1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/igmp.h> 78 #include <linux/netfilter_ipv4.h> 79 #include <linux/netfilter_bridge.h> 80 #include <linux/netlink.h> 81 #include <linux/tcp.h> 82 83 static int 84 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 85 unsigned int mtu, 86 int (*output)(struct net *, struct sock *, struct sk_buff *)); 87 88 /* Generate a checksum for an outgoing IP datagram. */ 89 void ip_send_check(struct iphdr *iph) 90 { 91 iph->check = 0; 92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 93 } 94 EXPORT_SYMBOL(ip_send_check); 95 96 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 97 { 98 struct iphdr *iph = ip_hdr(skb); 99 100 iph->tot_len = htons(skb->len); 101 ip_send_check(iph); 102 103 /* if egress device is enslaved to an L3 master device pass the 104 * skb to its handler for processing 105 */ 106 skb = l3mdev_ip_out(sk, skb); 107 if (unlikely(!skb)) 108 return 0; 109 110 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 111 net, sk, skb, NULL, skb_dst(skb)->dev, 112 dst_output); 113 } 114 115 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 116 { 117 int err; 118 119 err = __ip_local_out(net, sk, skb); 120 if (likely(err == 1)) 121 err = dst_output(net, sk, skb); 122 123 return err; 124 } 125 EXPORT_SYMBOL_GPL(ip_local_out); 126 127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 128 { 129 int ttl = inet->uc_ttl; 130 131 if (ttl < 0) 132 ttl = ip4_dst_hoplimit(dst); 133 return ttl; 134 } 135 136 /* 137 * Add an ip header to a skbuff and send it out. 138 * 139 */ 140 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 141 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 142 { 143 struct inet_sock *inet = inet_sk(sk); 144 struct rtable *rt = skb_rtable(skb); 145 struct net *net = sock_net(sk); 146 struct iphdr *iph; 147 148 /* Build the IP header. */ 149 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 150 skb_reset_network_header(skb); 151 iph = ip_hdr(skb); 152 iph->version = 4; 153 iph->ihl = 5; 154 iph->tos = inet->tos; 155 iph->ttl = ip_select_ttl(inet, &rt->dst); 156 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 157 iph->saddr = saddr; 158 iph->protocol = sk->sk_protocol; 159 if (ip_dont_fragment(sk, &rt->dst)) { 160 iph->frag_off = htons(IP_DF); 161 iph->id = 0; 162 } else { 163 iph->frag_off = 0; 164 __ip_select_ident(net, iph, 1); 165 } 166 167 if (opt && opt->opt.optlen) { 168 iph->ihl += opt->opt.optlen>>2; 169 ip_options_build(skb, &opt->opt, daddr, rt, 0); 170 } 171 172 skb->priority = sk->sk_priority; 173 skb->mark = sk->sk_mark; 174 175 /* Send it out. */ 176 return ip_local_out(net, skb->sk, skb); 177 } 178 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 179 180 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 181 { 182 struct dst_entry *dst = skb_dst(skb); 183 struct rtable *rt = (struct rtable *)dst; 184 struct net_device *dev = dst->dev; 185 unsigned int hh_len = LL_RESERVED_SPACE(dev); 186 struct neighbour *neigh; 187 u32 nexthop; 188 189 if (rt->rt_type == RTN_MULTICAST) { 190 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 191 } else if (rt->rt_type == RTN_BROADCAST) 192 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 193 194 /* Be paranoid, rather than too clever. */ 195 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 196 struct sk_buff *skb2; 197 198 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 199 if (!skb2) { 200 kfree_skb(skb); 201 return -ENOMEM; 202 } 203 if (skb->sk) 204 skb_set_owner_w(skb2, skb->sk); 205 consume_skb(skb); 206 skb = skb2; 207 } 208 209 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 210 int res = lwtunnel_xmit(skb); 211 212 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 213 return res; 214 } 215 216 rcu_read_lock_bh(); 217 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 218 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 219 if (unlikely(!neigh)) 220 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 221 if (!IS_ERR(neigh)) { 222 int res = dst_neigh_output(dst, neigh, skb); 223 224 rcu_read_unlock_bh(); 225 return res; 226 } 227 rcu_read_unlock_bh(); 228 229 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 230 __func__); 231 kfree_skb(skb); 232 return -EINVAL; 233 } 234 235 static int ip_finish_output_gso(struct net *net, struct sock *sk, 236 struct sk_buff *skb, unsigned int mtu) 237 { 238 netdev_features_t features; 239 struct sk_buff *segs; 240 int ret = 0; 241 242 /* common case: fragmentation of segments is not allowed, 243 * or seglen is <= mtu 244 */ 245 if (((IPCB(skb)->flags & IPSKB_FRAG_SEGS) == 0) || 246 skb_gso_validate_mtu(skb, mtu)) 247 return ip_finish_output2(net, sk, skb); 248 249 /* Slowpath - GSO segment length is exceeding the dst MTU. 250 * 251 * This can happen in two cases: 252 * 1) TCP GRO packet, DF bit not set 253 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly 254 * from host network stack. 255 */ 256 features = netif_skb_features(skb); 257 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 258 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 259 if (IS_ERR_OR_NULL(segs)) { 260 kfree_skb(skb); 261 return -ENOMEM; 262 } 263 264 consume_skb(skb); 265 266 do { 267 struct sk_buff *nskb = segs->next; 268 int err; 269 270 segs->next = NULL; 271 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 272 273 if (err && ret == 0) 274 ret = err; 275 segs = nskb; 276 } while (segs); 277 278 return ret; 279 } 280 281 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 282 { 283 unsigned int mtu; 284 285 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 286 /* Policy lookup after SNAT yielded a new policy */ 287 if (skb_dst(skb)->xfrm) { 288 IPCB(skb)->flags |= IPSKB_REROUTED; 289 return dst_output(net, sk, skb); 290 } 291 #endif 292 mtu = ip_skb_dst_mtu(sk, skb); 293 if (skb_is_gso(skb)) 294 return ip_finish_output_gso(net, sk, skb, mtu); 295 296 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 297 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 298 299 return ip_finish_output2(net, sk, skb); 300 } 301 302 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 303 { 304 struct rtable *rt = skb_rtable(skb); 305 struct net_device *dev = rt->dst.dev; 306 307 /* 308 * If the indicated interface is up and running, send the packet. 309 */ 310 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 311 312 skb->dev = dev; 313 skb->protocol = htons(ETH_P_IP); 314 315 /* 316 * Multicasts are looped back for other local users 317 */ 318 319 if (rt->rt_flags&RTCF_MULTICAST) { 320 if (sk_mc_loop(sk) 321 #ifdef CONFIG_IP_MROUTE 322 /* Small optimization: do not loopback not local frames, 323 which returned after forwarding; they will be dropped 324 by ip_mr_input in any case. 325 Note, that local frames are looped back to be delivered 326 to local recipients. 327 328 This check is duplicated in ip_mr_input at the moment. 329 */ 330 && 331 ((rt->rt_flags & RTCF_LOCAL) || 332 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 333 #endif 334 ) { 335 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 336 if (newskb) 337 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 338 net, sk, newskb, NULL, newskb->dev, 339 dev_loopback_xmit); 340 } 341 342 /* Multicasts with ttl 0 must not go beyond the host */ 343 344 if (ip_hdr(skb)->ttl == 0) { 345 kfree_skb(skb); 346 return 0; 347 } 348 } 349 350 if (rt->rt_flags&RTCF_BROADCAST) { 351 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 352 if (newskb) 353 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 354 net, sk, newskb, NULL, newskb->dev, 355 dev_loopback_xmit); 356 } 357 358 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 359 net, sk, skb, NULL, skb->dev, 360 ip_finish_output, 361 !(IPCB(skb)->flags & IPSKB_REROUTED)); 362 } 363 364 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 365 { 366 struct net_device *dev = skb_dst(skb)->dev; 367 368 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 369 370 skb->dev = dev; 371 skb->protocol = htons(ETH_P_IP); 372 373 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 374 net, sk, skb, NULL, dev, 375 ip_finish_output, 376 !(IPCB(skb)->flags & IPSKB_REROUTED)); 377 } 378 379 /* 380 * copy saddr and daddr, possibly using 64bit load/stores 381 * Equivalent to : 382 * iph->saddr = fl4->saddr; 383 * iph->daddr = fl4->daddr; 384 */ 385 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 386 { 387 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 388 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 389 memcpy(&iph->saddr, &fl4->saddr, 390 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 391 } 392 393 /* Note: skb->sk can be different from sk, in case of tunnels */ 394 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 395 { 396 struct inet_sock *inet = inet_sk(sk); 397 struct net *net = sock_net(sk); 398 struct ip_options_rcu *inet_opt; 399 struct flowi4 *fl4; 400 struct rtable *rt; 401 struct iphdr *iph; 402 int res; 403 404 /* Skip all of this if the packet is already routed, 405 * f.e. by something like SCTP. 406 */ 407 rcu_read_lock(); 408 inet_opt = rcu_dereference(inet->inet_opt); 409 fl4 = &fl->u.ip4; 410 rt = skb_rtable(skb); 411 if (rt) 412 goto packet_routed; 413 414 /* Make sure we can route this packet. */ 415 rt = (struct rtable *)__sk_dst_check(sk, 0); 416 if (!rt) { 417 __be32 daddr; 418 419 /* Use correct destination address if we have options. */ 420 daddr = inet->inet_daddr; 421 if (inet_opt && inet_opt->opt.srr) 422 daddr = inet_opt->opt.faddr; 423 424 /* If this fails, retransmit mechanism of transport layer will 425 * keep trying until route appears or the connection times 426 * itself out. 427 */ 428 rt = ip_route_output_ports(net, fl4, sk, 429 daddr, inet->inet_saddr, 430 inet->inet_dport, 431 inet->inet_sport, 432 sk->sk_protocol, 433 RT_CONN_FLAGS(sk), 434 sk->sk_bound_dev_if); 435 if (IS_ERR(rt)) 436 goto no_route; 437 sk_setup_caps(sk, &rt->dst); 438 } 439 skb_dst_set_noref(skb, &rt->dst); 440 441 packet_routed: 442 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 443 goto no_route; 444 445 /* OK, we know where to send it, allocate and build IP header. */ 446 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 447 skb_reset_network_header(skb); 448 iph = ip_hdr(skb); 449 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 450 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 451 iph->frag_off = htons(IP_DF); 452 else 453 iph->frag_off = 0; 454 iph->ttl = ip_select_ttl(inet, &rt->dst); 455 iph->protocol = sk->sk_protocol; 456 ip_copy_addrs(iph, fl4); 457 458 /* Transport layer set skb->h.foo itself. */ 459 460 if (inet_opt && inet_opt->opt.optlen) { 461 iph->ihl += inet_opt->opt.optlen >> 2; 462 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 463 } 464 465 ip_select_ident_segs(net, skb, sk, 466 skb_shinfo(skb)->gso_segs ?: 1); 467 468 /* TODO : should we use skb->sk here instead of sk ? */ 469 skb->priority = sk->sk_priority; 470 skb->mark = sk->sk_mark; 471 472 res = ip_local_out(net, sk, skb); 473 rcu_read_unlock(); 474 return res; 475 476 no_route: 477 rcu_read_unlock(); 478 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 479 kfree_skb(skb); 480 return -EHOSTUNREACH; 481 } 482 EXPORT_SYMBOL(ip_queue_xmit); 483 484 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 485 { 486 to->pkt_type = from->pkt_type; 487 to->priority = from->priority; 488 to->protocol = from->protocol; 489 skb_dst_drop(to); 490 skb_dst_copy(to, from); 491 to->dev = from->dev; 492 to->mark = from->mark; 493 494 /* Copy the flags to each fragment. */ 495 IPCB(to)->flags = IPCB(from)->flags; 496 497 #ifdef CONFIG_NET_SCHED 498 to->tc_index = from->tc_index; 499 #endif 500 nf_copy(to, from); 501 #if IS_ENABLED(CONFIG_IP_VS) 502 to->ipvs_property = from->ipvs_property; 503 #endif 504 skb_copy_secmark(to, from); 505 } 506 507 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 508 unsigned int mtu, 509 int (*output)(struct net *, struct sock *, struct sk_buff *)) 510 { 511 struct iphdr *iph = ip_hdr(skb); 512 513 if ((iph->frag_off & htons(IP_DF)) == 0) 514 return ip_do_fragment(net, sk, skb, output); 515 516 if (unlikely(!skb->ignore_df || 517 (IPCB(skb)->frag_max_size && 518 IPCB(skb)->frag_max_size > mtu))) { 519 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 520 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 521 htonl(mtu)); 522 kfree_skb(skb); 523 return -EMSGSIZE; 524 } 525 526 return ip_do_fragment(net, sk, skb, output); 527 } 528 529 /* 530 * This IP datagram is too large to be sent in one piece. Break it up into 531 * smaller pieces (each of size equal to IP header plus 532 * a block of the data of the original IP data part) that will yet fit in a 533 * single device frame, and queue such a frame for sending. 534 */ 535 536 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 537 int (*output)(struct net *, struct sock *, struct sk_buff *)) 538 { 539 struct iphdr *iph; 540 int ptr; 541 struct net_device *dev; 542 struct sk_buff *skb2; 543 unsigned int mtu, hlen, left, len, ll_rs; 544 int offset; 545 __be16 not_last_frag; 546 struct rtable *rt = skb_rtable(skb); 547 int err = 0; 548 549 dev = rt->dst.dev; 550 551 /* for offloaded checksums cleanup checksum before fragmentation */ 552 if (skb->ip_summed == CHECKSUM_PARTIAL && 553 (err = skb_checksum_help(skb))) 554 goto fail; 555 556 /* 557 * Point into the IP datagram header. 558 */ 559 560 iph = ip_hdr(skb); 561 562 mtu = ip_skb_dst_mtu(sk, skb); 563 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 564 mtu = IPCB(skb)->frag_max_size; 565 566 /* 567 * Setup starting values. 568 */ 569 570 hlen = iph->ihl * 4; 571 mtu = mtu - hlen; /* Size of data space */ 572 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 573 574 /* When frag_list is given, use it. First, check its validity: 575 * some transformers could create wrong frag_list or break existing 576 * one, it is not prohibited. In this case fall back to copying. 577 * 578 * LATER: this step can be merged to real generation of fragments, 579 * we can switch to copy when see the first bad fragment. 580 */ 581 if (skb_has_frag_list(skb)) { 582 struct sk_buff *frag, *frag2; 583 int first_len = skb_pagelen(skb); 584 585 if (first_len - hlen > mtu || 586 ((first_len - hlen) & 7) || 587 ip_is_fragment(iph) || 588 skb_cloned(skb)) 589 goto slow_path; 590 591 skb_walk_frags(skb, frag) { 592 /* Correct geometry. */ 593 if (frag->len > mtu || 594 ((frag->len & 7) && frag->next) || 595 skb_headroom(frag) < hlen) 596 goto slow_path_clean; 597 598 /* Partially cloned skb? */ 599 if (skb_shared(frag)) 600 goto slow_path_clean; 601 602 BUG_ON(frag->sk); 603 if (skb->sk) { 604 frag->sk = skb->sk; 605 frag->destructor = sock_wfree; 606 } 607 skb->truesize -= frag->truesize; 608 } 609 610 /* Everything is OK. Generate! */ 611 612 err = 0; 613 offset = 0; 614 frag = skb_shinfo(skb)->frag_list; 615 skb_frag_list_init(skb); 616 skb->data_len = first_len - skb_headlen(skb); 617 skb->len = first_len; 618 iph->tot_len = htons(first_len); 619 iph->frag_off = htons(IP_MF); 620 ip_send_check(iph); 621 622 for (;;) { 623 /* Prepare header of the next frame, 624 * before previous one went down. */ 625 if (frag) { 626 frag->ip_summed = CHECKSUM_NONE; 627 skb_reset_transport_header(frag); 628 __skb_push(frag, hlen); 629 skb_reset_network_header(frag); 630 memcpy(skb_network_header(frag), iph, hlen); 631 iph = ip_hdr(frag); 632 iph->tot_len = htons(frag->len); 633 ip_copy_metadata(frag, skb); 634 if (offset == 0) 635 ip_options_fragment(frag); 636 offset += skb->len - hlen; 637 iph->frag_off = htons(offset>>3); 638 if (frag->next) 639 iph->frag_off |= htons(IP_MF); 640 /* Ready, complete checksum */ 641 ip_send_check(iph); 642 } 643 644 err = output(net, sk, skb); 645 646 if (!err) 647 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 648 if (err || !frag) 649 break; 650 651 skb = frag; 652 frag = skb->next; 653 skb->next = NULL; 654 } 655 656 if (err == 0) { 657 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 658 return 0; 659 } 660 661 while (frag) { 662 skb = frag->next; 663 kfree_skb(frag); 664 frag = skb; 665 } 666 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 667 return err; 668 669 slow_path_clean: 670 skb_walk_frags(skb, frag2) { 671 if (frag2 == frag) 672 break; 673 frag2->sk = NULL; 674 frag2->destructor = NULL; 675 skb->truesize += frag2->truesize; 676 } 677 } 678 679 slow_path: 680 iph = ip_hdr(skb); 681 682 left = skb->len - hlen; /* Space per frame */ 683 ptr = hlen; /* Where to start from */ 684 685 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 686 687 /* 688 * Fragment the datagram. 689 */ 690 691 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 692 not_last_frag = iph->frag_off & htons(IP_MF); 693 694 /* 695 * Keep copying data until we run out. 696 */ 697 698 while (left > 0) { 699 len = left; 700 /* IF: it doesn't fit, use 'mtu' - the data space left */ 701 if (len > mtu) 702 len = mtu; 703 /* IF: we are not sending up to and including the packet end 704 then align the next start on an eight byte boundary */ 705 if (len < left) { 706 len &= ~7; 707 } 708 709 /* Allocate buffer */ 710 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 711 if (!skb2) { 712 err = -ENOMEM; 713 goto fail; 714 } 715 716 /* 717 * Set up data on packet 718 */ 719 720 ip_copy_metadata(skb2, skb); 721 skb_reserve(skb2, ll_rs); 722 skb_put(skb2, len + hlen); 723 skb_reset_network_header(skb2); 724 skb2->transport_header = skb2->network_header + hlen; 725 726 /* 727 * Charge the memory for the fragment to any owner 728 * it might possess 729 */ 730 731 if (skb->sk) 732 skb_set_owner_w(skb2, skb->sk); 733 734 /* 735 * Copy the packet header into the new buffer. 736 */ 737 738 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 739 740 /* 741 * Copy a block of the IP datagram. 742 */ 743 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 744 BUG(); 745 left -= len; 746 747 /* 748 * Fill in the new header fields. 749 */ 750 iph = ip_hdr(skb2); 751 iph->frag_off = htons((offset >> 3)); 752 753 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 754 iph->frag_off |= htons(IP_DF); 755 756 /* ANK: dirty, but effective trick. Upgrade options only if 757 * the segment to be fragmented was THE FIRST (otherwise, 758 * options are already fixed) and make it ONCE 759 * on the initial skb, so that all the following fragments 760 * will inherit fixed options. 761 */ 762 if (offset == 0) 763 ip_options_fragment(skb); 764 765 /* 766 * Added AC : If we are fragmenting a fragment that's not the 767 * last fragment then keep MF on each bit 768 */ 769 if (left > 0 || not_last_frag) 770 iph->frag_off |= htons(IP_MF); 771 ptr += len; 772 offset += len; 773 774 /* 775 * Put this fragment into the sending queue. 776 */ 777 iph->tot_len = htons(len + hlen); 778 779 ip_send_check(iph); 780 781 err = output(net, sk, skb2); 782 if (err) 783 goto fail; 784 785 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 786 } 787 consume_skb(skb); 788 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 789 return err; 790 791 fail: 792 kfree_skb(skb); 793 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 794 return err; 795 } 796 EXPORT_SYMBOL(ip_do_fragment); 797 798 int 799 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 800 { 801 struct msghdr *msg = from; 802 803 if (skb->ip_summed == CHECKSUM_PARTIAL) { 804 if (copy_from_iter(to, len, &msg->msg_iter) != len) 805 return -EFAULT; 806 } else { 807 __wsum csum = 0; 808 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 809 return -EFAULT; 810 skb->csum = csum_block_add(skb->csum, csum, odd); 811 } 812 return 0; 813 } 814 EXPORT_SYMBOL(ip_generic_getfrag); 815 816 static inline __wsum 817 csum_page(struct page *page, int offset, int copy) 818 { 819 char *kaddr; 820 __wsum csum; 821 kaddr = kmap(page); 822 csum = csum_partial(kaddr + offset, copy, 0); 823 kunmap(page); 824 return csum; 825 } 826 827 static inline int ip_ufo_append_data(struct sock *sk, 828 struct sk_buff_head *queue, 829 int getfrag(void *from, char *to, int offset, int len, 830 int odd, struct sk_buff *skb), 831 void *from, int length, int hh_len, int fragheaderlen, 832 int transhdrlen, int maxfraglen, unsigned int flags) 833 { 834 struct sk_buff *skb; 835 int err; 836 837 /* There is support for UDP fragmentation offload by network 838 * device, so create one single skb packet containing complete 839 * udp datagram 840 */ 841 skb = skb_peek_tail(queue); 842 if (!skb) { 843 skb = sock_alloc_send_skb(sk, 844 hh_len + fragheaderlen + transhdrlen + 20, 845 (flags & MSG_DONTWAIT), &err); 846 847 if (!skb) 848 return err; 849 850 /* reserve space for Hardware header */ 851 skb_reserve(skb, hh_len); 852 853 /* create space for UDP/IP header */ 854 skb_put(skb, fragheaderlen + transhdrlen); 855 856 /* initialize network header pointer */ 857 skb_reset_network_header(skb); 858 859 /* initialize protocol header pointer */ 860 skb->transport_header = skb->network_header + fragheaderlen; 861 862 skb->csum = 0; 863 864 __skb_queue_tail(queue, skb); 865 } else if (skb_is_gso(skb)) { 866 goto append; 867 } 868 869 skb->ip_summed = CHECKSUM_PARTIAL; 870 /* specify the length of each IP datagram fragment */ 871 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 872 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 873 874 append: 875 return skb_append_datato_frags(sk, skb, getfrag, from, 876 (length - transhdrlen)); 877 } 878 879 static int __ip_append_data(struct sock *sk, 880 struct flowi4 *fl4, 881 struct sk_buff_head *queue, 882 struct inet_cork *cork, 883 struct page_frag *pfrag, 884 int getfrag(void *from, char *to, int offset, 885 int len, int odd, struct sk_buff *skb), 886 void *from, int length, int transhdrlen, 887 unsigned int flags) 888 { 889 struct inet_sock *inet = inet_sk(sk); 890 struct sk_buff *skb; 891 892 struct ip_options *opt = cork->opt; 893 int hh_len; 894 int exthdrlen; 895 int mtu; 896 int copy; 897 int err; 898 int offset = 0; 899 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 900 int csummode = CHECKSUM_NONE; 901 struct rtable *rt = (struct rtable *)cork->dst; 902 u32 tskey = 0; 903 904 skb = skb_peek_tail(queue); 905 906 exthdrlen = !skb ? rt->dst.header_len : 0; 907 mtu = cork->fragsize; 908 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 909 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 910 tskey = sk->sk_tskey++; 911 912 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 913 914 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 915 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 916 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 917 918 if (cork->length + length > maxnonfragsize - fragheaderlen) { 919 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 920 mtu - (opt ? opt->optlen : 0)); 921 return -EMSGSIZE; 922 } 923 924 /* 925 * transhdrlen > 0 means that this is the first fragment and we wish 926 * it won't be fragmented in the future. 927 */ 928 if (transhdrlen && 929 length + fragheaderlen <= mtu && 930 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 931 !(flags & MSG_MORE) && 932 !exthdrlen) 933 csummode = CHECKSUM_PARTIAL; 934 935 cork->length += length; 936 if (((length > mtu) || (skb && skb_is_gso(skb))) && 937 (sk->sk_protocol == IPPROTO_UDP) && 938 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 939 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) { 940 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 941 hh_len, fragheaderlen, transhdrlen, 942 maxfraglen, flags); 943 if (err) 944 goto error; 945 return 0; 946 } 947 948 /* So, what's going on in the loop below? 949 * 950 * We use calculated fragment length to generate chained skb, 951 * each of segments is IP fragment ready for sending to network after 952 * adding appropriate IP header. 953 */ 954 955 if (!skb) 956 goto alloc_new_skb; 957 958 while (length > 0) { 959 /* Check if the remaining data fits into current packet. */ 960 copy = mtu - skb->len; 961 if (copy < length) 962 copy = maxfraglen - skb->len; 963 if (copy <= 0) { 964 char *data; 965 unsigned int datalen; 966 unsigned int fraglen; 967 unsigned int fraggap; 968 unsigned int alloclen; 969 struct sk_buff *skb_prev; 970 alloc_new_skb: 971 skb_prev = skb; 972 if (skb_prev) 973 fraggap = skb_prev->len - maxfraglen; 974 else 975 fraggap = 0; 976 977 /* 978 * If remaining data exceeds the mtu, 979 * we know we need more fragment(s). 980 */ 981 datalen = length + fraggap; 982 if (datalen > mtu - fragheaderlen) 983 datalen = maxfraglen - fragheaderlen; 984 fraglen = datalen + fragheaderlen; 985 986 if ((flags & MSG_MORE) && 987 !(rt->dst.dev->features&NETIF_F_SG)) 988 alloclen = mtu; 989 else 990 alloclen = fraglen; 991 992 alloclen += exthdrlen; 993 994 /* The last fragment gets additional space at tail. 995 * Note, with MSG_MORE we overallocate on fragments, 996 * because we have no idea what fragment will be 997 * the last. 998 */ 999 if (datalen == length + fraggap) 1000 alloclen += rt->dst.trailer_len; 1001 1002 if (transhdrlen) { 1003 skb = sock_alloc_send_skb(sk, 1004 alloclen + hh_len + 15, 1005 (flags & MSG_DONTWAIT), &err); 1006 } else { 1007 skb = NULL; 1008 if (atomic_read(&sk->sk_wmem_alloc) <= 1009 2 * sk->sk_sndbuf) 1010 skb = sock_wmalloc(sk, 1011 alloclen + hh_len + 15, 1, 1012 sk->sk_allocation); 1013 if (unlikely(!skb)) 1014 err = -ENOBUFS; 1015 } 1016 if (!skb) 1017 goto error; 1018 1019 /* 1020 * Fill in the control structures 1021 */ 1022 skb->ip_summed = csummode; 1023 skb->csum = 0; 1024 skb_reserve(skb, hh_len); 1025 1026 /* only the initial fragment is time stamped */ 1027 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1028 cork->tx_flags = 0; 1029 skb_shinfo(skb)->tskey = tskey; 1030 tskey = 0; 1031 1032 /* 1033 * Find where to start putting bytes. 1034 */ 1035 data = skb_put(skb, fraglen + exthdrlen); 1036 skb_set_network_header(skb, exthdrlen); 1037 skb->transport_header = (skb->network_header + 1038 fragheaderlen); 1039 data += fragheaderlen + exthdrlen; 1040 1041 if (fraggap) { 1042 skb->csum = skb_copy_and_csum_bits( 1043 skb_prev, maxfraglen, 1044 data + transhdrlen, fraggap, 0); 1045 skb_prev->csum = csum_sub(skb_prev->csum, 1046 skb->csum); 1047 data += fraggap; 1048 pskb_trim_unique(skb_prev, maxfraglen); 1049 } 1050 1051 copy = datalen - transhdrlen - fraggap; 1052 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1053 err = -EFAULT; 1054 kfree_skb(skb); 1055 goto error; 1056 } 1057 1058 offset += copy; 1059 length -= datalen - fraggap; 1060 transhdrlen = 0; 1061 exthdrlen = 0; 1062 csummode = CHECKSUM_NONE; 1063 1064 /* 1065 * Put the packet on the pending queue. 1066 */ 1067 __skb_queue_tail(queue, skb); 1068 continue; 1069 } 1070 1071 if (copy > length) 1072 copy = length; 1073 1074 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1075 unsigned int off; 1076 1077 off = skb->len; 1078 if (getfrag(from, skb_put(skb, copy), 1079 offset, copy, off, skb) < 0) { 1080 __skb_trim(skb, off); 1081 err = -EFAULT; 1082 goto error; 1083 } 1084 } else { 1085 int i = skb_shinfo(skb)->nr_frags; 1086 1087 err = -ENOMEM; 1088 if (!sk_page_frag_refill(sk, pfrag)) 1089 goto error; 1090 1091 if (!skb_can_coalesce(skb, i, pfrag->page, 1092 pfrag->offset)) { 1093 err = -EMSGSIZE; 1094 if (i == MAX_SKB_FRAGS) 1095 goto error; 1096 1097 __skb_fill_page_desc(skb, i, pfrag->page, 1098 pfrag->offset, 0); 1099 skb_shinfo(skb)->nr_frags = ++i; 1100 get_page(pfrag->page); 1101 } 1102 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1103 if (getfrag(from, 1104 page_address(pfrag->page) + pfrag->offset, 1105 offset, copy, skb->len, skb) < 0) 1106 goto error_efault; 1107 1108 pfrag->offset += copy; 1109 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1110 skb->len += copy; 1111 skb->data_len += copy; 1112 skb->truesize += copy; 1113 atomic_add(copy, &sk->sk_wmem_alloc); 1114 } 1115 offset += copy; 1116 length -= copy; 1117 } 1118 1119 return 0; 1120 1121 error_efault: 1122 err = -EFAULT; 1123 error: 1124 cork->length -= length; 1125 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1126 return err; 1127 } 1128 1129 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1130 struct ipcm_cookie *ipc, struct rtable **rtp) 1131 { 1132 struct ip_options_rcu *opt; 1133 struct rtable *rt; 1134 1135 /* 1136 * setup for corking. 1137 */ 1138 opt = ipc->opt; 1139 if (opt) { 1140 if (!cork->opt) { 1141 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1142 sk->sk_allocation); 1143 if (unlikely(!cork->opt)) 1144 return -ENOBUFS; 1145 } 1146 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1147 cork->flags |= IPCORK_OPT; 1148 cork->addr = ipc->addr; 1149 } 1150 rt = *rtp; 1151 if (unlikely(!rt)) 1152 return -EFAULT; 1153 /* 1154 * We steal reference to this route, caller should not release it 1155 */ 1156 *rtp = NULL; 1157 cork->fragsize = ip_sk_use_pmtu(sk) ? 1158 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1159 cork->dst = &rt->dst; 1160 cork->length = 0; 1161 cork->ttl = ipc->ttl; 1162 cork->tos = ipc->tos; 1163 cork->priority = ipc->priority; 1164 cork->tx_flags = ipc->tx_flags; 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * ip_append_data() and ip_append_page() can make one large IP datagram 1171 * from many pieces of data. Each pieces will be holded on the socket 1172 * until ip_push_pending_frames() is called. Each piece can be a page 1173 * or non-page data. 1174 * 1175 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1176 * this interface potentially. 1177 * 1178 * LATER: length must be adjusted by pad at tail, when it is required. 1179 */ 1180 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1181 int getfrag(void *from, char *to, int offset, int len, 1182 int odd, struct sk_buff *skb), 1183 void *from, int length, int transhdrlen, 1184 struct ipcm_cookie *ipc, struct rtable **rtp, 1185 unsigned int flags) 1186 { 1187 struct inet_sock *inet = inet_sk(sk); 1188 int err; 1189 1190 if (flags&MSG_PROBE) 1191 return 0; 1192 1193 if (skb_queue_empty(&sk->sk_write_queue)) { 1194 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1195 if (err) 1196 return err; 1197 } else { 1198 transhdrlen = 0; 1199 } 1200 1201 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1202 sk_page_frag(sk), getfrag, 1203 from, length, transhdrlen, flags); 1204 } 1205 1206 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1207 int offset, size_t size, int flags) 1208 { 1209 struct inet_sock *inet = inet_sk(sk); 1210 struct sk_buff *skb; 1211 struct rtable *rt; 1212 struct ip_options *opt = NULL; 1213 struct inet_cork *cork; 1214 int hh_len; 1215 int mtu; 1216 int len; 1217 int err; 1218 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1219 1220 if (inet->hdrincl) 1221 return -EPERM; 1222 1223 if (flags&MSG_PROBE) 1224 return 0; 1225 1226 if (skb_queue_empty(&sk->sk_write_queue)) 1227 return -EINVAL; 1228 1229 cork = &inet->cork.base; 1230 rt = (struct rtable *)cork->dst; 1231 if (cork->flags & IPCORK_OPT) 1232 opt = cork->opt; 1233 1234 if (!(rt->dst.dev->features&NETIF_F_SG)) 1235 return -EOPNOTSUPP; 1236 1237 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1238 mtu = cork->fragsize; 1239 1240 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1241 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1242 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1243 1244 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1245 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1246 mtu - (opt ? opt->optlen : 0)); 1247 return -EMSGSIZE; 1248 } 1249 1250 skb = skb_peek_tail(&sk->sk_write_queue); 1251 if (!skb) 1252 return -EINVAL; 1253 1254 if ((size + skb->len > mtu) && 1255 (sk->sk_protocol == IPPROTO_UDP) && 1256 (rt->dst.dev->features & NETIF_F_UFO)) { 1257 if (skb->ip_summed != CHECKSUM_PARTIAL) 1258 return -EOPNOTSUPP; 1259 1260 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1261 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1262 } 1263 cork->length += size; 1264 1265 while (size > 0) { 1266 if (skb_is_gso(skb)) { 1267 len = size; 1268 } else { 1269 1270 /* Check if the remaining data fits into current packet. */ 1271 len = mtu - skb->len; 1272 if (len < size) 1273 len = maxfraglen - skb->len; 1274 } 1275 if (len <= 0) { 1276 struct sk_buff *skb_prev; 1277 int alloclen; 1278 1279 skb_prev = skb; 1280 fraggap = skb_prev->len - maxfraglen; 1281 1282 alloclen = fragheaderlen + hh_len + fraggap + 15; 1283 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1284 if (unlikely(!skb)) { 1285 err = -ENOBUFS; 1286 goto error; 1287 } 1288 1289 /* 1290 * Fill in the control structures 1291 */ 1292 skb->ip_summed = CHECKSUM_NONE; 1293 skb->csum = 0; 1294 skb_reserve(skb, hh_len); 1295 1296 /* 1297 * Find where to start putting bytes. 1298 */ 1299 skb_put(skb, fragheaderlen + fraggap); 1300 skb_reset_network_header(skb); 1301 skb->transport_header = (skb->network_header + 1302 fragheaderlen); 1303 if (fraggap) { 1304 skb->csum = skb_copy_and_csum_bits(skb_prev, 1305 maxfraglen, 1306 skb_transport_header(skb), 1307 fraggap, 0); 1308 skb_prev->csum = csum_sub(skb_prev->csum, 1309 skb->csum); 1310 pskb_trim_unique(skb_prev, maxfraglen); 1311 } 1312 1313 /* 1314 * Put the packet on the pending queue. 1315 */ 1316 __skb_queue_tail(&sk->sk_write_queue, skb); 1317 continue; 1318 } 1319 1320 if (len > size) 1321 len = size; 1322 1323 if (skb_append_pagefrags(skb, page, offset, len)) { 1324 err = -EMSGSIZE; 1325 goto error; 1326 } 1327 1328 if (skb->ip_summed == CHECKSUM_NONE) { 1329 __wsum csum; 1330 csum = csum_page(page, offset, len); 1331 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1332 } 1333 1334 skb->len += len; 1335 skb->data_len += len; 1336 skb->truesize += len; 1337 atomic_add(len, &sk->sk_wmem_alloc); 1338 offset += len; 1339 size -= len; 1340 } 1341 return 0; 1342 1343 error: 1344 cork->length -= size; 1345 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1346 return err; 1347 } 1348 1349 static void ip_cork_release(struct inet_cork *cork) 1350 { 1351 cork->flags &= ~IPCORK_OPT; 1352 kfree(cork->opt); 1353 cork->opt = NULL; 1354 dst_release(cork->dst); 1355 cork->dst = NULL; 1356 } 1357 1358 /* 1359 * Combined all pending IP fragments on the socket as one IP datagram 1360 * and push them out. 1361 */ 1362 struct sk_buff *__ip_make_skb(struct sock *sk, 1363 struct flowi4 *fl4, 1364 struct sk_buff_head *queue, 1365 struct inet_cork *cork) 1366 { 1367 struct sk_buff *skb, *tmp_skb; 1368 struct sk_buff **tail_skb; 1369 struct inet_sock *inet = inet_sk(sk); 1370 struct net *net = sock_net(sk); 1371 struct ip_options *opt = NULL; 1372 struct rtable *rt = (struct rtable *)cork->dst; 1373 struct iphdr *iph; 1374 __be16 df = 0; 1375 __u8 ttl; 1376 1377 skb = __skb_dequeue(queue); 1378 if (!skb) 1379 goto out; 1380 tail_skb = &(skb_shinfo(skb)->frag_list); 1381 1382 /* move skb->data to ip header from ext header */ 1383 if (skb->data < skb_network_header(skb)) 1384 __skb_pull(skb, skb_network_offset(skb)); 1385 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1386 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1387 *tail_skb = tmp_skb; 1388 tail_skb = &(tmp_skb->next); 1389 skb->len += tmp_skb->len; 1390 skb->data_len += tmp_skb->len; 1391 skb->truesize += tmp_skb->truesize; 1392 tmp_skb->destructor = NULL; 1393 tmp_skb->sk = NULL; 1394 } 1395 1396 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1397 * to fragment the frame generated here. No matter, what transforms 1398 * how transforms change size of the packet, it will come out. 1399 */ 1400 skb->ignore_df = ip_sk_ignore_df(sk); 1401 1402 /* DF bit is set when we want to see DF on outgoing frames. 1403 * If ignore_df is set too, we still allow to fragment this frame 1404 * locally. */ 1405 if (inet->pmtudisc == IP_PMTUDISC_DO || 1406 inet->pmtudisc == IP_PMTUDISC_PROBE || 1407 (skb->len <= dst_mtu(&rt->dst) && 1408 ip_dont_fragment(sk, &rt->dst))) 1409 df = htons(IP_DF); 1410 1411 if (cork->flags & IPCORK_OPT) 1412 opt = cork->opt; 1413 1414 if (cork->ttl != 0) 1415 ttl = cork->ttl; 1416 else if (rt->rt_type == RTN_MULTICAST) 1417 ttl = inet->mc_ttl; 1418 else 1419 ttl = ip_select_ttl(inet, &rt->dst); 1420 1421 iph = ip_hdr(skb); 1422 iph->version = 4; 1423 iph->ihl = 5; 1424 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1425 iph->frag_off = df; 1426 iph->ttl = ttl; 1427 iph->protocol = sk->sk_protocol; 1428 ip_copy_addrs(iph, fl4); 1429 ip_select_ident(net, skb, sk); 1430 1431 if (opt) { 1432 iph->ihl += opt->optlen>>2; 1433 ip_options_build(skb, opt, cork->addr, rt, 0); 1434 } 1435 1436 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1437 skb->mark = sk->sk_mark; 1438 /* 1439 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1440 * on dst refcount 1441 */ 1442 cork->dst = NULL; 1443 skb_dst_set(skb, &rt->dst); 1444 1445 if (iph->protocol == IPPROTO_ICMP) 1446 icmp_out_count(net, ((struct icmphdr *) 1447 skb_transport_header(skb))->type); 1448 1449 ip_cork_release(cork); 1450 out: 1451 return skb; 1452 } 1453 1454 int ip_send_skb(struct net *net, struct sk_buff *skb) 1455 { 1456 int err; 1457 1458 err = ip_local_out(net, skb->sk, skb); 1459 if (err) { 1460 if (err > 0) 1461 err = net_xmit_errno(err); 1462 if (err) 1463 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1464 } 1465 1466 return err; 1467 } 1468 1469 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1470 { 1471 struct sk_buff *skb; 1472 1473 skb = ip_finish_skb(sk, fl4); 1474 if (!skb) 1475 return 0; 1476 1477 /* Netfilter gets whole the not fragmented skb. */ 1478 return ip_send_skb(sock_net(sk), skb); 1479 } 1480 1481 /* 1482 * Throw away all pending data on the socket. 1483 */ 1484 static void __ip_flush_pending_frames(struct sock *sk, 1485 struct sk_buff_head *queue, 1486 struct inet_cork *cork) 1487 { 1488 struct sk_buff *skb; 1489 1490 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1491 kfree_skb(skb); 1492 1493 ip_cork_release(cork); 1494 } 1495 1496 void ip_flush_pending_frames(struct sock *sk) 1497 { 1498 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1499 } 1500 1501 struct sk_buff *ip_make_skb(struct sock *sk, 1502 struct flowi4 *fl4, 1503 int getfrag(void *from, char *to, int offset, 1504 int len, int odd, struct sk_buff *skb), 1505 void *from, int length, int transhdrlen, 1506 struct ipcm_cookie *ipc, struct rtable **rtp, 1507 unsigned int flags) 1508 { 1509 struct inet_cork cork; 1510 struct sk_buff_head queue; 1511 int err; 1512 1513 if (flags & MSG_PROBE) 1514 return NULL; 1515 1516 __skb_queue_head_init(&queue); 1517 1518 cork.flags = 0; 1519 cork.addr = 0; 1520 cork.opt = NULL; 1521 err = ip_setup_cork(sk, &cork, ipc, rtp); 1522 if (err) 1523 return ERR_PTR(err); 1524 1525 err = __ip_append_data(sk, fl4, &queue, &cork, 1526 ¤t->task_frag, getfrag, 1527 from, length, transhdrlen, flags); 1528 if (err) { 1529 __ip_flush_pending_frames(sk, &queue, &cork); 1530 return ERR_PTR(err); 1531 } 1532 1533 return __ip_make_skb(sk, fl4, &queue, &cork); 1534 } 1535 1536 /* 1537 * Fetch data from kernel space and fill in checksum if needed. 1538 */ 1539 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1540 int len, int odd, struct sk_buff *skb) 1541 { 1542 __wsum csum; 1543 1544 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1545 skb->csum = csum_block_add(skb->csum, csum, odd); 1546 return 0; 1547 } 1548 1549 /* 1550 * Generic function to send a packet as reply to another packet. 1551 * Used to send some TCP resets/acks so far. 1552 */ 1553 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1554 const struct ip_options *sopt, 1555 __be32 daddr, __be32 saddr, 1556 const struct ip_reply_arg *arg, 1557 unsigned int len) 1558 { 1559 struct ip_options_data replyopts; 1560 struct ipcm_cookie ipc; 1561 struct flowi4 fl4; 1562 struct rtable *rt = skb_rtable(skb); 1563 struct net *net = sock_net(sk); 1564 struct sk_buff *nskb; 1565 int err; 1566 int oif; 1567 1568 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1569 return; 1570 1571 ipc.addr = daddr; 1572 ipc.opt = NULL; 1573 ipc.tx_flags = 0; 1574 ipc.ttl = 0; 1575 ipc.tos = -1; 1576 1577 if (replyopts.opt.opt.optlen) { 1578 ipc.opt = &replyopts.opt; 1579 1580 if (replyopts.opt.opt.srr) 1581 daddr = replyopts.opt.opt.faddr; 1582 } 1583 1584 oif = arg->bound_dev_if; 1585 oif = oif ? : skb->skb_iif; 1586 1587 flowi4_init_output(&fl4, oif, 1588 IP4_REPLY_MARK(net, skb->mark), 1589 RT_TOS(arg->tos), 1590 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1591 ip_reply_arg_flowi_flags(arg), 1592 daddr, saddr, 1593 tcp_hdr(skb)->source, tcp_hdr(skb)->dest); 1594 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1595 rt = ip_route_output_key(net, &fl4); 1596 if (IS_ERR(rt)) 1597 return; 1598 1599 inet_sk(sk)->tos = arg->tos; 1600 1601 sk->sk_priority = skb->priority; 1602 sk->sk_protocol = ip_hdr(skb)->protocol; 1603 sk->sk_bound_dev_if = arg->bound_dev_if; 1604 sk->sk_sndbuf = sysctl_wmem_default; 1605 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1606 len, 0, &ipc, &rt, MSG_DONTWAIT); 1607 if (unlikely(err)) { 1608 ip_flush_pending_frames(sk); 1609 goto out; 1610 } 1611 1612 nskb = skb_peek(&sk->sk_write_queue); 1613 if (nskb) { 1614 if (arg->csumoffset >= 0) 1615 *((__sum16 *)skb_transport_header(nskb) + 1616 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1617 arg->csum)); 1618 nskb->ip_summed = CHECKSUM_NONE; 1619 ip_push_pending_frames(sk, &fl4); 1620 } 1621 out: 1622 ip_rt_put(rt); 1623 } 1624 1625 void __init ip_init(void) 1626 { 1627 ip_rt_init(); 1628 inet_initpeers(); 1629 1630 #if defined(CONFIG_IP_MULTICAST) 1631 igmp_mc_init(); 1632 #endif 1633 } 1634