xref: /openbmc/linux/net/ipv4/ip_output.c (revision 37be287c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output);
102 }
103 
104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118 	int ttl = inet->uc_ttl;
119 
120 	if (ttl < 0)
121 		ttl = ip4_dst_hoplimit(dst);
122 	return ttl;
123 }
124 
125 /*
126  *		Add an ip header to a skbuff and send it out.
127  *
128  */
129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131 {
132 	struct inet_sock *inet = inet_sk(sk);
133 	struct rtable *rt = skb_rtable(skb);
134 	struct iphdr *iph;
135 
136 	/* Build the IP header. */
137 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138 	skb_reset_network_header(skb);
139 	iph = ip_hdr(skb);
140 	iph->version  = 4;
141 	iph->ihl      = 5;
142 	iph->tos      = inet->tos;
143 	if (ip_dont_fragment(sk, &rt->dst))
144 		iph->frag_off = htons(IP_DF);
145 	else
146 		iph->frag_off = 0;
147 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149 	iph->saddr    = saddr;
150 	iph->protocol = sk->sk_protocol;
151 	ip_select_ident(skb, &rt->dst, sk);
152 
153 	if (opt && opt->opt.optlen) {
154 		iph->ihl += opt->opt.optlen>>2;
155 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156 	}
157 
158 	skb->priority = sk->sk_priority;
159 	skb->mark = sk->sk_mark;
160 
161 	/* Send it out. */
162 	return ip_local_out(skb);
163 }
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165 
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 	struct dst_entry *dst = skb_dst(skb);
169 	struct rtable *rt = (struct rtable *)dst;
170 	struct net_device *dev = dst->dev;
171 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172 	struct neighbour *neigh;
173 	u32 nexthop;
174 
175 	if (rt->rt_type == RTN_MULTICAST) {
176 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177 	} else if (rt->rt_type == RTN_BROADCAST)
178 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179 
180 	/* Be paranoid, rather than too clever. */
181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182 		struct sk_buff *skb2;
183 
184 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 		if (skb2 == NULL) {
186 			kfree_skb(skb);
187 			return -ENOMEM;
188 		}
189 		if (skb->sk)
190 			skb_set_owner_w(skb2, skb->sk);
191 		consume_skb(skb);
192 		skb = skb2;
193 	}
194 
195 	rcu_read_lock_bh();
196 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198 	if (unlikely(!neigh))
199 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200 	if (!IS_ERR(neigh)) {
201 		int res = dst_neigh_output(dst, neigh, skb);
202 
203 		rcu_read_unlock_bh();
204 		return res;
205 	}
206 	rcu_read_unlock_bh();
207 
208 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209 			    __func__);
210 	kfree_skb(skb);
211 	return -EINVAL;
212 }
213 
214 static int ip_finish_output(struct sk_buff *skb)
215 {
216 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
217 	/* Policy lookup after SNAT yielded a new policy */
218 	if (skb_dst(skb)->xfrm != NULL) {
219 		IPCB(skb)->flags |= IPSKB_REROUTED;
220 		return dst_output(skb);
221 	}
222 #endif
223 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
224 		return ip_fragment(skb, ip_finish_output2);
225 	else
226 		return ip_finish_output2(skb);
227 }
228 
229 int ip_mc_output(struct sk_buff *skb)
230 {
231 	struct sock *sk = skb->sk;
232 	struct rtable *rt = skb_rtable(skb);
233 	struct net_device *dev = rt->dst.dev;
234 
235 	/*
236 	 *	If the indicated interface is up and running, send the packet.
237 	 */
238 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
239 
240 	skb->dev = dev;
241 	skb->protocol = htons(ETH_P_IP);
242 
243 	/*
244 	 *	Multicasts are looped back for other local users
245 	 */
246 
247 	if (rt->rt_flags&RTCF_MULTICAST) {
248 		if (sk_mc_loop(sk)
249 #ifdef CONFIG_IP_MROUTE
250 		/* Small optimization: do not loopback not local frames,
251 		   which returned after forwarding; they will be  dropped
252 		   by ip_mr_input in any case.
253 		   Note, that local frames are looped back to be delivered
254 		   to local recipients.
255 
256 		   This check is duplicated in ip_mr_input at the moment.
257 		 */
258 		    &&
259 		    ((rt->rt_flags & RTCF_LOCAL) ||
260 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
261 #endif
262 		   ) {
263 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
264 			if (newskb)
265 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
266 					newskb, NULL, newskb->dev,
267 					dev_loopback_xmit);
268 		}
269 
270 		/* Multicasts with ttl 0 must not go beyond the host */
271 
272 		if (ip_hdr(skb)->ttl == 0) {
273 			kfree_skb(skb);
274 			return 0;
275 		}
276 	}
277 
278 	if (rt->rt_flags&RTCF_BROADCAST) {
279 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
280 		if (newskb)
281 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
282 				NULL, newskb->dev, dev_loopback_xmit);
283 	}
284 
285 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
286 			    skb->dev, ip_finish_output,
287 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
288 }
289 
290 int ip_output(struct sk_buff *skb)
291 {
292 	struct net_device *dev = skb_dst(skb)->dev;
293 
294 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
295 
296 	skb->dev = dev;
297 	skb->protocol = htons(ETH_P_IP);
298 
299 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
300 			    ip_finish_output,
301 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
302 }
303 
304 /*
305  * copy saddr and daddr, possibly using 64bit load/stores
306  * Equivalent to :
307  *   iph->saddr = fl4->saddr;
308  *   iph->daddr = fl4->daddr;
309  */
310 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
311 {
312 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
313 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
314 	memcpy(&iph->saddr, &fl4->saddr,
315 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
316 }
317 
318 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
319 {
320 	struct sock *sk = skb->sk;
321 	struct inet_sock *inet = inet_sk(sk);
322 	struct ip_options_rcu *inet_opt;
323 	struct flowi4 *fl4;
324 	struct rtable *rt;
325 	struct iphdr *iph;
326 	int res;
327 
328 	/* Skip all of this if the packet is already routed,
329 	 * f.e. by something like SCTP.
330 	 */
331 	rcu_read_lock();
332 	inet_opt = rcu_dereference(inet->inet_opt);
333 	fl4 = &fl->u.ip4;
334 	rt = skb_rtable(skb);
335 	if (rt != NULL)
336 		goto packet_routed;
337 
338 	/* Make sure we can route this packet. */
339 	rt = (struct rtable *)__sk_dst_check(sk, 0);
340 	if (rt == NULL) {
341 		__be32 daddr;
342 
343 		/* Use correct destination address if we have options. */
344 		daddr = inet->inet_daddr;
345 		if (inet_opt && inet_opt->opt.srr)
346 			daddr = inet_opt->opt.faddr;
347 
348 		/* If this fails, retransmit mechanism of transport layer will
349 		 * keep trying until route appears or the connection times
350 		 * itself out.
351 		 */
352 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
353 					   daddr, inet->inet_saddr,
354 					   inet->inet_dport,
355 					   inet->inet_sport,
356 					   sk->sk_protocol,
357 					   RT_CONN_FLAGS(sk),
358 					   sk->sk_bound_dev_if);
359 		if (IS_ERR(rt))
360 			goto no_route;
361 		sk_setup_caps(sk, &rt->dst);
362 	}
363 	skb_dst_set_noref(skb, &rt->dst);
364 
365 packet_routed:
366 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
367 		goto no_route;
368 
369 	/* OK, we know where to send it, allocate and build IP header. */
370 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
371 	skb_reset_network_header(skb);
372 	iph = ip_hdr(skb);
373 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
374 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
375 		iph->frag_off = htons(IP_DF);
376 	else
377 		iph->frag_off = 0;
378 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
379 	iph->protocol = sk->sk_protocol;
380 	ip_copy_addrs(iph, fl4);
381 
382 	/* Transport layer set skb->h.foo itself. */
383 
384 	if (inet_opt && inet_opt->opt.optlen) {
385 		iph->ihl += inet_opt->opt.optlen >> 2;
386 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
387 	}
388 
389 	ip_select_ident_more(skb, &rt->dst, sk,
390 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
391 
392 	skb->priority = sk->sk_priority;
393 	skb->mark = sk->sk_mark;
394 
395 	res = ip_local_out(skb);
396 	rcu_read_unlock();
397 	return res;
398 
399 no_route:
400 	rcu_read_unlock();
401 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
402 	kfree_skb(skb);
403 	return -EHOSTUNREACH;
404 }
405 EXPORT_SYMBOL(ip_queue_xmit);
406 
407 
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
409 {
410 	to->pkt_type = from->pkt_type;
411 	to->priority = from->priority;
412 	to->protocol = from->protocol;
413 	skb_dst_drop(to);
414 	skb_dst_copy(to, from);
415 	to->dev = from->dev;
416 	to->mark = from->mark;
417 
418 	/* Copy the flags to each fragment. */
419 	IPCB(to)->flags = IPCB(from)->flags;
420 
421 #ifdef CONFIG_NET_SCHED
422 	to->tc_index = from->tc_index;
423 #endif
424 	nf_copy(to, from);
425 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
426 	to->nf_trace = from->nf_trace;
427 #endif
428 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
429 	to->ipvs_property = from->ipvs_property;
430 #endif
431 	skb_copy_secmark(to, from);
432 }
433 
434 /*
435  *	This IP datagram is too large to be sent in one piece.  Break it up into
436  *	smaller pieces (each of size equal to IP header plus
437  *	a block of the data of the original IP data part) that will yet fit in a
438  *	single device frame, and queue such a frame for sending.
439  */
440 
441 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
442 {
443 	struct iphdr *iph;
444 	int ptr;
445 	struct net_device *dev;
446 	struct sk_buff *skb2;
447 	unsigned int mtu, hlen, left, len, ll_rs;
448 	int offset;
449 	__be16 not_last_frag;
450 	struct rtable *rt = skb_rtable(skb);
451 	int err = 0;
452 	bool forwarding = IPCB(skb)->flags & IPSKB_FORWARDED;
453 
454 	dev = rt->dst.dev;
455 
456 	/*
457 	 *	Point into the IP datagram header.
458 	 */
459 
460 	iph = ip_hdr(skb);
461 
462 	mtu = ip_dst_mtu_maybe_forward(&rt->dst, forwarding);
463 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
464 		     (IPCB(skb)->frag_max_size &&
465 		      IPCB(skb)->frag_max_size > mtu))) {
466 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
467 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
468 			  htonl(mtu));
469 		kfree_skb(skb);
470 		return -EMSGSIZE;
471 	}
472 
473 	/*
474 	 *	Setup starting values.
475 	 */
476 
477 	hlen = iph->ihl * 4;
478 	mtu = mtu - hlen;	/* Size of data space */
479 #ifdef CONFIG_BRIDGE_NETFILTER
480 	if (skb->nf_bridge)
481 		mtu -= nf_bridge_mtu_reduction(skb);
482 #endif
483 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
484 
485 	/* When frag_list is given, use it. First, check its validity:
486 	 * some transformers could create wrong frag_list or break existing
487 	 * one, it is not prohibited. In this case fall back to copying.
488 	 *
489 	 * LATER: this step can be merged to real generation of fragments,
490 	 * we can switch to copy when see the first bad fragment.
491 	 */
492 	if (skb_has_frag_list(skb)) {
493 		struct sk_buff *frag, *frag2;
494 		int first_len = skb_pagelen(skb);
495 
496 		if (first_len - hlen > mtu ||
497 		    ((first_len - hlen) & 7) ||
498 		    ip_is_fragment(iph) ||
499 		    skb_cloned(skb))
500 			goto slow_path;
501 
502 		skb_walk_frags(skb, frag) {
503 			/* Correct geometry. */
504 			if (frag->len > mtu ||
505 			    ((frag->len & 7) && frag->next) ||
506 			    skb_headroom(frag) < hlen)
507 				goto slow_path_clean;
508 
509 			/* Partially cloned skb? */
510 			if (skb_shared(frag))
511 				goto slow_path_clean;
512 
513 			BUG_ON(frag->sk);
514 			if (skb->sk) {
515 				frag->sk = skb->sk;
516 				frag->destructor = sock_wfree;
517 			}
518 			skb->truesize -= frag->truesize;
519 		}
520 
521 		/* Everything is OK. Generate! */
522 
523 		err = 0;
524 		offset = 0;
525 		frag = skb_shinfo(skb)->frag_list;
526 		skb_frag_list_init(skb);
527 		skb->data_len = first_len - skb_headlen(skb);
528 		skb->len = first_len;
529 		iph->tot_len = htons(first_len);
530 		iph->frag_off = htons(IP_MF);
531 		ip_send_check(iph);
532 
533 		for (;;) {
534 			/* Prepare header of the next frame,
535 			 * before previous one went down. */
536 			if (frag) {
537 				frag->ip_summed = CHECKSUM_NONE;
538 				skb_reset_transport_header(frag);
539 				__skb_push(frag, hlen);
540 				skb_reset_network_header(frag);
541 				memcpy(skb_network_header(frag), iph, hlen);
542 				iph = ip_hdr(frag);
543 				iph->tot_len = htons(frag->len);
544 				ip_copy_metadata(frag, skb);
545 				if (offset == 0)
546 					ip_options_fragment(frag);
547 				offset += skb->len - hlen;
548 				iph->frag_off = htons(offset>>3);
549 				if (frag->next != NULL)
550 					iph->frag_off |= htons(IP_MF);
551 				/* Ready, complete checksum */
552 				ip_send_check(iph);
553 			}
554 
555 			err = output(skb);
556 
557 			if (!err)
558 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
559 			if (err || !frag)
560 				break;
561 
562 			skb = frag;
563 			frag = skb->next;
564 			skb->next = NULL;
565 		}
566 
567 		if (err == 0) {
568 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
569 			return 0;
570 		}
571 
572 		while (frag) {
573 			skb = frag->next;
574 			kfree_skb(frag);
575 			frag = skb;
576 		}
577 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
578 		return err;
579 
580 slow_path_clean:
581 		skb_walk_frags(skb, frag2) {
582 			if (frag2 == frag)
583 				break;
584 			frag2->sk = NULL;
585 			frag2->destructor = NULL;
586 			skb->truesize += frag2->truesize;
587 		}
588 	}
589 
590 slow_path:
591 	/* for offloaded checksums cleanup checksum before fragmentation */
592 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
593 		goto fail;
594 	iph = ip_hdr(skb);
595 
596 	left = skb->len - hlen;		/* Space per frame */
597 	ptr = hlen;		/* Where to start from */
598 
599 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
600 	 * we need to make room for the encapsulating header
601 	 */
602 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
603 
604 	/*
605 	 *	Fragment the datagram.
606 	 */
607 
608 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
609 	not_last_frag = iph->frag_off & htons(IP_MF);
610 
611 	/*
612 	 *	Keep copying data until we run out.
613 	 */
614 
615 	while (left > 0) {
616 		len = left;
617 		/* IF: it doesn't fit, use 'mtu' - the data space left */
618 		if (len > mtu)
619 			len = mtu;
620 		/* IF: we are not sending up to and including the packet end
621 		   then align the next start on an eight byte boundary */
622 		if (len < left)	{
623 			len &= ~7;
624 		}
625 		/*
626 		 *	Allocate buffer.
627 		 */
628 
629 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
630 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
631 			err = -ENOMEM;
632 			goto fail;
633 		}
634 
635 		/*
636 		 *	Set up data on packet
637 		 */
638 
639 		ip_copy_metadata(skb2, skb);
640 		skb_reserve(skb2, ll_rs);
641 		skb_put(skb2, len + hlen);
642 		skb_reset_network_header(skb2);
643 		skb2->transport_header = skb2->network_header + hlen;
644 
645 		/*
646 		 *	Charge the memory for the fragment to any owner
647 		 *	it might possess
648 		 */
649 
650 		if (skb->sk)
651 			skb_set_owner_w(skb2, skb->sk);
652 
653 		/*
654 		 *	Copy the packet header into the new buffer.
655 		 */
656 
657 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
658 
659 		/*
660 		 *	Copy a block of the IP datagram.
661 		 */
662 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
663 			BUG();
664 		left -= len;
665 
666 		/*
667 		 *	Fill in the new header fields.
668 		 */
669 		iph = ip_hdr(skb2);
670 		iph->frag_off = htons((offset >> 3));
671 
672 		/* ANK: dirty, but effective trick. Upgrade options only if
673 		 * the segment to be fragmented was THE FIRST (otherwise,
674 		 * options are already fixed) and make it ONCE
675 		 * on the initial skb, so that all the following fragments
676 		 * will inherit fixed options.
677 		 */
678 		if (offset == 0)
679 			ip_options_fragment(skb);
680 
681 		/*
682 		 *	Added AC : If we are fragmenting a fragment that's not the
683 		 *		   last fragment then keep MF on each bit
684 		 */
685 		if (left > 0 || not_last_frag)
686 			iph->frag_off |= htons(IP_MF);
687 		ptr += len;
688 		offset += len;
689 
690 		/*
691 		 *	Put this fragment into the sending queue.
692 		 */
693 		iph->tot_len = htons(len + hlen);
694 
695 		ip_send_check(iph);
696 
697 		err = output(skb2);
698 		if (err)
699 			goto fail;
700 
701 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
702 	}
703 	consume_skb(skb);
704 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
705 	return err;
706 
707 fail:
708 	kfree_skb(skb);
709 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
710 	return err;
711 }
712 EXPORT_SYMBOL(ip_fragment);
713 
714 int
715 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
716 {
717 	struct iovec *iov = from;
718 
719 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
720 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
721 			return -EFAULT;
722 	} else {
723 		__wsum csum = 0;
724 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
725 			return -EFAULT;
726 		skb->csum = csum_block_add(skb->csum, csum, odd);
727 	}
728 	return 0;
729 }
730 EXPORT_SYMBOL(ip_generic_getfrag);
731 
732 static inline __wsum
733 csum_page(struct page *page, int offset, int copy)
734 {
735 	char *kaddr;
736 	__wsum csum;
737 	kaddr = kmap(page);
738 	csum = csum_partial(kaddr + offset, copy, 0);
739 	kunmap(page);
740 	return csum;
741 }
742 
743 static inline int ip_ufo_append_data(struct sock *sk,
744 			struct sk_buff_head *queue,
745 			int getfrag(void *from, char *to, int offset, int len,
746 			       int odd, struct sk_buff *skb),
747 			void *from, int length, int hh_len, int fragheaderlen,
748 			int transhdrlen, int maxfraglen, unsigned int flags)
749 {
750 	struct sk_buff *skb;
751 	int err;
752 
753 	/* There is support for UDP fragmentation offload by network
754 	 * device, so create one single skb packet containing complete
755 	 * udp datagram
756 	 */
757 	if ((skb = skb_peek_tail(queue)) == NULL) {
758 		skb = sock_alloc_send_skb(sk,
759 			hh_len + fragheaderlen + transhdrlen + 20,
760 			(flags & MSG_DONTWAIT), &err);
761 
762 		if (skb == NULL)
763 			return err;
764 
765 		/* reserve space for Hardware header */
766 		skb_reserve(skb, hh_len);
767 
768 		/* create space for UDP/IP header */
769 		skb_put(skb, fragheaderlen + transhdrlen);
770 
771 		/* initialize network header pointer */
772 		skb_reset_network_header(skb);
773 
774 		/* initialize protocol header pointer */
775 		skb->transport_header = skb->network_header + fragheaderlen;
776 
777 		skb->csum = 0;
778 
779 
780 		__skb_queue_tail(queue, skb);
781 	} else if (skb_is_gso(skb)) {
782 		goto append;
783 	}
784 
785 	skb->ip_summed = CHECKSUM_PARTIAL;
786 	/* specify the length of each IP datagram fragment */
787 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
788 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
789 
790 append:
791 	return skb_append_datato_frags(sk, skb, getfrag, from,
792 				       (length - transhdrlen));
793 }
794 
795 static int __ip_append_data(struct sock *sk,
796 			    struct flowi4 *fl4,
797 			    struct sk_buff_head *queue,
798 			    struct inet_cork *cork,
799 			    struct page_frag *pfrag,
800 			    int getfrag(void *from, char *to, int offset,
801 					int len, int odd, struct sk_buff *skb),
802 			    void *from, int length, int transhdrlen,
803 			    unsigned int flags)
804 {
805 	struct inet_sock *inet = inet_sk(sk);
806 	struct sk_buff *skb;
807 
808 	struct ip_options *opt = cork->opt;
809 	int hh_len;
810 	int exthdrlen;
811 	int mtu;
812 	int copy;
813 	int err;
814 	int offset = 0;
815 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
816 	int csummode = CHECKSUM_NONE;
817 	struct rtable *rt = (struct rtable *)cork->dst;
818 
819 	skb = skb_peek_tail(queue);
820 
821 	exthdrlen = !skb ? rt->dst.header_len : 0;
822 	mtu = cork->fragsize;
823 
824 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
825 
826 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
827 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
828 	maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
829 			 mtu : 0xFFFF;
830 
831 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
832 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
833 			       mtu - (opt ? opt->optlen : 0));
834 		return -EMSGSIZE;
835 	}
836 
837 	/*
838 	 * transhdrlen > 0 means that this is the first fragment and we wish
839 	 * it won't be fragmented in the future.
840 	 */
841 	if (transhdrlen &&
842 	    length + fragheaderlen <= mtu &&
843 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
844 	    !exthdrlen)
845 		csummode = CHECKSUM_PARTIAL;
846 
847 	cork->length += length;
848 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
849 	    (sk->sk_protocol == IPPROTO_UDP) &&
850 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
851 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
852 					 hh_len, fragheaderlen, transhdrlen,
853 					 maxfraglen, flags);
854 		if (err)
855 			goto error;
856 		return 0;
857 	}
858 
859 	/* So, what's going on in the loop below?
860 	 *
861 	 * We use calculated fragment length to generate chained skb,
862 	 * each of segments is IP fragment ready for sending to network after
863 	 * adding appropriate IP header.
864 	 */
865 
866 	if (!skb)
867 		goto alloc_new_skb;
868 
869 	while (length > 0) {
870 		/* Check if the remaining data fits into current packet. */
871 		copy = mtu - skb->len;
872 		if (copy < length)
873 			copy = maxfraglen - skb->len;
874 		if (copy <= 0) {
875 			char *data;
876 			unsigned int datalen;
877 			unsigned int fraglen;
878 			unsigned int fraggap;
879 			unsigned int alloclen;
880 			struct sk_buff *skb_prev;
881 alloc_new_skb:
882 			skb_prev = skb;
883 			if (skb_prev)
884 				fraggap = skb_prev->len - maxfraglen;
885 			else
886 				fraggap = 0;
887 
888 			/*
889 			 * If remaining data exceeds the mtu,
890 			 * we know we need more fragment(s).
891 			 */
892 			datalen = length + fraggap;
893 			if (datalen > mtu - fragheaderlen)
894 				datalen = maxfraglen - fragheaderlen;
895 			fraglen = datalen + fragheaderlen;
896 
897 			if ((flags & MSG_MORE) &&
898 			    !(rt->dst.dev->features&NETIF_F_SG))
899 				alloclen = mtu;
900 			else
901 				alloclen = fraglen;
902 
903 			alloclen += exthdrlen;
904 
905 			/* The last fragment gets additional space at tail.
906 			 * Note, with MSG_MORE we overallocate on fragments,
907 			 * because we have no idea what fragment will be
908 			 * the last.
909 			 */
910 			if (datalen == length + fraggap)
911 				alloclen += rt->dst.trailer_len;
912 
913 			if (transhdrlen) {
914 				skb = sock_alloc_send_skb(sk,
915 						alloclen + hh_len + 15,
916 						(flags & MSG_DONTWAIT), &err);
917 			} else {
918 				skb = NULL;
919 				if (atomic_read(&sk->sk_wmem_alloc) <=
920 				    2 * sk->sk_sndbuf)
921 					skb = sock_wmalloc(sk,
922 							   alloclen + hh_len + 15, 1,
923 							   sk->sk_allocation);
924 				if (unlikely(skb == NULL))
925 					err = -ENOBUFS;
926 				else
927 					/* only the initial fragment is
928 					   time stamped */
929 					cork->tx_flags = 0;
930 			}
931 			if (skb == NULL)
932 				goto error;
933 
934 			/*
935 			 *	Fill in the control structures
936 			 */
937 			skb->ip_summed = csummode;
938 			skb->csum = 0;
939 			skb_reserve(skb, hh_len);
940 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
941 
942 			/*
943 			 *	Find where to start putting bytes.
944 			 */
945 			data = skb_put(skb, fraglen + exthdrlen);
946 			skb_set_network_header(skb, exthdrlen);
947 			skb->transport_header = (skb->network_header +
948 						 fragheaderlen);
949 			data += fragheaderlen + exthdrlen;
950 
951 			if (fraggap) {
952 				skb->csum = skb_copy_and_csum_bits(
953 					skb_prev, maxfraglen,
954 					data + transhdrlen, fraggap, 0);
955 				skb_prev->csum = csum_sub(skb_prev->csum,
956 							  skb->csum);
957 				data += fraggap;
958 				pskb_trim_unique(skb_prev, maxfraglen);
959 			}
960 
961 			copy = datalen - transhdrlen - fraggap;
962 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
963 				err = -EFAULT;
964 				kfree_skb(skb);
965 				goto error;
966 			}
967 
968 			offset += copy;
969 			length -= datalen - fraggap;
970 			transhdrlen = 0;
971 			exthdrlen = 0;
972 			csummode = CHECKSUM_NONE;
973 
974 			/*
975 			 * Put the packet on the pending queue.
976 			 */
977 			__skb_queue_tail(queue, skb);
978 			continue;
979 		}
980 
981 		if (copy > length)
982 			copy = length;
983 
984 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
985 			unsigned int off;
986 
987 			off = skb->len;
988 			if (getfrag(from, skb_put(skb, copy),
989 					offset, copy, off, skb) < 0) {
990 				__skb_trim(skb, off);
991 				err = -EFAULT;
992 				goto error;
993 			}
994 		} else {
995 			int i = skb_shinfo(skb)->nr_frags;
996 
997 			err = -ENOMEM;
998 			if (!sk_page_frag_refill(sk, pfrag))
999 				goto error;
1000 
1001 			if (!skb_can_coalesce(skb, i, pfrag->page,
1002 					      pfrag->offset)) {
1003 				err = -EMSGSIZE;
1004 				if (i == MAX_SKB_FRAGS)
1005 					goto error;
1006 
1007 				__skb_fill_page_desc(skb, i, pfrag->page,
1008 						     pfrag->offset, 0);
1009 				skb_shinfo(skb)->nr_frags = ++i;
1010 				get_page(pfrag->page);
1011 			}
1012 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1013 			if (getfrag(from,
1014 				    page_address(pfrag->page) + pfrag->offset,
1015 				    offset, copy, skb->len, skb) < 0)
1016 				goto error_efault;
1017 
1018 			pfrag->offset += copy;
1019 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1020 			skb->len += copy;
1021 			skb->data_len += copy;
1022 			skb->truesize += copy;
1023 			atomic_add(copy, &sk->sk_wmem_alloc);
1024 		}
1025 		offset += copy;
1026 		length -= copy;
1027 	}
1028 
1029 	return 0;
1030 
1031 error_efault:
1032 	err = -EFAULT;
1033 error:
1034 	cork->length -= length;
1035 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1036 	return err;
1037 }
1038 
1039 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1040 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1041 {
1042 	struct ip_options_rcu *opt;
1043 	struct rtable *rt;
1044 
1045 	/*
1046 	 * setup for corking.
1047 	 */
1048 	opt = ipc->opt;
1049 	if (opt) {
1050 		if (cork->opt == NULL) {
1051 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1052 					    sk->sk_allocation);
1053 			if (unlikely(cork->opt == NULL))
1054 				return -ENOBUFS;
1055 		}
1056 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1057 		cork->flags |= IPCORK_OPT;
1058 		cork->addr = ipc->addr;
1059 	}
1060 	rt = *rtp;
1061 	if (unlikely(!rt))
1062 		return -EFAULT;
1063 	/*
1064 	 * We steal reference to this route, caller should not release it
1065 	 */
1066 	*rtp = NULL;
1067 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1068 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1069 	cork->dst = &rt->dst;
1070 	cork->length = 0;
1071 	cork->ttl = ipc->ttl;
1072 	cork->tos = ipc->tos;
1073 	cork->priority = ipc->priority;
1074 	cork->tx_flags = ipc->tx_flags;
1075 
1076 	return 0;
1077 }
1078 
1079 /*
1080  *	ip_append_data() and ip_append_page() can make one large IP datagram
1081  *	from many pieces of data. Each pieces will be holded on the socket
1082  *	until ip_push_pending_frames() is called. Each piece can be a page
1083  *	or non-page data.
1084  *
1085  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1086  *	this interface potentially.
1087  *
1088  *	LATER: length must be adjusted by pad at tail, when it is required.
1089  */
1090 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1091 		   int getfrag(void *from, char *to, int offset, int len,
1092 			       int odd, struct sk_buff *skb),
1093 		   void *from, int length, int transhdrlen,
1094 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1095 		   unsigned int flags)
1096 {
1097 	struct inet_sock *inet = inet_sk(sk);
1098 	int err;
1099 
1100 	if (flags&MSG_PROBE)
1101 		return 0;
1102 
1103 	if (skb_queue_empty(&sk->sk_write_queue)) {
1104 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1105 		if (err)
1106 			return err;
1107 	} else {
1108 		transhdrlen = 0;
1109 	}
1110 
1111 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1112 				sk_page_frag(sk), getfrag,
1113 				from, length, transhdrlen, flags);
1114 }
1115 
1116 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1117 		       int offset, size_t size, int flags)
1118 {
1119 	struct inet_sock *inet = inet_sk(sk);
1120 	struct sk_buff *skb;
1121 	struct rtable *rt;
1122 	struct ip_options *opt = NULL;
1123 	struct inet_cork *cork;
1124 	int hh_len;
1125 	int mtu;
1126 	int len;
1127 	int err;
1128 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1129 
1130 	if (inet->hdrincl)
1131 		return -EPERM;
1132 
1133 	if (flags&MSG_PROBE)
1134 		return 0;
1135 
1136 	if (skb_queue_empty(&sk->sk_write_queue))
1137 		return -EINVAL;
1138 
1139 	cork = &inet->cork.base;
1140 	rt = (struct rtable *)cork->dst;
1141 	if (cork->flags & IPCORK_OPT)
1142 		opt = cork->opt;
1143 
1144 	if (!(rt->dst.dev->features&NETIF_F_SG))
1145 		return -EOPNOTSUPP;
1146 
1147 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1148 	mtu = cork->fragsize;
1149 
1150 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1151 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1152 	maxnonfragsize = (inet->pmtudisc >= IP_PMTUDISC_DO) ?
1153 			 mtu : 0xFFFF;
1154 
1155 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1156 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1157 			       mtu - (opt ? opt->optlen : 0));
1158 		return -EMSGSIZE;
1159 	}
1160 
1161 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1162 		return -EINVAL;
1163 
1164 	cork->length += size;
1165 	if ((size + skb->len > mtu) &&
1166 	    (sk->sk_protocol == IPPROTO_UDP) &&
1167 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1168 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1169 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1170 	}
1171 
1172 
1173 	while (size > 0) {
1174 		int i;
1175 
1176 		if (skb_is_gso(skb))
1177 			len = size;
1178 		else {
1179 
1180 			/* Check if the remaining data fits into current packet. */
1181 			len = mtu - skb->len;
1182 			if (len < size)
1183 				len = maxfraglen - skb->len;
1184 		}
1185 		if (len <= 0) {
1186 			struct sk_buff *skb_prev;
1187 			int alloclen;
1188 
1189 			skb_prev = skb;
1190 			fraggap = skb_prev->len - maxfraglen;
1191 
1192 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1193 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1194 			if (unlikely(!skb)) {
1195 				err = -ENOBUFS;
1196 				goto error;
1197 			}
1198 
1199 			/*
1200 			 *	Fill in the control structures
1201 			 */
1202 			skb->ip_summed = CHECKSUM_NONE;
1203 			skb->csum = 0;
1204 			skb_reserve(skb, hh_len);
1205 
1206 			/*
1207 			 *	Find where to start putting bytes.
1208 			 */
1209 			skb_put(skb, fragheaderlen + fraggap);
1210 			skb_reset_network_header(skb);
1211 			skb->transport_header = (skb->network_header +
1212 						 fragheaderlen);
1213 			if (fraggap) {
1214 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1215 								   maxfraglen,
1216 						    skb_transport_header(skb),
1217 								   fraggap, 0);
1218 				skb_prev->csum = csum_sub(skb_prev->csum,
1219 							  skb->csum);
1220 				pskb_trim_unique(skb_prev, maxfraglen);
1221 			}
1222 
1223 			/*
1224 			 * Put the packet on the pending queue.
1225 			 */
1226 			__skb_queue_tail(&sk->sk_write_queue, skb);
1227 			continue;
1228 		}
1229 
1230 		i = skb_shinfo(skb)->nr_frags;
1231 		if (len > size)
1232 			len = size;
1233 		if (skb_can_coalesce(skb, i, page, offset)) {
1234 			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1235 		} else if (i < MAX_SKB_FRAGS) {
1236 			get_page(page);
1237 			skb_fill_page_desc(skb, i, page, offset, len);
1238 		} else {
1239 			err = -EMSGSIZE;
1240 			goto error;
1241 		}
1242 
1243 		if (skb->ip_summed == CHECKSUM_NONE) {
1244 			__wsum csum;
1245 			csum = csum_page(page, offset, len);
1246 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1247 		}
1248 
1249 		skb->len += len;
1250 		skb->data_len += len;
1251 		skb->truesize += len;
1252 		atomic_add(len, &sk->sk_wmem_alloc);
1253 		offset += len;
1254 		size -= len;
1255 	}
1256 	return 0;
1257 
1258 error:
1259 	cork->length -= size;
1260 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1261 	return err;
1262 }
1263 
1264 static void ip_cork_release(struct inet_cork *cork)
1265 {
1266 	cork->flags &= ~IPCORK_OPT;
1267 	kfree(cork->opt);
1268 	cork->opt = NULL;
1269 	dst_release(cork->dst);
1270 	cork->dst = NULL;
1271 }
1272 
1273 /*
1274  *	Combined all pending IP fragments on the socket as one IP datagram
1275  *	and push them out.
1276  */
1277 struct sk_buff *__ip_make_skb(struct sock *sk,
1278 			      struct flowi4 *fl4,
1279 			      struct sk_buff_head *queue,
1280 			      struct inet_cork *cork)
1281 {
1282 	struct sk_buff *skb, *tmp_skb;
1283 	struct sk_buff **tail_skb;
1284 	struct inet_sock *inet = inet_sk(sk);
1285 	struct net *net = sock_net(sk);
1286 	struct ip_options *opt = NULL;
1287 	struct rtable *rt = (struct rtable *)cork->dst;
1288 	struct iphdr *iph;
1289 	__be16 df = 0;
1290 	__u8 ttl;
1291 
1292 	if ((skb = __skb_dequeue(queue)) == NULL)
1293 		goto out;
1294 	tail_skb = &(skb_shinfo(skb)->frag_list);
1295 
1296 	/* move skb->data to ip header from ext header */
1297 	if (skb->data < skb_network_header(skb))
1298 		__skb_pull(skb, skb_network_offset(skb));
1299 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1300 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1301 		*tail_skb = tmp_skb;
1302 		tail_skb = &(tmp_skb->next);
1303 		skb->len += tmp_skb->len;
1304 		skb->data_len += tmp_skb->len;
1305 		skb->truesize += tmp_skb->truesize;
1306 		tmp_skb->destructor = NULL;
1307 		tmp_skb->sk = NULL;
1308 	}
1309 
1310 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1311 	 * to fragment the frame generated here. No matter, what transforms
1312 	 * how transforms change size of the packet, it will come out.
1313 	 */
1314 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1315 		skb->local_df = 1;
1316 
1317 	/* DF bit is set when we want to see DF on outgoing frames.
1318 	 * If local_df is set too, we still allow to fragment this frame
1319 	 * locally. */
1320 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1321 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1322 	    (skb->len <= dst_mtu(&rt->dst) &&
1323 	     ip_dont_fragment(sk, &rt->dst)))
1324 		df = htons(IP_DF);
1325 
1326 	if (cork->flags & IPCORK_OPT)
1327 		opt = cork->opt;
1328 
1329 	if (cork->ttl != 0)
1330 		ttl = cork->ttl;
1331 	else if (rt->rt_type == RTN_MULTICAST)
1332 		ttl = inet->mc_ttl;
1333 	else
1334 		ttl = ip_select_ttl(inet, &rt->dst);
1335 
1336 	iph = ip_hdr(skb);
1337 	iph->version = 4;
1338 	iph->ihl = 5;
1339 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1340 	iph->frag_off = df;
1341 	iph->ttl = ttl;
1342 	iph->protocol = sk->sk_protocol;
1343 	ip_copy_addrs(iph, fl4);
1344 	ip_select_ident(skb, &rt->dst, sk);
1345 
1346 	if (opt) {
1347 		iph->ihl += opt->optlen>>2;
1348 		ip_options_build(skb, opt, cork->addr, rt, 0);
1349 	}
1350 
1351 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1352 	skb->mark = sk->sk_mark;
1353 	/*
1354 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1355 	 * on dst refcount
1356 	 */
1357 	cork->dst = NULL;
1358 	skb_dst_set(skb, &rt->dst);
1359 
1360 	if (iph->protocol == IPPROTO_ICMP)
1361 		icmp_out_count(net, ((struct icmphdr *)
1362 			skb_transport_header(skb))->type);
1363 
1364 	ip_cork_release(cork);
1365 out:
1366 	return skb;
1367 }
1368 
1369 int ip_send_skb(struct net *net, struct sk_buff *skb)
1370 {
1371 	int err;
1372 
1373 	err = ip_local_out(skb);
1374 	if (err) {
1375 		if (err > 0)
1376 			err = net_xmit_errno(err);
1377 		if (err)
1378 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1379 	}
1380 
1381 	return err;
1382 }
1383 
1384 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1385 {
1386 	struct sk_buff *skb;
1387 
1388 	skb = ip_finish_skb(sk, fl4);
1389 	if (!skb)
1390 		return 0;
1391 
1392 	/* Netfilter gets whole the not fragmented skb. */
1393 	return ip_send_skb(sock_net(sk), skb);
1394 }
1395 
1396 /*
1397  *	Throw away all pending data on the socket.
1398  */
1399 static void __ip_flush_pending_frames(struct sock *sk,
1400 				      struct sk_buff_head *queue,
1401 				      struct inet_cork *cork)
1402 {
1403 	struct sk_buff *skb;
1404 
1405 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1406 		kfree_skb(skb);
1407 
1408 	ip_cork_release(cork);
1409 }
1410 
1411 void ip_flush_pending_frames(struct sock *sk)
1412 {
1413 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1414 }
1415 
1416 struct sk_buff *ip_make_skb(struct sock *sk,
1417 			    struct flowi4 *fl4,
1418 			    int getfrag(void *from, char *to, int offset,
1419 					int len, int odd, struct sk_buff *skb),
1420 			    void *from, int length, int transhdrlen,
1421 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1422 			    unsigned int flags)
1423 {
1424 	struct inet_cork cork;
1425 	struct sk_buff_head queue;
1426 	int err;
1427 
1428 	if (flags & MSG_PROBE)
1429 		return NULL;
1430 
1431 	__skb_queue_head_init(&queue);
1432 
1433 	cork.flags = 0;
1434 	cork.addr = 0;
1435 	cork.opt = NULL;
1436 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1437 	if (err)
1438 		return ERR_PTR(err);
1439 
1440 	err = __ip_append_data(sk, fl4, &queue, &cork,
1441 			       &current->task_frag, getfrag,
1442 			       from, length, transhdrlen, flags);
1443 	if (err) {
1444 		__ip_flush_pending_frames(sk, &queue, &cork);
1445 		return ERR_PTR(err);
1446 	}
1447 
1448 	return __ip_make_skb(sk, fl4, &queue, &cork);
1449 }
1450 
1451 /*
1452  *	Fetch data from kernel space and fill in checksum if needed.
1453  */
1454 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1455 			      int len, int odd, struct sk_buff *skb)
1456 {
1457 	__wsum csum;
1458 
1459 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1460 	skb->csum = csum_block_add(skb->csum, csum, odd);
1461 	return 0;
1462 }
1463 
1464 /*
1465  *	Generic function to send a packet as reply to another packet.
1466  *	Used to send some TCP resets/acks so far.
1467  *
1468  *	Use a fake percpu inet socket to avoid false sharing and contention.
1469  */
1470 static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1471 	.sk = {
1472 		.__sk_common = {
1473 			.skc_refcnt = ATOMIC_INIT(1),
1474 		},
1475 		.sk_wmem_alloc	= ATOMIC_INIT(1),
1476 		.sk_allocation	= GFP_ATOMIC,
1477 		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1478 	},
1479 	.pmtudisc	= IP_PMTUDISC_WANT,
1480 	.uc_ttl		= -1,
1481 };
1482 
1483 void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1484 			   __be32 saddr, const struct ip_reply_arg *arg,
1485 			   unsigned int len)
1486 {
1487 	struct ip_options_data replyopts;
1488 	struct ipcm_cookie ipc;
1489 	struct flowi4 fl4;
1490 	struct rtable *rt = skb_rtable(skb);
1491 	struct sk_buff *nskb;
1492 	struct sock *sk;
1493 	struct inet_sock *inet;
1494 
1495 	if (ip_options_echo(&replyopts.opt.opt, skb))
1496 		return;
1497 
1498 	ipc.addr = daddr;
1499 	ipc.opt = NULL;
1500 	ipc.tx_flags = 0;
1501 	ipc.ttl = 0;
1502 	ipc.tos = -1;
1503 
1504 	if (replyopts.opt.opt.optlen) {
1505 		ipc.opt = &replyopts.opt;
1506 
1507 		if (replyopts.opt.opt.srr)
1508 			daddr = replyopts.opt.opt.faddr;
1509 	}
1510 
1511 	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1512 			   RT_TOS(arg->tos),
1513 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1514 			   ip_reply_arg_flowi_flags(arg),
1515 			   daddr, saddr,
1516 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1517 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1518 	rt = ip_route_output_key(net, &fl4);
1519 	if (IS_ERR(rt))
1520 		return;
1521 
1522 	inet = &get_cpu_var(unicast_sock);
1523 
1524 	inet->tos = arg->tos;
1525 	sk = &inet->sk;
1526 	sk->sk_priority = skb->priority;
1527 	sk->sk_protocol = ip_hdr(skb)->protocol;
1528 	sk->sk_bound_dev_if = arg->bound_dev_if;
1529 	sock_net_set(sk, net);
1530 	__skb_queue_head_init(&sk->sk_write_queue);
1531 	sk->sk_sndbuf = sysctl_wmem_default;
1532 	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1533 		       &ipc, &rt, MSG_DONTWAIT);
1534 	nskb = skb_peek(&sk->sk_write_queue);
1535 	if (nskb) {
1536 		if (arg->csumoffset >= 0)
1537 			*((__sum16 *)skb_transport_header(nskb) +
1538 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1539 								arg->csum));
1540 		nskb->ip_summed = CHECKSUM_NONE;
1541 		skb_orphan(nskb);
1542 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1543 		ip_push_pending_frames(sk, &fl4);
1544 	}
1545 
1546 	put_cpu_var(unicast_sock);
1547 
1548 	ip_rt_put(rt);
1549 }
1550 
1551 void __init ip_init(void)
1552 {
1553 	ip_rt_init();
1554 	inet_initpeers();
1555 
1556 #if defined(CONFIG_IP_MULTICAST)
1557 	igmp_mc_init();
1558 #endif
1559 }
1560