb);
1507 
1508 	ip_cork_release(cork);
1509 }
1510 
1511 void ip_flush_pending_frames(struct sock *sk)
1512 {
1513 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1514 }
1515 
1516 struct sk_buff *ip_make_skb(struct sock *sk,
1517 			    struct flowi4 *fl4,
1518 			    int getfrag(void *from, char *to, int offset,
1519 					int len, int odd, struct sk_buff *skb),
1520 			    void *from, int length, int transhdrlen,
1521 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1522 			    struct inet_cork *cork, unsigned int flags)
1523 {
1524 	struct sk_buff_head queue;
1525 	int err;
1526 
1527 	if (flags & MSG_PROBE)
1528 		return NULL;
1529 
1530 	__skb_queue_head_init(&queue);
1531 
1532 	cork->flags = 0;
1533 	cork->addr = 0;
1534 	cork->opt = NULL;
1535 	err = ip_setup_cork(sk, cork, ipc, rtp);
1536 	if (err)
1537 		return ERR_PTR(err);
1538 
1539 	err = __ip_append_data(sk, fl4, &queue, cork,
1540 			       &current->task_frag, getfrag,
1541 			       from, length, transhdrlen, flags);
1542 	if (err) {
1543 		__ip_flush_pending_frames(sk, &queue, cork);
1544 		return ERR_PTR(err);
1545 	}
1546 
1547 	return __ip_make_skb(sk, fl4, &queue, cork);
1548 }
1549 
1550 /*
1551  *	Fetch data from kernel space and fill in checksum if needed.
1552  */
1553 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1554 			      int len, int odd, struct sk_buff *skb)
1555 {
1556 	__wsum csum;
1557 
1558 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1559 	skb->csum = csum_block_add(skb->csum, csum, odd);
1560 	return 0;
1561 }
1562 
1563 /*
1564  *	Generic function to send a packet as reply to another packet.
1565  *	Used to send some TCP resets/acks so far.
1566  */
1567 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1568 			   const struct ip_options *sopt,
1569 			   __be32 daddr, __be32 saddr,
1570 			   const struct ip_reply_arg *arg,
1571 			   unsigned int len)
1572 {
1573 	struct ip_options_data replyopts;
1574 	struct ipcm_cookie ipc;
1575 	struct flowi4 fl4;
1576 	struct rtable *rt = skb_rtable(skb);
1577 	struct net *net = sock_net(sk);
1578 	struct sk_buff *nskb;
1579 	int err;
1580 	int oif;
1581 
1582 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1583 		return;
1584 
1585 	ipcm_init(&ipc);
1586 	ipc.addr = daddr;
1587 
1588 	if (replyopts.opt.opt.optlen) {
1589 		ipc.opt = &replyopts.opt;
1590 
1591 		if (replyopts.opt.opt.srr)
1592 			daddr = replyopts.opt.opt.faddr;
1593 	}
1594 
1595 	oif = arg->bound_dev_if;
1596 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1597 		oif = skb->skb_iif;
1598 
1599 	flowi4_init_output(&fl4, oif,
1600 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1601 			   RT_TOS(arg->tos),
1602 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1603 			   ip_reply_arg_flowi_flags(arg),
1604 			   daddr, saddr,
1605 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1606 			   arg->uid);
1607 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1608 	rt = ip_route_output_key(net, &fl4);
1609 	if (IS_ERR(rt))
1610 		return;
1611 
1612 	inet_sk(sk)->tos = arg->tos;
1613 
1614 	sk->sk_priority = skb->priority;
1615 	sk->sk_protocol = ip_hdr(skb)->protocol;
1616 	sk->sk_bound_dev_if = arg->bound_dev_if;
1617 	sk->sk_sndbuf = sysctl_wmem_default;
1618 	sk->sk_mark = fl4.flowi4_mark;
1619 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1620 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1621 	if (unlikely(err)) {
1622 		ip_flush_pending_frames(sk);
1623 		goto out;
1624 	}
1625 
1626 	nskb = skb_peek(&sk->sk_write_queue);
1627 	if (nskb) {
1628 		if (arg->csumoffset >= 0)
1629 			*((__sum16 *)skb_transport_header(nskb) +
1630 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1631 								arg->csum));
1632 		nskb->ip_summed = CHECKSUM_NONE;
1633 		ip_push_pending_frames(sk, &fl4);
1634 	}
1635 out:
1636 	ip_rt_put(rt);
1637 }
1638 
1639 void __init ip_init(void)
1640 {
1641 	ip_rt_init();
1642 	inet_initpeers();
1643 
1644 #if defined(CONFIG_IP_MULTICAST)
1645 	igmp_mc_init();
1646 #endif
1647 }
1648