1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 bool is_v6gw = false; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 222 if (!IS_ERR(neigh)) { 223 int res; 224 225 sock_confirm_neigh(skb, neigh); 226 /* if crossing protocols, can not use the cached header */ 227 res = neigh_output(neigh, skb, is_v6gw); 228 rcu_read_unlock_bh(); 229 return res; 230 } 231 rcu_read_unlock_bh(); 232 233 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 234 __func__); 235 kfree_skb(skb); 236 return -EINVAL; 237 } 238 239 static int ip_finish_output_gso(struct net *net, struct sock *sk, 240 struct sk_buff *skb, unsigned int mtu) 241 { 242 netdev_features_t features; 243 struct sk_buff *segs; 244 int ret = 0; 245 246 /* common case: seglen is <= mtu 247 */ 248 if (skb_gso_validate_network_len(skb, mtu)) 249 return ip_finish_output2(net, sk, skb); 250 251 /* Slowpath - GSO segment length exceeds the egress MTU. 252 * 253 * This can happen in several cases: 254 * - Forwarding of a TCP GRO skb, when DF flag is not set. 255 * - Forwarding of an skb that arrived on a virtualization interface 256 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 257 * stack. 258 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 259 * interface with a smaller MTU. 260 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 261 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 262 * insufficent MTU. 263 */ 264 features = netif_skb_features(skb); 265 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 266 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 267 if (IS_ERR_OR_NULL(segs)) { 268 kfree_skb(skb); 269 return -ENOMEM; 270 } 271 272 consume_skb(skb); 273 274 do { 275 struct sk_buff *nskb = segs->next; 276 int err; 277 278 skb_mark_not_on_list(segs); 279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 280 281 if (err && ret == 0) 282 ret = err; 283 segs = nskb; 284 } while (segs); 285 286 return ret; 287 } 288 289 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 290 { 291 unsigned int mtu; 292 int ret; 293 294 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 295 if (ret) { 296 kfree_skb(skb); 297 return ret; 298 } 299 300 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 301 /* Policy lookup after SNAT yielded a new policy */ 302 if (skb_dst(skb)->xfrm) { 303 IPCB(skb)->flags |= IPSKB_REROUTED; 304 return dst_output(net, sk, skb); 305 } 306 #endif 307 mtu = ip_skb_dst_mtu(sk, skb); 308 if (skb_is_gso(skb)) 309 return ip_finish_output_gso(net, sk, skb, mtu); 310 311 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 312 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 313 314 return ip_finish_output2(net, sk, skb); 315 } 316 317 static int ip_mc_finish_output(struct net *net, struct sock *sk, 318 struct sk_buff *skb) 319 { 320 int ret; 321 322 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 323 if (ret) { 324 kfree_skb(skb); 325 return ret; 326 } 327 328 return dev_loopback_xmit(net, sk, skb); 329 } 330 331 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 332 { 333 struct rtable *rt = skb_rtable(skb); 334 struct net_device *dev = rt->dst.dev; 335 336 /* 337 * If the indicated interface is up and running, send the packet. 338 */ 339 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 340 341 skb->dev = dev; 342 skb->protocol = htons(ETH_P_IP); 343 344 /* 345 * Multicasts are looped back for other local users 346 */ 347 348 if (rt->rt_flags&RTCF_MULTICAST) { 349 if (sk_mc_loop(sk) 350 #ifdef CONFIG_IP_MROUTE 351 /* Small optimization: do not loopback not local frames, 352 which returned after forwarding; they will be dropped 353 by ip_mr_input in any case. 354 Note, that local frames are looped back to be delivered 355 to local recipients. 356 357 This check is duplicated in ip_mr_input at the moment. 358 */ 359 && 360 ((rt->rt_flags & RTCF_LOCAL) || 361 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 362 #endif 363 ) { 364 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 365 if (newskb) 366 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 367 net, sk, newskb, NULL, newskb->dev, 368 ip_mc_finish_output); 369 } 370 371 /* Multicasts with ttl 0 must not go beyond the host */ 372 373 if (ip_hdr(skb)->ttl == 0) { 374 kfree_skb(skb); 375 return 0; 376 } 377 } 378 379 if (rt->rt_flags&RTCF_BROADCAST) { 380 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 381 if (newskb) 382 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 383 net, sk, newskb, NULL, newskb->dev, 384 ip_mc_finish_output); 385 } 386 387 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 388 net, sk, skb, NULL, skb->dev, 389 ip_finish_output, 390 !(IPCB(skb)->flags & IPSKB_REROUTED)); 391 } 392 393 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 394 { 395 struct net_device *dev = skb_dst(skb)->dev; 396 397 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 398 399 skb->dev = dev; 400 skb->protocol = htons(ETH_P_IP); 401 402 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 403 net, sk, skb, NULL, dev, 404 ip_finish_output, 405 !(IPCB(skb)->flags & IPSKB_REROUTED)); 406 } 407 408 /* 409 * copy saddr and daddr, possibly using 64bit load/stores 410 * Equivalent to : 411 * iph->saddr = fl4->saddr; 412 * iph->daddr = fl4->daddr; 413 */ 414 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 415 { 416 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 417 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 418 memcpy(&iph->saddr, &fl4->saddr, 419 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 420 } 421 422 /* Note: skb->sk can be different from sk, in case of tunnels */ 423 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 424 __u8 tos) 425 { 426 struct inet_sock *inet = inet_sk(sk); 427 struct net *net = sock_net(sk); 428 struct ip_options_rcu *inet_opt; 429 struct flowi4 *fl4; 430 struct rtable *rt; 431 struct iphdr *iph; 432 int res; 433 434 /* Skip all of this if the packet is already routed, 435 * f.e. by something like SCTP. 436 */ 437 rcu_read_lock(); 438 inet_opt = rcu_dereference(inet->inet_opt); 439 fl4 = &fl->u.ip4; 440 rt = skb_rtable(skb); 441 if (rt) 442 goto packet_routed; 443 444 /* Make sure we can route this packet. */ 445 rt = (struct rtable *)__sk_dst_check(sk, 0); 446 if (!rt) { 447 __be32 daddr; 448 449 /* Use correct destination address if we have options. */ 450 daddr = inet->inet_daddr; 451 if (inet_opt && inet_opt->opt.srr) 452 daddr = inet_opt->opt.faddr; 453 454 /* If this fails, retransmit mechanism of transport layer will 455 * keep trying until route appears or the connection times 456 * itself out. 457 */ 458 rt = ip_route_output_ports(net, fl4, sk, 459 daddr, inet->inet_saddr, 460 inet->inet_dport, 461 inet->inet_sport, 462 sk->sk_protocol, 463 RT_CONN_FLAGS_TOS(sk, tos), 464 sk->sk_bound_dev_if); 465 if (IS_ERR(rt)) 466 goto no_route; 467 sk_setup_caps(sk, &rt->dst); 468 } 469 skb_dst_set_noref(skb, &rt->dst); 470 471 packet_routed: 472 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family) 473 goto no_route; 474 475 /* OK, we know where to send it, allocate and build IP header. */ 476 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 477 skb_reset_network_header(skb); 478 iph = ip_hdr(skb); 479 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 480 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 481 iph->frag_off = htons(IP_DF); 482 else 483 iph->frag_off = 0; 484 iph->ttl = ip_select_ttl(inet, &rt->dst); 485 iph->protocol = sk->sk_protocol; 486 ip_copy_addrs(iph, fl4); 487 488 /* Transport layer set skb->h.foo itself. */ 489 490 if (inet_opt && inet_opt->opt.optlen) { 491 iph->ihl += inet_opt->opt.optlen >> 2; 492 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 493 } 494 495 ip_select_ident_segs(net, skb, sk, 496 skb_shinfo(skb)->gso_segs ?: 1); 497 498 /* TODO : should we use skb->sk here instead of sk ? */ 499 skb->priority = sk->sk_priority; 500 skb->mark = sk->sk_mark; 501 502 res = ip_local_out(net, sk, skb); 503 rcu_read_unlock(); 504 return res; 505 506 no_route: 507 rcu_read_unlock(); 508 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 509 kfree_skb(skb); 510 return -EHOSTUNREACH; 511 } 512 EXPORT_SYMBOL(__ip_queue_xmit); 513 514 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 515 { 516 to->pkt_type = from->pkt_type; 517 to->priority = from->priority; 518 to->protocol = from->protocol; 519 skb_dst_drop(to); 520 skb_dst_copy(to, from); 521 to->dev = from->dev; 522 to->mark = from->mark; 523 524 skb_copy_hash(to, from); 525 526 /* Copy the flags to each fragment. */ 527 IPCB(to)->flags = IPCB(from)->flags; 528 529 #ifdef CONFIG_NET_SCHED 530 to->tc_index = from->tc_index; 531 #endif 532 nf_copy(to, from); 533 skb_ext_copy(to, from); 534 #if IS_ENABLED(CONFIG_IP_VS) 535 to->ipvs_property = from->ipvs_property; 536 #endif 537 skb_copy_secmark(to, from); 538 } 539 540 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 541 unsigned int mtu, 542 int (*output)(struct net *, struct sock *, struct sk_buff *)) 543 { 544 struct iphdr *iph = ip_hdr(skb); 545 546 if ((iph->frag_off & htons(IP_DF)) == 0) 547 return ip_do_fragment(net, sk, skb, output); 548 549 if (unlikely(!skb->ignore_df || 550 (IPCB(skb)->frag_max_size && 551 IPCB(skb)->frag_max_size > mtu))) { 552 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 553 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 554 htonl(mtu)); 555 kfree_skb(skb); 556 return -EMSGSIZE; 557 } 558 559 return ip_do_fragment(net, sk, skb, output); 560 } 561 562 /* 563 * This IP datagram is too large to be sent in one piece. Break it up into 564 * smaller pieces (each of size equal to IP header plus 565 * a block of the data of the original IP data part) that will yet fit in a 566 * single device frame, and queue such a frame for sending. 567 */ 568 569 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 570 int (*output)(struct net *, struct sock *, struct sk_buff *)) 571 { 572 struct iphdr *iph; 573 int ptr; 574 struct sk_buff *skb2; 575 unsigned int mtu, hlen, left, len, ll_rs; 576 int offset; 577 __be16 not_last_frag; 578 struct rtable *rt = skb_rtable(skb); 579 int err = 0; 580 581 /* for offloaded checksums cleanup checksum before fragmentation */ 582 if (skb->ip_summed == CHECKSUM_PARTIAL && 583 (err = skb_checksum_help(skb))) 584 goto fail; 585 586 /* 587 * Point into the IP datagram header. 588 */ 589 590 iph = ip_hdr(skb); 591 592 mtu = ip_skb_dst_mtu(sk, skb); 593 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 594 mtu = IPCB(skb)->frag_max_size; 595 596 /* 597 * Setup starting values. 598 */ 599 600 hlen = iph->ihl * 4; 601 mtu = mtu - hlen; /* Size of data space */ 602 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 603 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 604 605 /* When frag_list is given, use it. First, check its validity: 606 * some transformers could create wrong frag_list or break existing 607 * one, it is not prohibited. In this case fall back to copying. 608 * 609 * LATER: this step can be merged to real generation of fragments, 610 * we can switch to copy when see the first bad fragment. 611 */ 612 if (skb_has_frag_list(skb)) { 613 struct sk_buff *frag, *frag2; 614 unsigned int first_len = skb_pagelen(skb); 615 616 if (first_len - hlen > mtu || 617 ((first_len - hlen) & 7) || 618 ip_is_fragment(iph) || 619 skb_cloned(skb) || 620 skb_headroom(skb) < ll_rs) 621 goto slow_path; 622 623 skb_walk_frags(skb, frag) { 624 /* Correct geometry. */ 625 if (frag->len > mtu || 626 ((frag->len & 7) && frag->next) || 627 skb_headroom(frag) < hlen + ll_rs) 628 goto slow_path_clean; 629 630 /* Partially cloned skb? */ 631 if (skb_shared(frag)) 632 goto slow_path_clean; 633 634 BUG_ON(frag->sk); 635 if (skb->sk) { 636 frag->sk = skb->sk; 637 frag->destructor = sock_wfree; 638 } 639 skb->truesize -= frag->truesize; 640 } 641 642 /* Everything is OK. Generate! */ 643 644 err = 0; 645 offset = 0; 646 frag = skb_shinfo(skb)->frag_list; 647 skb_frag_list_init(skb); 648 skb->data_len = first_len - skb_headlen(skb); 649 skb->len = first_len; 650 iph->tot_len = htons(first_len); 651 iph->frag_off = htons(IP_MF); 652 ip_send_check(iph); 653 654 for (;;) { 655 /* Prepare header of the next frame, 656 * before previous one went down. */ 657 if (frag) { 658 frag->ip_summed = CHECKSUM_NONE; 659 skb_reset_transport_header(frag); 660 __skb_push(frag, hlen); 661 skb_reset_network_header(frag); 662 memcpy(skb_network_header(frag), iph, hlen); 663 iph = ip_hdr(frag); 664 iph->tot_len = htons(frag->len); 665 ip_copy_metadata(frag, skb); 666 if (offset == 0) 667 ip_options_fragment(frag); 668 offset += skb->len - hlen; 669 iph->frag_off = htons(offset>>3); 670 if (frag->next) 671 iph->frag_off |= htons(IP_MF); 672 /* Ready, complete checksum */ 673 ip_send_check(iph); 674 } 675 676 err = output(net, sk, skb); 677 678 if (!err) 679 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 680 if (err || !frag) 681 break; 682 683 skb = frag; 684 frag = skb->next; 685 skb_mark_not_on_list(skb); 686 } 687 688 if (err == 0) { 689 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 690 return 0; 691 } 692 693 kfree_skb_list(frag); 694 695 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 696 return err; 697 698 slow_path_clean: 699 skb_walk_frags(skb, frag2) { 700 if (frag2 == frag) 701 break; 702 frag2->sk = NULL; 703 frag2->destructor = NULL; 704 skb->truesize += frag2->truesize; 705 } 706 } 707 708 slow_path: 709 iph = ip_hdr(skb); 710 711 left = skb->len - hlen; /* Space per frame */ 712 ptr = hlen; /* Where to start from */ 713 714 /* 715 * Fragment the datagram. 716 */ 717 718 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 719 not_last_frag = iph->frag_off & htons(IP_MF); 720 721 /* 722 * Keep copying data until we run out. 723 */ 724 725 while (left > 0) { 726 len = left; 727 /* IF: it doesn't fit, use 'mtu' - the data space left */ 728 if (len > mtu) 729 len = mtu; 730 /* IF: we are not sending up to and including the packet end 731 then align the next start on an eight byte boundary */ 732 if (len < left) { 733 len &= ~7; 734 } 735 736 /* Allocate buffer */ 737 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 738 if (!skb2) { 739 err = -ENOMEM; 740 goto fail; 741 } 742 743 /* 744 * Set up data on packet 745 */ 746 747 ip_copy_metadata(skb2, skb); 748 skb_reserve(skb2, ll_rs); 749 skb_put(skb2, len + hlen); 750 skb_reset_network_header(skb2); 751 skb2->transport_header = skb2->network_header + hlen; 752 753 /* 754 * Charge the memory for the fragment to any owner 755 * it might possess 756 */ 757 758 if (skb->sk) 759 skb_set_owner_w(skb2, skb->sk); 760 761 /* 762 * Copy the packet header into the new buffer. 763 */ 764 765 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 766 767 /* 768 * Copy a block of the IP datagram. 769 */ 770 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 771 BUG(); 772 left -= len; 773 774 /* 775 * Fill in the new header fields. 776 */ 777 iph = ip_hdr(skb2); 778 iph->frag_off = htons((offset >> 3)); 779 780 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 781 iph->frag_off |= htons(IP_DF); 782 783 /* ANK: dirty, but effective trick. Upgrade options only if 784 * the segment to be fragmented was THE FIRST (otherwise, 785 * options are already fixed) and make it ONCE 786 * on the initial skb, so that all the following fragments 787 * will inherit fixed options. 788 */ 789 if (offset == 0) 790 ip_options_fragment(skb); 791 792 /* 793 * Added AC : If we are fragmenting a fragment that's not the 794 * last fragment then keep MF on each bit 795 */ 796 if (left > 0 || not_last_frag) 797 iph->frag_off |= htons(IP_MF); 798 ptr += len; 799 offset += len; 800 801 /* 802 * Put this fragment into the sending queue. 803 */ 804 iph->tot_len = htons(len + hlen); 805 806 ip_send_check(iph); 807 808 err = output(net, sk, skb2); 809 if (err) 810 goto fail; 811 812 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 813 } 814 consume_skb(skb); 815 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 816 return err; 817 818 fail: 819 kfree_skb(skb); 820 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 821 return err; 822 } 823 EXPORT_SYMBOL(ip_do_fragment); 824 825 int 826 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 827 { 828 struct msghdr *msg = from; 829 830 if (skb->ip_summed == CHECKSUM_PARTIAL) { 831 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 832 return -EFAULT; 833 } else { 834 __wsum csum = 0; 835 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 836 return -EFAULT; 837 skb->csum = csum_block_add(skb->csum, csum, odd); 838 } 839 return 0; 840 } 841 EXPORT_SYMBOL(ip_generic_getfrag); 842 843 static inline __wsum 844 csum_page(struct page *page, int offset, int copy) 845 { 846 char *kaddr; 847 __wsum csum; 848 kaddr = kmap(page); 849 csum = csum_partial(kaddr + offset, copy, 0); 850 kunmap(page); 851 return csum; 852 } 853 854 static int __ip_append_data(struct sock *sk, 855 struct flowi4 *fl4, 856 struct sk_buff_head *queue, 857 struct inet_cork *cork, 858 struct page_frag *pfrag, 859 int getfrag(void *from, char *to, int offset, 860 int len, int odd, struct sk_buff *skb), 861 void *from, int length, int transhdrlen, 862 unsigned int flags) 863 { 864 struct inet_sock *inet = inet_sk(sk); 865 struct ubuf_info *uarg = NULL; 866 struct sk_buff *skb; 867 868 struct ip_options *opt = cork->opt; 869 int hh_len; 870 int exthdrlen; 871 int mtu; 872 int copy; 873 int err; 874 int offset = 0; 875 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 876 int csummode = CHECKSUM_NONE; 877 struct rtable *rt = (struct rtable *)cork->dst; 878 unsigned int wmem_alloc_delta = 0; 879 bool paged, extra_uref; 880 u32 tskey = 0; 881 882 skb = skb_peek_tail(queue); 883 884 exthdrlen = !skb ? rt->dst.header_len : 0; 885 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 886 paged = !!cork->gso_size; 887 888 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 889 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 890 tskey = sk->sk_tskey++; 891 892 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 893 894 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 895 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 896 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 897 898 if (cork->length + length > maxnonfragsize - fragheaderlen) { 899 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 900 mtu - (opt ? opt->optlen : 0)); 901 return -EMSGSIZE; 902 } 903 904 /* 905 * transhdrlen > 0 means that this is the first fragment and we wish 906 * it won't be fragmented in the future. 907 */ 908 if (transhdrlen && 909 length + fragheaderlen <= mtu && 910 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 911 (!(flags & MSG_MORE) || cork->gso_size) && 912 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 913 csummode = CHECKSUM_PARTIAL; 914 915 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) { 916 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb)); 917 if (!uarg) 918 return -ENOBUFS; 919 extra_uref = true; 920 if (rt->dst.dev->features & NETIF_F_SG && 921 csummode == CHECKSUM_PARTIAL) { 922 paged = true; 923 } else { 924 uarg->zerocopy = 0; 925 skb_zcopy_set(skb, uarg, &extra_uref); 926 } 927 } 928 929 cork->length += length; 930 931 /* So, what's going on in the loop below? 932 * 933 * We use calculated fragment length to generate chained skb, 934 * each of segments is IP fragment ready for sending to network after 935 * adding appropriate IP header. 936 */ 937 938 if (!skb) 939 goto alloc_new_skb; 940 941 while (length > 0) { 942 /* Check if the remaining data fits into current packet. */ 943 copy = mtu - skb->len; 944 if (copy < length) 945 copy = maxfraglen - skb->len; 946 if (copy <= 0) { 947 char *data; 948 unsigned int datalen; 949 unsigned int fraglen; 950 unsigned int fraggap; 951 unsigned int alloclen; 952 unsigned int pagedlen; 953 struct sk_buff *skb_prev; 954 alloc_new_skb: 955 skb_prev = skb; 956 if (skb_prev) 957 fraggap = skb_prev->len - maxfraglen; 958 else 959 fraggap = 0; 960 961 /* 962 * If remaining data exceeds the mtu, 963 * we know we need more fragment(s). 964 */ 965 datalen = length + fraggap; 966 if (datalen > mtu - fragheaderlen) 967 datalen = maxfraglen - fragheaderlen; 968 fraglen = datalen + fragheaderlen; 969 pagedlen = 0; 970 971 if ((flags & MSG_MORE) && 972 !(rt->dst.dev->features&NETIF_F_SG)) 973 alloclen = mtu; 974 else if (!paged) 975 alloclen = fraglen; 976 else { 977 alloclen = min_t(int, fraglen, MAX_HEADER); 978 pagedlen = fraglen - alloclen; 979 } 980 981 alloclen += exthdrlen; 982 983 /* The last fragment gets additional space at tail. 984 * Note, with MSG_MORE we overallocate on fragments, 985 * because we have no idea what fragment will be 986 * the last. 987 */ 988 if (datalen == length + fraggap) 989 alloclen += rt->dst.trailer_len; 990 991 if (transhdrlen) { 992 skb = sock_alloc_send_skb(sk, 993 alloclen + hh_len + 15, 994 (flags & MSG_DONTWAIT), &err); 995 } else { 996 skb = NULL; 997 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 998 2 * sk->sk_sndbuf) 999 skb = alloc_skb(alloclen + hh_len + 15, 1000 sk->sk_allocation); 1001 if (unlikely(!skb)) 1002 err = -ENOBUFS; 1003 } 1004 if (!skb) 1005 goto error; 1006 1007 /* 1008 * Fill in the control structures 1009 */ 1010 skb->ip_summed = csummode; 1011 skb->csum = 0; 1012 skb_reserve(skb, hh_len); 1013 1014 /* 1015 * Find where to start putting bytes. 1016 */ 1017 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1018 skb_set_network_header(skb, exthdrlen); 1019 skb->transport_header = (skb->network_header + 1020 fragheaderlen); 1021 data += fragheaderlen + exthdrlen; 1022 1023 if (fraggap) { 1024 skb->csum = skb_copy_and_csum_bits( 1025 skb_prev, maxfraglen, 1026 data + transhdrlen, fraggap, 0); 1027 skb_prev->csum = csum_sub(skb_prev->csum, 1028 skb->csum); 1029 data += fraggap; 1030 pskb_trim_unique(skb_prev, maxfraglen); 1031 } 1032 1033 copy = datalen - transhdrlen - fraggap - pagedlen; 1034 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1035 err = -EFAULT; 1036 kfree_skb(skb); 1037 goto error; 1038 } 1039 1040 offset += copy; 1041 length -= copy + transhdrlen; 1042 transhdrlen = 0; 1043 exthdrlen = 0; 1044 csummode = CHECKSUM_NONE; 1045 1046 /* only the initial fragment is time stamped */ 1047 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1048 cork->tx_flags = 0; 1049 skb_shinfo(skb)->tskey = tskey; 1050 tskey = 0; 1051 skb_zcopy_set(skb, uarg, &extra_uref); 1052 1053 if ((flags & MSG_CONFIRM) && !skb_prev) 1054 skb_set_dst_pending_confirm(skb, 1); 1055 1056 /* 1057 * Put the packet on the pending queue. 1058 */ 1059 if (!skb->destructor) { 1060 skb->destructor = sock_wfree; 1061 skb->sk = sk; 1062 wmem_alloc_delta += skb->truesize; 1063 } 1064 __skb_queue_tail(queue, skb); 1065 continue; 1066 } 1067 1068 if (copy > length) 1069 copy = length; 1070 1071 if (!(rt->dst.dev->features&NETIF_F_SG) && 1072 skb_tailroom(skb) >= copy) { 1073 unsigned int off; 1074 1075 off = skb->len; 1076 if (getfrag(from, skb_put(skb, copy), 1077 offset, copy, off, skb) < 0) { 1078 __skb_trim(skb, off); 1079 err = -EFAULT; 1080 goto error; 1081 } 1082 } else if (!uarg || !uarg->zerocopy) { 1083 int i = skb_shinfo(skb)->nr_frags; 1084 1085 err = -ENOMEM; 1086 if (!sk_page_frag_refill(sk, pfrag)) 1087 goto error; 1088 1089 if (!skb_can_coalesce(skb, i, pfrag->page, 1090 pfrag->offset)) { 1091 err = -EMSGSIZE; 1092 if (i == MAX_SKB_FRAGS) 1093 goto error; 1094 1095 __skb_fill_page_desc(skb, i, pfrag->page, 1096 pfrag->offset, 0); 1097 skb_shinfo(skb)->nr_frags = ++i; 1098 get_page(pfrag->page); 1099 } 1100 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1101 if (getfrag(from, 1102 page_address(pfrag->page) + pfrag->offset, 1103 offset, copy, skb->len, skb) < 0) 1104 goto error_efault; 1105 1106 pfrag->offset += copy; 1107 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1108 skb->len += copy; 1109 skb->data_len += copy; 1110 skb->truesize += copy; 1111 wmem_alloc_delta += copy; 1112 } else { 1113 err = skb_zerocopy_iter_dgram(skb, from, copy); 1114 if (err < 0) 1115 goto error; 1116 } 1117 offset += copy; 1118 length -= copy; 1119 } 1120 1121 if (wmem_alloc_delta) 1122 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1123 return 0; 1124 1125 error_efault: 1126 err = -EFAULT; 1127 error: 1128 if (uarg) 1129 sock_zerocopy_put_abort(uarg, extra_uref); 1130 cork->length -= length; 1131 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1132 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1133 return err; 1134 } 1135 1136 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1137 struct ipcm_cookie *ipc, struct rtable **rtp) 1138 { 1139 struct ip_options_rcu *opt; 1140 struct rtable *rt; 1141 1142 rt = *rtp; 1143 if (unlikely(!rt)) 1144 return -EFAULT; 1145 1146 /* 1147 * setup for corking. 1148 */ 1149 opt = ipc->opt; 1150 if (opt) { 1151 if (!cork->opt) { 1152 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1153 sk->sk_allocation); 1154 if (unlikely(!cork->opt)) 1155 return -ENOBUFS; 1156 } 1157 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1158 cork->flags |= IPCORK_OPT; 1159 cork->addr = ipc->addr; 1160 } 1161 1162 /* 1163 * We steal reference to this route, caller should not release it 1164 */ 1165 *rtp = NULL; 1166 cork->fragsize = ip_sk_use_pmtu(sk) ? 1167 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1168 1169 cork->gso_size = ipc->gso_size; 1170 cork->dst = &rt->dst; 1171 cork->length = 0; 1172 cork->ttl = ipc->ttl; 1173 cork->tos = ipc->tos; 1174 cork->priority = ipc->priority; 1175 cork->transmit_time = ipc->sockc.transmit_time; 1176 cork->tx_flags = 0; 1177 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * ip_append_data() and ip_append_page() can make one large IP datagram 1184 * from many pieces of data. Each pieces will be holded on the socket 1185 * until ip_push_pending_frames() is called. Each piece can be a page 1186 * or non-page data. 1187 * 1188 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1189 * this interface potentially. 1190 * 1191 * LATER: length must be adjusted by pad at tail, when it is required. 1192 */ 1193 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1194 int getfrag(void *from, char *to, int offset, int len, 1195 int odd, struct sk_buff *skb), 1196 void *from, int length, int transhdrlen, 1197 struct ipcm_cookie *ipc, struct rtable **rtp, 1198 unsigned int flags) 1199 { 1200 struct inet_sock *inet = inet_sk(sk); 1201 int err; 1202 1203 if (flags&MSG_PROBE) 1204 return 0; 1205 1206 if (skb_queue_empty(&sk->sk_write_queue)) { 1207 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1208 if (err) 1209 return err; 1210 } else { 1211 transhdrlen = 0; 1212 } 1213 1214 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1215 sk_page_frag(sk), getfrag, 1216 from, length, transhdrlen, flags); 1217 } 1218 1219 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1220 int offset, size_t size, int flags) 1221 { 1222 struct inet_sock *inet = inet_sk(sk); 1223 struct sk_buff *skb; 1224 struct rtable *rt; 1225 struct ip_options *opt = NULL; 1226 struct inet_cork *cork; 1227 int hh_len; 1228 int mtu; 1229 int len; 1230 int err; 1231 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1232 1233 if (inet->hdrincl) 1234 return -EPERM; 1235 1236 if (flags&MSG_PROBE) 1237 return 0; 1238 1239 if (skb_queue_empty(&sk->sk_write_queue)) 1240 return -EINVAL; 1241 1242 cork = &inet->cork.base; 1243 rt = (struct rtable *)cork->dst; 1244 if (cork->flags & IPCORK_OPT) 1245 opt = cork->opt; 1246 1247 if (!(rt->dst.dev->features&NETIF_F_SG)) 1248 return -EOPNOTSUPP; 1249 1250 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1251 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1252 1253 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1254 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1255 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1256 1257 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1258 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1259 mtu - (opt ? opt->optlen : 0)); 1260 return -EMSGSIZE; 1261 } 1262 1263 skb = skb_peek_tail(&sk->sk_write_queue); 1264 if (!skb) 1265 return -EINVAL; 1266 1267 cork->length += size; 1268 1269 while (size > 0) { 1270 /* Check if the remaining data fits into current packet. */ 1271 len = mtu - skb->len; 1272 if (len < size) 1273 len = maxfraglen - skb->len; 1274 1275 if (len <= 0) { 1276 struct sk_buff *skb_prev; 1277 int alloclen; 1278 1279 skb_prev = skb; 1280 fraggap = skb_prev->len - maxfraglen; 1281 1282 alloclen = fragheaderlen + hh_len + fraggap + 15; 1283 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1284 if (unlikely(!skb)) { 1285 err = -ENOBUFS; 1286 goto error; 1287 } 1288 1289 /* 1290 * Fill in the control structures 1291 */ 1292 skb->ip_summed = CHECKSUM_NONE; 1293 skb->csum = 0; 1294 skb_reserve(skb, hh_len); 1295 1296 /* 1297 * Find where to start putting bytes. 1298 */ 1299 skb_put(skb, fragheaderlen + fraggap); 1300 skb_reset_network_header(skb); 1301 skb->transport_header = (skb->network_header + 1302 fragheaderlen); 1303 if (fraggap) { 1304 skb->csum = skb_copy_and_csum_bits(skb_prev, 1305 maxfraglen, 1306 skb_transport_header(skb), 1307 fraggap, 0); 1308 skb_prev->csum = csum_sub(skb_prev->csum, 1309 skb->csum); 1310 pskb_trim_unique(skb_prev, maxfraglen); 1311 } 1312 1313 /* 1314 * Put the packet on the pending queue. 1315 */ 1316 __skb_queue_tail(&sk->sk_write_queue, skb); 1317 continue; 1318 } 1319 1320 if (len > size) 1321 len = size; 1322 1323 if (skb_append_pagefrags(skb, page, offset, len)) { 1324 err = -EMSGSIZE; 1325 goto error; 1326 } 1327 1328 if (skb->ip_summed == CHECKSUM_NONE) { 1329 __wsum csum; 1330 csum = csum_page(page, offset, len); 1331 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1332 } 1333 1334 skb->len += len; 1335 skb->data_len += len; 1336 skb->truesize += len; 1337 refcount_add(len, &sk->sk_wmem_alloc); 1338 offset += len; 1339 size -= len; 1340 } 1341 return 0; 1342 1343 error: 1344 cork->length -= size; 1345 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1346 return err; 1347 } 1348 1349 static void ip_cork_release(struct inet_cork *cork) 1350 { 1351 cork->flags &= ~IPCORK_OPT; 1352 kfree(cork->opt); 1353 cork->opt = NULL; 1354 dst_release(cork->dst); 1355 cork->dst = NULL; 1356 } 1357 1358 /* 1359 * Combined all pending IP fragments on the socket as one IP datagram 1360 * and push them out. 1361 */ 1362 struct sk_buff *__ip_make_skb(struct sock *sk, 1363 struct flowi4 *fl4, 1364 struct sk_buff_head *queue, 1365 struct inet_cork *cork) 1366 { 1367 struct sk_buff *skb, *tmp_skb; 1368 struct sk_buff **tail_skb; 1369 struct inet_sock *inet = inet_sk(sk); 1370 struct net *net = sock_net(sk); 1371 struct ip_options *opt = NULL; 1372 struct rtable *rt = (struct rtable *)cork->dst; 1373 struct iphdr *iph; 1374 __be16 df = 0; 1375 __u8 ttl; 1376 1377 skb = __skb_dequeue(queue); 1378 if (!skb) 1379 goto out; 1380 tail_skb = &(skb_shinfo(skb)->frag_list); 1381 1382 /* move skb->data to ip header from ext header */ 1383 if (skb->data < skb_network_header(skb)) 1384 __skb_pull(skb, skb_network_offset(skb)); 1385 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1386 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1387 *tail_skb = tmp_skb; 1388 tail_skb = &(tmp_skb->next); 1389 skb->len += tmp_skb->len; 1390 skb->data_len += tmp_skb->len; 1391 skb->truesize += tmp_skb->truesize; 1392 tmp_skb->destructor = NULL; 1393 tmp_skb->sk = NULL; 1394 } 1395 1396 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1397 * to fragment the frame generated here. No matter, what transforms 1398 * how transforms change size of the packet, it will come out. 1399 */ 1400 skb->ignore_df = ip_sk_ignore_df(sk); 1401 1402 /* DF bit is set when we want to see DF on outgoing frames. 1403 * If ignore_df is set too, we still allow to fragment this frame 1404 * locally. */ 1405 if (inet->pmtudisc == IP_PMTUDISC_DO || 1406 inet->pmtudisc == IP_PMTUDISC_PROBE || 1407 (skb->len <= dst_mtu(&rt->dst) && 1408 ip_dont_fragment(sk, &rt->dst))) 1409 df = htons(IP_DF); 1410 1411 if (cork->flags & IPCORK_OPT) 1412 opt = cork->opt; 1413 1414 if (cork->ttl != 0) 1415 ttl = cork->ttl; 1416 else if (rt->rt_type == RTN_MULTICAST) 1417 ttl = inet->mc_ttl; 1418 else 1419 ttl = ip_select_ttl(inet, &rt->dst); 1420 1421 iph = ip_hdr(skb); 1422 iph->version = 4; 1423 iph->ihl = 5; 1424 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1425 iph->frag_off = df; 1426 iph->ttl = ttl; 1427 iph->protocol = sk->sk_protocol; 1428 ip_copy_addrs(iph, fl4); 1429 ip_select_ident(net, skb, sk); 1430 1431 if (opt) { 1432 iph->ihl += opt->optlen>>2; 1433 ip_options_build(skb, opt, cork->addr, rt, 0); 1434 } 1435 1436 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1437 skb->mark = sk->sk_mark; 1438 skb->tstamp = cork->transmit_time; 1439 /* 1440 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1441 * on dst refcount 1442 */ 1443 cork->dst = NULL; 1444 skb_dst_set(skb, &rt->dst); 1445 1446 if (iph->protocol == IPPROTO_ICMP) 1447 icmp_out_count(net, ((struct icmphdr *) 1448 skb_transport_header(skb))->type); 1449 1450 ip_cork_release(cork); 1451 out: 1452 return skb; 1453 } 1454 1455 int ip_send_skb(struct net *net, struct sk_buff *skb) 1456 { 1457 int err; 1458 1459 err = ip_local_out(net, skb->sk, skb); 1460 if (err) { 1461 if (err > 0) 1462 err = net_xmit_errno(err); 1463 if (err) 1464 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1465 } 1466 1467 return err; 1468 } 1469 1470 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1471 { 1472 struct sk_buff *skb; 1473 1474 skb = ip_finish_skb(sk, fl4); 1475 if (!skb) 1476 return 0; 1477 1478 /* Netfilter gets whole the not fragmented skb. */ 1479 return ip_send_skb(sock_net(sk), skb); 1480 } 1481 1482 /* 1483 * Throw away all pending data on the socket. 1484 */ 1485 static void __ip_flush_pending_frames(struct sock *sk, 1486 struct sk_buff_head *queue, 1487 struct inet_cork *cork) 1488 { 1489 struct sk_buff *skb; 1490 1491 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1492 kfree_skb(skb); 1493 1494 ip_cork_release(cork); 1495 } 1496 1497 void ip_flush_pending_frames(struct sock *sk) 1498 { 1499 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1500 } 1501 1502 struct sk_buff *ip_make_skb(struct sock *sk, 1503 struct flowi4 *fl4, 1504 int getfrag(void *from, char *to, int offset, 1505 int len, int odd, struct sk_buff *skb), 1506 void *from, int length, int transhdrlen, 1507 struct ipcm_cookie *ipc, struct rtable **rtp, 1508 struct inet_cork *cork, unsigned int flags) 1509 { 1510 struct sk_buff_head queue; 1511 int err; 1512 1513 if (flags & MSG_PROBE) 1514 return NULL; 1515 1516 __skb_queue_head_init(&queue); 1517 1518 cork->flags = 0; 1519 cork->addr = 0; 1520 cork->opt = NULL; 1521 err = ip_setup_cork(sk, cork, ipc, rtp); 1522 if (err) 1523 return ERR_PTR(err); 1524 1525 err = __ip_append_data(sk, fl4, &queue, cork, 1526 ¤t->task_frag, getfrag, 1527 from, length, transhdrlen, flags); 1528 if (err) { 1529 __ip_flush_pending_frames(sk, &queue, cork); 1530 return ERR_PTR(err); 1531 } 1532 1533 return __ip_make_skb(sk, fl4, &queue, cork); 1534 } 1535 1536 /* 1537 * Fetch data from kernel space and fill in checksum if needed. 1538 */ 1539 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1540 int len, int odd, struct sk_buff *skb) 1541 { 1542 __wsum csum; 1543 1544 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1545 skb->csum = csum_block_add(skb->csum, csum, odd); 1546 return 0; 1547 } 1548 1549 /* 1550 * Generic function to send a packet as reply to another packet. 1551 * Used to send some TCP resets/acks so far. 1552 */ 1553 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1554 const struct ip_options *sopt, 1555 __be32 daddr, __be32 saddr, 1556 const struct ip_reply_arg *arg, 1557 unsigned int len) 1558 { 1559 struct ip_options_data replyopts; 1560 struct ipcm_cookie ipc; 1561 struct flowi4 fl4; 1562 struct rtable *rt = skb_rtable(skb); 1563 struct net *net = sock_net(sk); 1564 struct sk_buff *nskb; 1565 int err; 1566 int oif; 1567 1568 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1569 return; 1570 1571 ipcm_init(&ipc); 1572 ipc.addr = daddr; 1573 1574 if (replyopts.opt.opt.optlen) { 1575 ipc.opt = &replyopts.opt; 1576 1577 if (replyopts.opt.opt.srr) 1578 daddr = replyopts.opt.opt.faddr; 1579 } 1580 1581 oif = arg->bound_dev_if; 1582 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1583 oif = skb->skb_iif; 1584 1585 flowi4_init_output(&fl4, oif, 1586 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1587 RT_TOS(arg->tos), 1588 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1589 ip_reply_arg_flowi_flags(arg), 1590 daddr, saddr, 1591 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1592 arg->uid); 1593 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1594 rt = ip_route_output_key(net, &fl4); 1595 if (IS_ERR(rt)) 1596 return; 1597 1598 inet_sk(sk)->tos = arg->tos; 1599 1600 sk->sk_priority = skb->priority; 1601 sk->sk_protocol = ip_hdr(skb)->protocol; 1602 sk->sk_bound_dev_if = arg->bound_dev_if; 1603 sk->sk_sndbuf = sysctl_wmem_default; 1604 sk->sk_mark = fl4.flowi4_mark; 1605 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1606 len, 0, &ipc, &rt, MSG_DONTWAIT); 1607 if (unlikely(err)) { 1608 ip_flush_pending_frames(sk); 1609 goto out; 1610 } 1611 1612 nskb = skb_peek(&sk->sk_write_queue); 1613 if (nskb) { 1614 if (arg->csumoffset >= 0) 1615 *((__sum16 *)skb_transport_header(nskb) + 1616 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1617 arg->csum)); 1618 nskb->ip_summed = CHECKSUM_NONE; 1619 ip_push_pending_frames(sk, &fl4); 1620 } 1621 out: 1622 ip_rt_put(rt); 1623 } 1624 1625 void __init ip_init(void) 1626 { 1627 ip_rt_init(); 1628 inet_initpeers(); 1629 1630 #if defined(CONFIG_IP_MULTICAST) 1631 igmp_mc_init(); 1632 #endif 1633 } 1634