1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <linux/igmp.h> 77 #include <linux/netfilter_ipv4.h> 78 #include <linux/netfilter_bridge.h> 79 #include <linux/mroute.h> 80 #include <linux/netlink.h> 81 #include <linux/tcp.h> 82 83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL; 84 EXPORT_SYMBOL(sysctl_ip_default_ttl); 85 86 static int 87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 88 unsigned int mtu, 89 int (*output)(struct net *, struct sock *, struct sk_buff *)); 90 91 /* Generate a checksum for an outgoing IP datagram. */ 92 void ip_send_check(struct iphdr *iph) 93 { 94 iph->check = 0; 95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 96 } 97 EXPORT_SYMBOL(ip_send_check); 98 99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 100 { 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 106 net, sk, skb, NULL, skb_dst(skb)->dev, 107 dst_output); 108 } 109 110 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 111 { 112 int err; 113 114 err = __ip_local_out(net, sk, skb); 115 if (likely(err == 1)) 116 err = dst_output(net, sk, skb); 117 118 return err; 119 } 120 EXPORT_SYMBOL_GPL(ip_local_out); 121 122 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 123 { 124 int ttl = inet->uc_ttl; 125 126 if (ttl < 0) 127 ttl = ip4_dst_hoplimit(dst); 128 return ttl; 129 } 130 131 /* 132 * Add an ip header to a skbuff and send it out. 133 * 134 */ 135 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 136 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 137 { 138 struct inet_sock *inet = inet_sk(sk); 139 struct rtable *rt = skb_rtable(skb); 140 struct net *net = sock_net(sk); 141 struct iphdr *iph; 142 143 /* Build the IP header. */ 144 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 145 skb_reset_network_header(skb); 146 iph = ip_hdr(skb); 147 iph->version = 4; 148 iph->ihl = 5; 149 iph->tos = inet->tos; 150 iph->ttl = ip_select_ttl(inet, &rt->dst); 151 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 152 iph->saddr = saddr; 153 iph->protocol = sk->sk_protocol; 154 if (ip_dont_fragment(sk, &rt->dst)) { 155 iph->frag_off = htons(IP_DF); 156 iph->id = 0; 157 } else { 158 iph->frag_off = 0; 159 __ip_select_ident(net, iph, 1); 160 } 161 162 if (opt && opt->opt.optlen) { 163 iph->ihl += opt->opt.optlen>>2; 164 ip_options_build(skb, &opt->opt, daddr, rt, 0); 165 } 166 167 skb->priority = sk->sk_priority; 168 skb->mark = sk->sk_mark; 169 170 /* Send it out. */ 171 return ip_local_out(net, skb->sk, skb); 172 } 173 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 174 175 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 176 { 177 struct dst_entry *dst = skb_dst(skb); 178 struct rtable *rt = (struct rtable *)dst; 179 struct net_device *dev = dst->dev; 180 unsigned int hh_len = LL_RESERVED_SPACE(dev); 181 struct neighbour *neigh; 182 u32 nexthop; 183 184 if (rt->rt_type == RTN_MULTICAST) { 185 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 186 } else if (rt->rt_type == RTN_BROADCAST) 187 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 188 189 /* Be paranoid, rather than too clever. */ 190 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 191 struct sk_buff *skb2; 192 193 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 194 if (!skb2) { 195 kfree_skb(skb); 196 return -ENOMEM; 197 } 198 if (skb->sk) 199 skb_set_owner_w(skb2, skb->sk); 200 consume_skb(skb); 201 skb = skb2; 202 } 203 204 rcu_read_lock_bh(); 205 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 206 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 207 if (unlikely(!neigh)) 208 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 209 if (!IS_ERR(neigh)) { 210 int res = dst_neigh_output(dst, neigh, skb); 211 212 rcu_read_unlock_bh(); 213 return res; 214 } 215 rcu_read_unlock_bh(); 216 217 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 218 __func__); 219 kfree_skb(skb); 220 return -EINVAL; 221 } 222 223 static int ip_finish_output_gso(struct net *net, struct sock *sk, 224 struct sk_buff *skb, unsigned int mtu) 225 { 226 netdev_features_t features; 227 struct sk_buff *segs; 228 int ret = 0; 229 230 /* common case: locally created skb or seglen is <= mtu */ 231 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) || 232 skb_gso_network_seglen(skb) <= mtu) 233 return ip_finish_output2(net, sk, skb); 234 235 /* Slowpath - GSO segment length is exceeding the dst MTU. 236 * 237 * This can happen in two cases: 238 * 1) TCP GRO packet, DF bit not set 239 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly 240 * from host network stack. 241 */ 242 features = netif_skb_features(skb); 243 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 244 if (IS_ERR_OR_NULL(segs)) { 245 kfree_skb(skb); 246 return -ENOMEM; 247 } 248 249 consume_skb(skb); 250 251 do { 252 struct sk_buff *nskb = segs->next; 253 int err; 254 255 segs->next = NULL; 256 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 257 258 if (err && ret == 0) 259 ret = err; 260 segs = nskb; 261 } while (segs); 262 263 return ret; 264 } 265 266 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 267 { 268 unsigned int mtu; 269 270 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 271 /* Policy lookup after SNAT yielded a new policy */ 272 if (skb_dst(skb)->xfrm) { 273 IPCB(skb)->flags |= IPSKB_REROUTED; 274 return dst_output(net, sk, skb); 275 } 276 #endif 277 mtu = ip_skb_dst_mtu(skb); 278 if (skb_is_gso(skb)) 279 return ip_finish_output_gso(net, sk, skb, mtu); 280 281 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 282 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 283 284 return ip_finish_output2(net, sk, skb); 285 } 286 287 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 288 { 289 struct rtable *rt = skb_rtable(skb); 290 struct net_device *dev = rt->dst.dev; 291 292 /* 293 * If the indicated interface is up and running, send the packet. 294 */ 295 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 296 297 skb->dev = dev; 298 skb->protocol = htons(ETH_P_IP); 299 300 /* 301 * Multicasts are looped back for other local users 302 */ 303 304 if (rt->rt_flags&RTCF_MULTICAST) { 305 if (sk_mc_loop(sk) 306 #ifdef CONFIG_IP_MROUTE 307 /* Small optimization: do not loopback not local frames, 308 which returned after forwarding; they will be dropped 309 by ip_mr_input in any case. 310 Note, that local frames are looped back to be delivered 311 to local recipients. 312 313 This check is duplicated in ip_mr_input at the moment. 314 */ 315 && 316 ((rt->rt_flags & RTCF_LOCAL) || 317 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 318 #endif 319 ) { 320 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 321 if (newskb) 322 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 323 net, sk, newskb, NULL, newskb->dev, 324 dev_loopback_xmit); 325 } 326 327 /* Multicasts with ttl 0 must not go beyond the host */ 328 329 if (ip_hdr(skb)->ttl == 0) { 330 kfree_skb(skb); 331 return 0; 332 } 333 } 334 335 if (rt->rt_flags&RTCF_BROADCAST) { 336 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 337 if (newskb) 338 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 339 net, sk, newskb, NULL, newskb->dev, 340 dev_loopback_xmit); 341 } 342 343 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 344 net, sk, skb, NULL, skb->dev, 345 ip_finish_output, 346 !(IPCB(skb)->flags & IPSKB_REROUTED)); 347 } 348 349 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 350 { 351 struct net_device *dev = skb_dst(skb)->dev; 352 353 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 354 355 skb->dev = dev; 356 skb->protocol = htons(ETH_P_IP); 357 358 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 359 net, sk, skb, NULL, dev, 360 ip_finish_output, 361 !(IPCB(skb)->flags & IPSKB_REROUTED)); 362 } 363 364 /* 365 * copy saddr and daddr, possibly using 64bit load/stores 366 * Equivalent to : 367 * iph->saddr = fl4->saddr; 368 * iph->daddr = fl4->daddr; 369 */ 370 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 371 { 372 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 373 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 374 memcpy(&iph->saddr, &fl4->saddr, 375 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 376 } 377 378 /* Note: skb->sk can be different from sk, in case of tunnels */ 379 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 380 { 381 struct inet_sock *inet = inet_sk(sk); 382 struct net *net = sock_net(sk); 383 struct ip_options_rcu *inet_opt; 384 struct flowi4 *fl4; 385 struct rtable *rt; 386 struct iphdr *iph; 387 int res; 388 389 /* Skip all of this if the packet is already routed, 390 * f.e. by something like SCTP. 391 */ 392 rcu_read_lock(); 393 inet_opt = rcu_dereference(inet->inet_opt); 394 fl4 = &fl->u.ip4; 395 rt = skb_rtable(skb); 396 if (rt) 397 goto packet_routed; 398 399 /* Make sure we can route this packet. */ 400 rt = (struct rtable *)__sk_dst_check(sk, 0); 401 if (!rt) { 402 __be32 daddr; 403 404 /* Use correct destination address if we have options. */ 405 daddr = inet->inet_daddr; 406 if (inet_opt && inet_opt->opt.srr) 407 daddr = inet_opt->opt.faddr; 408 409 /* If this fails, retransmit mechanism of transport layer will 410 * keep trying until route appears or the connection times 411 * itself out. 412 */ 413 rt = ip_route_output_ports(net, fl4, sk, 414 daddr, inet->inet_saddr, 415 inet->inet_dport, 416 inet->inet_sport, 417 sk->sk_protocol, 418 RT_CONN_FLAGS(sk), 419 sk->sk_bound_dev_if); 420 if (IS_ERR(rt)) 421 goto no_route; 422 sk_setup_caps(sk, &rt->dst); 423 } 424 skb_dst_set_noref(skb, &rt->dst); 425 426 packet_routed: 427 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 428 goto no_route; 429 430 /* OK, we know where to send it, allocate and build IP header. */ 431 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 432 skb_reset_network_header(skb); 433 iph = ip_hdr(skb); 434 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 435 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 436 iph->frag_off = htons(IP_DF); 437 else 438 iph->frag_off = 0; 439 iph->ttl = ip_select_ttl(inet, &rt->dst); 440 iph->protocol = sk->sk_protocol; 441 ip_copy_addrs(iph, fl4); 442 443 /* Transport layer set skb->h.foo itself. */ 444 445 if (inet_opt && inet_opt->opt.optlen) { 446 iph->ihl += inet_opt->opt.optlen >> 2; 447 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 448 } 449 450 ip_select_ident_segs(net, skb, sk, 451 skb_shinfo(skb)->gso_segs ?: 1); 452 453 /* TODO : should we use skb->sk here instead of sk ? */ 454 skb->priority = sk->sk_priority; 455 skb->mark = sk->sk_mark; 456 457 res = ip_local_out(net, sk, skb); 458 rcu_read_unlock(); 459 return res; 460 461 no_route: 462 rcu_read_unlock(); 463 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 464 kfree_skb(skb); 465 return -EHOSTUNREACH; 466 } 467 EXPORT_SYMBOL(ip_queue_xmit); 468 469 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 470 { 471 to->pkt_type = from->pkt_type; 472 to->priority = from->priority; 473 to->protocol = from->protocol; 474 skb_dst_drop(to); 475 skb_dst_copy(to, from); 476 to->dev = from->dev; 477 to->mark = from->mark; 478 479 /* Copy the flags to each fragment. */ 480 IPCB(to)->flags = IPCB(from)->flags; 481 482 #ifdef CONFIG_NET_SCHED 483 to->tc_index = from->tc_index; 484 #endif 485 nf_copy(to, from); 486 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 487 to->ipvs_property = from->ipvs_property; 488 #endif 489 skb_copy_secmark(to, from); 490 } 491 492 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 493 unsigned int mtu, 494 int (*output)(struct net *, struct sock *, struct sk_buff *)) 495 { 496 struct iphdr *iph = ip_hdr(skb); 497 498 if ((iph->frag_off & htons(IP_DF)) == 0) 499 return ip_do_fragment(net, sk, skb, output); 500 501 if (unlikely(!skb->ignore_df || 502 (IPCB(skb)->frag_max_size && 503 IPCB(skb)->frag_max_size > mtu))) { 504 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 505 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 506 htonl(mtu)); 507 kfree_skb(skb); 508 return -EMSGSIZE; 509 } 510 511 return ip_do_fragment(net, sk, skb, output); 512 } 513 514 /* 515 * This IP datagram is too large to be sent in one piece. Break it up into 516 * smaller pieces (each of size equal to IP header plus 517 * a block of the data of the original IP data part) that will yet fit in a 518 * single device frame, and queue such a frame for sending. 519 */ 520 521 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 522 int (*output)(struct net *, struct sock *, struct sk_buff *)) 523 { 524 struct iphdr *iph; 525 int ptr; 526 struct net_device *dev; 527 struct sk_buff *skb2; 528 unsigned int mtu, hlen, left, len, ll_rs; 529 int offset; 530 __be16 not_last_frag; 531 struct rtable *rt = skb_rtable(skb); 532 int err = 0; 533 534 dev = rt->dst.dev; 535 536 /* for offloaded checksums cleanup checksum before fragmentation */ 537 if (skb->ip_summed == CHECKSUM_PARTIAL && 538 (err = skb_checksum_help(skb))) 539 goto fail; 540 541 /* 542 * Point into the IP datagram header. 543 */ 544 545 iph = ip_hdr(skb); 546 547 mtu = ip_skb_dst_mtu(skb); 548 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 549 mtu = IPCB(skb)->frag_max_size; 550 551 /* 552 * Setup starting values. 553 */ 554 555 hlen = iph->ihl * 4; 556 mtu = mtu - hlen; /* Size of data space */ 557 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 558 559 /* When frag_list is given, use it. First, check its validity: 560 * some transformers could create wrong frag_list or break existing 561 * one, it is not prohibited. In this case fall back to copying. 562 * 563 * LATER: this step can be merged to real generation of fragments, 564 * we can switch to copy when see the first bad fragment. 565 */ 566 if (skb_has_frag_list(skb)) { 567 struct sk_buff *frag, *frag2; 568 int first_len = skb_pagelen(skb); 569 570 if (first_len - hlen > mtu || 571 ((first_len - hlen) & 7) || 572 ip_is_fragment(iph) || 573 skb_cloned(skb)) 574 goto slow_path; 575 576 skb_walk_frags(skb, frag) { 577 /* Correct geometry. */ 578 if (frag->len > mtu || 579 ((frag->len & 7) && frag->next) || 580 skb_headroom(frag) < hlen) 581 goto slow_path_clean; 582 583 /* Partially cloned skb? */ 584 if (skb_shared(frag)) 585 goto slow_path_clean; 586 587 BUG_ON(frag->sk); 588 if (skb->sk) { 589 frag->sk = skb->sk; 590 frag->destructor = sock_wfree; 591 } 592 skb->truesize -= frag->truesize; 593 } 594 595 /* Everything is OK. Generate! */ 596 597 err = 0; 598 offset = 0; 599 frag = skb_shinfo(skb)->frag_list; 600 skb_frag_list_init(skb); 601 skb->data_len = first_len - skb_headlen(skb); 602 skb->len = first_len; 603 iph->tot_len = htons(first_len); 604 iph->frag_off = htons(IP_MF); 605 ip_send_check(iph); 606 607 for (;;) { 608 /* Prepare header of the next frame, 609 * before previous one went down. */ 610 if (frag) { 611 frag->ip_summed = CHECKSUM_NONE; 612 skb_reset_transport_header(frag); 613 __skb_push(frag, hlen); 614 skb_reset_network_header(frag); 615 memcpy(skb_network_header(frag), iph, hlen); 616 iph = ip_hdr(frag); 617 iph->tot_len = htons(frag->len); 618 ip_copy_metadata(frag, skb); 619 if (offset == 0) 620 ip_options_fragment(frag); 621 offset += skb->len - hlen; 622 iph->frag_off = htons(offset>>3); 623 if (frag->next) 624 iph->frag_off |= htons(IP_MF); 625 /* Ready, complete checksum */ 626 ip_send_check(iph); 627 } 628 629 err = output(net, sk, skb); 630 631 if (!err) 632 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 633 if (err || !frag) 634 break; 635 636 skb = frag; 637 frag = skb->next; 638 skb->next = NULL; 639 } 640 641 if (err == 0) { 642 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 643 return 0; 644 } 645 646 while (frag) { 647 skb = frag->next; 648 kfree_skb(frag); 649 frag = skb; 650 } 651 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 652 return err; 653 654 slow_path_clean: 655 skb_walk_frags(skb, frag2) { 656 if (frag2 == frag) 657 break; 658 frag2->sk = NULL; 659 frag2->destructor = NULL; 660 skb->truesize += frag2->truesize; 661 } 662 } 663 664 slow_path: 665 iph = ip_hdr(skb); 666 667 left = skb->len - hlen; /* Space per frame */ 668 ptr = hlen; /* Where to start from */ 669 670 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 671 672 /* 673 * Fragment the datagram. 674 */ 675 676 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 677 not_last_frag = iph->frag_off & htons(IP_MF); 678 679 /* 680 * Keep copying data until we run out. 681 */ 682 683 while (left > 0) { 684 len = left; 685 /* IF: it doesn't fit, use 'mtu' - the data space left */ 686 if (len > mtu) 687 len = mtu; 688 /* IF: we are not sending up to and including the packet end 689 then align the next start on an eight byte boundary */ 690 if (len < left) { 691 len &= ~7; 692 } 693 694 /* Allocate buffer */ 695 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 696 if (!skb2) { 697 err = -ENOMEM; 698 goto fail; 699 } 700 701 /* 702 * Set up data on packet 703 */ 704 705 ip_copy_metadata(skb2, skb); 706 skb_reserve(skb2, ll_rs); 707 skb_put(skb2, len + hlen); 708 skb_reset_network_header(skb2); 709 skb2->transport_header = skb2->network_header + hlen; 710 711 /* 712 * Charge the memory for the fragment to any owner 713 * it might possess 714 */ 715 716 if (skb->sk) 717 skb_set_owner_w(skb2, skb->sk); 718 719 /* 720 * Copy the packet header into the new buffer. 721 */ 722 723 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 724 725 /* 726 * Copy a block of the IP datagram. 727 */ 728 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 729 BUG(); 730 left -= len; 731 732 /* 733 * Fill in the new header fields. 734 */ 735 iph = ip_hdr(skb2); 736 iph->frag_off = htons((offset >> 3)); 737 738 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 739 iph->frag_off |= htons(IP_DF); 740 741 /* ANK: dirty, but effective trick. Upgrade options only if 742 * the segment to be fragmented was THE FIRST (otherwise, 743 * options are already fixed) and make it ONCE 744 * on the initial skb, so that all the following fragments 745 * will inherit fixed options. 746 */ 747 if (offset == 0) 748 ip_options_fragment(skb); 749 750 /* 751 * Added AC : If we are fragmenting a fragment that's not the 752 * last fragment then keep MF on each bit 753 */ 754 if (left > 0 || not_last_frag) 755 iph->frag_off |= htons(IP_MF); 756 ptr += len; 757 offset += len; 758 759 /* 760 * Put this fragment into the sending queue. 761 */ 762 iph->tot_len = htons(len + hlen); 763 764 ip_send_check(iph); 765 766 err = output(net, sk, skb2); 767 if (err) 768 goto fail; 769 770 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 771 } 772 consume_skb(skb); 773 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 774 return err; 775 776 fail: 777 kfree_skb(skb); 778 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 779 return err; 780 } 781 EXPORT_SYMBOL(ip_do_fragment); 782 783 int 784 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 785 { 786 struct msghdr *msg = from; 787 788 if (skb->ip_summed == CHECKSUM_PARTIAL) { 789 if (copy_from_iter(to, len, &msg->msg_iter) != len) 790 return -EFAULT; 791 } else { 792 __wsum csum = 0; 793 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 794 return -EFAULT; 795 skb->csum = csum_block_add(skb->csum, csum, odd); 796 } 797 return 0; 798 } 799 EXPORT_SYMBOL(ip_generic_getfrag); 800 801 static inline __wsum 802 csum_page(struct page *page, int offset, int copy) 803 { 804 char *kaddr; 805 __wsum csum; 806 kaddr = kmap(page); 807 csum = csum_partial(kaddr + offset, copy, 0); 808 kunmap(page); 809 return csum; 810 } 811 812 static inline int ip_ufo_append_data(struct sock *sk, 813 struct sk_buff_head *queue, 814 int getfrag(void *from, char *to, int offset, int len, 815 int odd, struct sk_buff *skb), 816 void *from, int length, int hh_len, int fragheaderlen, 817 int transhdrlen, int maxfraglen, unsigned int flags) 818 { 819 struct sk_buff *skb; 820 int err; 821 822 /* There is support for UDP fragmentation offload by network 823 * device, so create one single skb packet containing complete 824 * udp datagram 825 */ 826 skb = skb_peek_tail(queue); 827 if (!skb) { 828 skb = sock_alloc_send_skb(sk, 829 hh_len + fragheaderlen + transhdrlen + 20, 830 (flags & MSG_DONTWAIT), &err); 831 832 if (!skb) 833 return err; 834 835 /* reserve space for Hardware header */ 836 skb_reserve(skb, hh_len); 837 838 /* create space for UDP/IP header */ 839 skb_put(skb, fragheaderlen + transhdrlen); 840 841 /* initialize network header pointer */ 842 skb_reset_network_header(skb); 843 844 /* initialize protocol header pointer */ 845 skb->transport_header = skb->network_header + fragheaderlen; 846 847 skb->csum = 0; 848 849 __skb_queue_tail(queue, skb); 850 } else if (skb_is_gso(skb)) { 851 goto append; 852 } 853 854 skb->ip_summed = CHECKSUM_PARTIAL; 855 /* specify the length of each IP datagram fragment */ 856 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 857 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 858 859 append: 860 return skb_append_datato_frags(sk, skb, getfrag, from, 861 (length - transhdrlen)); 862 } 863 864 static int __ip_append_data(struct sock *sk, 865 struct flowi4 *fl4, 866 struct sk_buff_head *queue, 867 struct inet_cork *cork, 868 struct page_frag *pfrag, 869 int getfrag(void *from, char *to, int offset, 870 int len, int odd, struct sk_buff *skb), 871 void *from, int length, int transhdrlen, 872 unsigned int flags) 873 { 874 struct inet_sock *inet = inet_sk(sk); 875 struct sk_buff *skb; 876 877 struct ip_options *opt = cork->opt; 878 int hh_len; 879 int exthdrlen; 880 int mtu; 881 int copy; 882 int err; 883 int offset = 0; 884 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 885 int csummode = CHECKSUM_NONE; 886 struct rtable *rt = (struct rtable *)cork->dst; 887 u32 tskey = 0; 888 889 skb = skb_peek_tail(queue); 890 891 exthdrlen = !skb ? rt->dst.header_len : 0; 892 mtu = cork->fragsize; 893 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 894 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 895 tskey = sk->sk_tskey++; 896 897 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 898 899 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 900 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 901 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 902 903 if (cork->length + length > maxnonfragsize - fragheaderlen) { 904 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 905 mtu - (opt ? opt->optlen : 0)); 906 return -EMSGSIZE; 907 } 908 909 /* 910 * transhdrlen > 0 means that this is the first fragment and we wish 911 * it won't be fragmented in the future. 912 */ 913 if (transhdrlen && 914 length + fragheaderlen <= mtu && 915 rt->dst.dev->features & NETIF_F_V4_CSUM && 916 !(flags & MSG_MORE) && 917 !exthdrlen) 918 csummode = CHECKSUM_PARTIAL; 919 920 cork->length += length; 921 if (((length > mtu) || (skb && skb_is_gso(skb))) && 922 (sk->sk_protocol == IPPROTO_UDP) && 923 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 924 (sk->sk_type == SOCK_DGRAM)) { 925 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 926 hh_len, fragheaderlen, transhdrlen, 927 maxfraglen, flags); 928 if (err) 929 goto error; 930 return 0; 931 } 932 933 /* So, what's going on in the loop below? 934 * 935 * We use calculated fragment length to generate chained skb, 936 * each of segments is IP fragment ready for sending to network after 937 * adding appropriate IP header. 938 */ 939 940 if (!skb) 941 goto alloc_new_skb; 942 943 while (length > 0) { 944 /* Check if the remaining data fits into current packet. */ 945 copy = mtu - skb->len; 946 if (copy < length) 947 copy = maxfraglen - skb->len; 948 if (copy <= 0) { 949 char *data; 950 unsigned int datalen; 951 unsigned int fraglen; 952 unsigned int fraggap; 953 unsigned int alloclen; 954 struct sk_buff *skb_prev; 955 alloc_new_skb: 956 skb_prev = skb; 957 if (skb_prev) 958 fraggap = skb_prev->len - maxfraglen; 959 else 960 fraggap = 0; 961 962 /* 963 * If remaining data exceeds the mtu, 964 * we know we need more fragment(s). 965 */ 966 datalen = length + fraggap; 967 if (datalen > mtu - fragheaderlen) 968 datalen = maxfraglen - fragheaderlen; 969 fraglen = datalen + fragheaderlen; 970 971 if ((flags & MSG_MORE) && 972 !(rt->dst.dev->features&NETIF_F_SG)) 973 alloclen = mtu; 974 else 975 alloclen = fraglen; 976 977 alloclen += exthdrlen; 978 979 /* The last fragment gets additional space at tail. 980 * Note, with MSG_MORE we overallocate on fragments, 981 * because we have no idea what fragment will be 982 * the last. 983 */ 984 if (datalen == length + fraggap) 985 alloclen += rt->dst.trailer_len; 986 987 if (transhdrlen) { 988 skb = sock_alloc_send_skb(sk, 989 alloclen + hh_len + 15, 990 (flags & MSG_DONTWAIT), &err); 991 } else { 992 skb = NULL; 993 if (atomic_read(&sk->sk_wmem_alloc) <= 994 2 * sk->sk_sndbuf) 995 skb = sock_wmalloc(sk, 996 alloclen + hh_len + 15, 1, 997 sk->sk_allocation); 998 if (unlikely(!skb)) 999 err = -ENOBUFS; 1000 } 1001 if (!skb) 1002 goto error; 1003 1004 /* 1005 * Fill in the control structures 1006 */ 1007 skb->ip_summed = csummode; 1008 skb->csum = 0; 1009 skb_reserve(skb, hh_len); 1010 1011 /* only the initial fragment is time stamped */ 1012 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1013 cork->tx_flags = 0; 1014 skb_shinfo(skb)->tskey = tskey; 1015 tskey = 0; 1016 1017 /* 1018 * Find where to start putting bytes. 1019 */ 1020 data = skb_put(skb, fraglen + exthdrlen); 1021 skb_set_network_header(skb, exthdrlen); 1022 skb->transport_header = (skb->network_header + 1023 fragheaderlen); 1024 data += fragheaderlen + exthdrlen; 1025 1026 if (fraggap) { 1027 skb->csum = skb_copy_and_csum_bits( 1028 skb_prev, maxfraglen, 1029 data + transhdrlen, fraggap, 0); 1030 skb_prev->csum = csum_sub(skb_prev->csum, 1031 skb->csum); 1032 data += fraggap; 1033 pskb_trim_unique(skb_prev, maxfraglen); 1034 } 1035 1036 copy = datalen - transhdrlen - fraggap; 1037 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1038 err = -EFAULT; 1039 kfree_skb(skb); 1040 goto error; 1041 } 1042 1043 offset += copy; 1044 length -= datalen - fraggap; 1045 transhdrlen = 0; 1046 exthdrlen = 0; 1047 csummode = CHECKSUM_NONE; 1048 1049 /* 1050 * Put the packet on the pending queue. 1051 */ 1052 __skb_queue_tail(queue, skb); 1053 continue; 1054 } 1055 1056 if (copy > length) 1057 copy = length; 1058 1059 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1060 unsigned int off; 1061 1062 off = skb->len; 1063 if (getfrag(from, skb_put(skb, copy), 1064 offset, copy, off, skb) < 0) { 1065 __skb_trim(skb, off); 1066 err = -EFAULT; 1067 goto error; 1068 } 1069 } else { 1070 int i = skb_shinfo(skb)->nr_frags; 1071 1072 err = -ENOMEM; 1073 if (!sk_page_frag_refill(sk, pfrag)) 1074 goto error; 1075 1076 if (!skb_can_coalesce(skb, i, pfrag->page, 1077 pfrag->offset)) { 1078 err = -EMSGSIZE; 1079 if (i == MAX_SKB_FRAGS) 1080 goto error; 1081 1082 __skb_fill_page_desc(skb, i, pfrag->page, 1083 pfrag->offset, 0); 1084 skb_shinfo(skb)->nr_frags = ++i; 1085 get_page(pfrag->page); 1086 } 1087 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1088 if (getfrag(from, 1089 page_address(pfrag->page) + pfrag->offset, 1090 offset, copy, skb->len, skb) < 0) 1091 goto error_efault; 1092 1093 pfrag->offset += copy; 1094 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1095 skb->len += copy; 1096 skb->data_len += copy; 1097 skb->truesize += copy; 1098 atomic_add(copy, &sk->sk_wmem_alloc); 1099 } 1100 offset += copy; 1101 length -= copy; 1102 } 1103 1104 return 0; 1105 1106 error_efault: 1107 err = -EFAULT; 1108 error: 1109 cork->length -= length; 1110 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1111 return err; 1112 } 1113 1114 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1115 struct ipcm_cookie *ipc, struct rtable **rtp) 1116 { 1117 struct ip_options_rcu *opt; 1118 struct rtable *rt; 1119 1120 /* 1121 * setup for corking. 1122 */ 1123 opt = ipc->opt; 1124 if (opt) { 1125 if (!cork->opt) { 1126 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1127 sk->sk_allocation); 1128 if (unlikely(!cork->opt)) 1129 return -ENOBUFS; 1130 } 1131 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1132 cork->flags |= IPCORK_OPT; 1133 cork->addr = ipc->addr; 1134 } 1135 rt = *rtp; 1136 if (unlikely(!rt)) 1137 return -EFAULT; 1138 /* 1139 * We steal reference to this route, caller should not release it 1140 */ 1141 *rtp = NULL; 1142 cork->fragsize = ip_sk_use_pmtu(sk) ? 1143 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1144 cork->dst = &rt->dst; 1145 cork->length = 0; 1146 cork->ttl = ipc->ttl; 1147 cork->tos = ipc->tos; 1148 cork->priority = ipc->priority; 1149 cork->tx_flags = ipc->tx_flags; 1150 1151 return 0; 1152 } 1153 1154 /* 1155 * ip_append_data() and ip_append_page() can make one large IP datagram 1156 * from many pieces of data. Each pieces will be holded on the socket 1157 * until ip_push_pending_frames() is called. Each piece can be a page 1158 * or non-page data. 1159 * 1160 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1161 * this interface potentially. 1162 * 1163 * LATER: length must be adjusted by pad at tail, when it is required. 1164 */ 1165 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1166 int getfrag(void *from, char *to, int offset, int len, 1167 int odd, struct sk_buff *skb), 1168 void *from, int length, int transhdrlen, 1169 struct ipcm_cookie *ipc, struct rtable **rtp, 1170 unsigned int flags) 1171 { 1172 struct inet_sock *inet = inet_sk(sk); 1173 int err; 1174 1175 if (flags&MSG_PROBE) 1176 return 0; 1177 1178 if (skb_queue_empty(&sk->sk_write_queue)) { 1179 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1180 if (err) 1181 return err; 1182 } else { 1183 transhdrlen = 0; 1184 } 1185 1186 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1187 sk_page_frag(sk), getfrag, 1188 from, length, transhdrlen, flags); 1189 } 1190 1191 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1192 int offset, size_t size, int flags) 1193 { 1194 struct inet_sock *inet = inet_sk(sk); 1195 struct sk_buff *skb; 1196 struct rtable *rt; 1197 struct ip_options *opt = NULL; 1198 struct inet_cork *cork; 1199 int hh_len; 1200 int mtu; 1201 int len; 1202 int err; 1203 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1204 1205 if (inet->hdrincl) 1206 return -EPERM; 1207 1208 if (flags&MSG_PROBE) 1209 return 0; 1210 1211 if (skb_queue_empty(&sk->sk_write_queue)) 1212 return -EINVAL; 1213 1214 cork = &inet->cork.base; 1215 rt = (struct rtable *)cork->dst; 1216 if (cork->flags & IPCORK_OPT) 1217 opt = cork->opt; 1218 1219 if (!(rt->dst.dev->features&NETIF_F_SG)) 1220 return -EOPNOTSUPP; 1221 1222 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1223 mtu = cork->fragsize; 1224 1225 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1226 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1227 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1228 1229 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1230 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1231 mtu - (opt ? opt->optlen : 0)); 1232 return -EMSGSIZE; 1233 } 1234 1235 skb = skb_peek_tail(&sk->sk_write_queue); 1236 if (!skb) 1237 return -EINVAL; 1238 1239 cork->length += size; 1240 if ((size + skb->len > mtu) && 1241 (sk->sk_protocol == IPPROTO_UDP) && 1242 (rt->dst.dev->features & NETIF_F_UFO)) { 1243 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1244 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1245 } 1246 1247 while (size > 0) { 1248 if (skb_is_gso(skb)) { 1249 len = size; 1250 } else { 1251 1252 /* Check if the remaining data fits into current packet. */ 1253 len = mtu - skb->len; 1254 if (len < size) 1255 len = maxfraglen - skb->len; 1256 } 1257 if (len <= 0) { 1258 struct sk_buff *skb_prev; 1259 int alloclen; 1260 1261 skb_prev = skb; 1262 fraggap = skb_prev->len - maxfraglen; 1263 1264 alloclen = fragheaderlen + hh_len + fraggap + 15; 1265 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1266 if (unlikely(!skb)) { 1267 err = -ENOBUFS; 1268 goto error; 1269 } 1270 1271 /* 1272 * Fill in the control structures 1273 */ 1274 skb->ip_summed = CHECKSUM_NONE; 1275 skb->csum = 0; 1276 skb_reserve(skb, hh_len); 1277 1278 /* 1279 * Find where to start putting bytes. 1280 */ 1281 skb_put(skb, fragheaderlen + fraggap); 1282 skb_reset_network_header(skb); 1283 skb->transport_header = (skb->network_header + 1284 fragheaderlen); 1285 if (fraggap) { 1286 skb->csum = skb_copy_and_csum_bits(skb_prev, 1287 maxfraglen, 1288 skb_transport_header(skb), 1289 fraggap, 0); 1290 skb_prev->csum = csum_sub(skb_prev->csum, 1291 skb->csum); 1292 pskb_trim_unique(skb_prev, maxfraglen); 1293 } 1294 1295 /* 1296 * Put the packet on the pending queue. 1297 */ 1298 __skb_queue_tail(&sk->sk_write_queue, skb); 1299 continue; 1300 } 1301 1302 if (len > size) 1303 len = size; 1304 1305 if (skb_append_pagefrags(skb, page, offset, len)) { 1306 err = -EMSGSIZE; 1307 goto error; 1308 } 1309 1310 if (skb->ip_summed == CHECKSUM_NONE) { 1311 __wsum csum; 1312 csum = csum_page(page, offset, len); 1313 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1314 } 1315 1316 skb->len += len; 1317 skb->data_len += len; 1318 skb->truesize += len; 1319 atomic_add(len, &sk->sk_wmem_alloc); 1320 offset += len; 1321 size -= len; 1322 } 1323 return 0; 1324 1325 error: 1326 cork->length -= size; 1327 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1328 return err; 1329 } 1330 1331 static void ip_cork_release(struct inet_cork *cork) 1332 { 1333 cork->flags &= ~IPCORK_OPT; 1334 kfree(cork->opt); 1335 cork->opt = NULL; 1336 dst_release(cork->dst); 1337 cork->dst = NULL; 1338 } 1339 1340 /* 1341 * Combined all pending IP fragments on the socket as one IP datagram 1342 * and push them out. 1343 */ 1344 struct sk_buff *__ip_make_skb(struct sock *sk, 1345 struct flowi4 *fl4, 1346 struct sk_buff_head *queue, 1347 struct inet_cork *cork) 1348 { 1349 struct sk_buff *skb, *tmp_skb; 1350 struct sk_buff **tail_skb; 1351 struct inet_sock *inet = inet_sk(sk); 1352 struct net *net = sock_net(sk); 1353 struct ip_options *opt = NULL; 1354 struct rtable *rt = (struct rtable *)cork->dst; 1355 struct iphdr *iph; 1356 __be16 df = 0; 1357 __u8 ttl; 1358 1359 skb = __skb_dequeue(queue); 1360 if (!skb) 1361 goto out; 1362 tail_skb = &(skb_shinfo(skb)->frag_list); 1363 1364 /* move skb->data to ip header from ext header */ 1365 if (skb->data < skb_network_header(skb)) 1366 __skb_pull(skb, skb_network_offset(skb)); 1367 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1368 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1369 *tail_skb = tmp_skb; 1370 tail_skb = &(tmp_skb->next); 1371 skb->len += tmp_skb->len; 1372 skb->data_len += tmp_skb->len; 1373 skb->truesize += tmp_skb->truesize; 1374 tmp_skb->destructor = NULL; 1375 tmp_skb->sk = NULL; 1376 } 1377 1378 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1379 * to fragment the frame generated here. No matter, what transforms 1380 * how transforms change size of the packet, it will come out. 1381 */ 1382 skb->ignore_df = ip_sk_ignore_df(sk); 1383 1384 /* DF bit is set when we want to see DF on outgoing frames. 1385 * If ignore_df is set too, we still allow to fragment this frame 1386 * locally. */ 1387 if (inet->pmtudisc == IP_PMTUDISC_DO || 1388 inet->pmtudisc == IP_PMTUDISC_PROBE || 1389 (skb->len <= dst_mtu(&rt->dst) && 1390 ip_dont_fragment(sk, &rt->dst))) 1391 df = htons(IP_DF); 1392 1393 if (cork->flags & IPCORK_OPT) 1394 opt = cork->opt; 1395 1396 if (cork->ttl != 0) 1397 ttl = cork->ttl; 1398 else if (rt->rt_type == RTN_MULTICAST) 1399 ttl = inet->mc_ttl; 1400 else 1401 ttl = ip_select_ttl(inet, &rt->dst); 1402 1403 iph = ip_hdr(skb); 1404 iph->version = 4; 1405 iph->ihl = 5; 1406 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1407 iph->frag_off = df; 1408 iph->ttl = ttl; 1409 iph->protocol = sk->sk_protocol; 1410 ip_copy_addrs(iph, fl4); 1411 ip_select_ident(net, skb, sk); 1412 1413 if (opt) { 1414 iph->ihl += opt->optlen>>2; 1415 ip_options_build(skb, opt, cork->addr, rt, 0); 1416 } 1417 1418 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1419 skb->mark = sk->sk_mark; 1420 /* 1421 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1422 * on dst refcount 1423 */ 1424 cork->dst = NULL; 1425 skb_dst_set(skb, &rt->dst); 1426 1427 if (iph->protocol == IPPROTO_ICMP) 1428 icmp_out_count(net, ((struct icmphdr *) 1429 skb_transport_header(skb))->type); 1430 1431 ip_cork_release(cork); 1432 out: 1433 return skb; 1434 } 1435 1436 int ip_send_skb(struct net *net, struct sk_buff *skb) 1437 { 1438 int err; 1439 1440 err = ip_local_out(net, skb->sk, skb); 1441 if (err) { 1442 if (err > 0) 1443 err = net_xmit_errno(err); 1444 if (err) 1445 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1446 } 1447 1448 return err; 1449 } 1450 1451 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1452 { 1453 struct sk_buff *skb; 1454 1455 skb = ip_finish_skb(sk, fl4); 1456 if (!skb) 1457 return 0; 1458 1459 /* Netfilter gets whole the not fragmented skb. */ 1460 return ip_send_skb(sock_net(sk), skb); 1461 } 1462 1463 /* 1464 * Throw away all pending data on the socket. 1465 */ 1466 static void __ip_flush_pending_frames(struct sock *sk, 1467 struct sk_buff_head *queue, 1468 struct inet_cork *cork) 1469 { 1470 struct sk_buff *skb; 1471 1472 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1473 kfree_skb(skb); 1474 1475 ip_cork_release(cork); 1476 } 1477 1478 void ip_flush_pending_frames(struct sock *sk) 1479 { 1480 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1481 } 1482 1483 struct sk_buff *ip_make_skb(struct sock *sk, 1484 struct flowi4 *fl4, 1485 int getfrag(void *from, char *to, int offset, 1486 int len, int odd, struct sk_buff *skb), 1487 void *from, int length, int transhdrlen, 1488 struct ipcm_cookie *ipc, struct rtable **rtp, 1489 unsigned int flags) 1490 { 1491 struct inet_cork cork; 1492 struct sk_buff_head queue; 1493 int err; 1494 1495 if (flags & MSG_PROBE) 1496 return NULL; 1497 1498 __skb_queue_head_init(&queue); 1499 1500 cork.flags = 0; 1501 cork.addr = 0; 1502 cork.opt = NULL; 1503 err = ip_setup_cork(sk, &cork, ipc, rtp); 1504 if (err) 1505 return ERR_PTR(err); 1506 1507 err = __ip_append_data(sk, fl4, &queue, &cork, 1508 ¤t->task_frag, getfrag, 1509 from, length, transhdrlen, flags); 1510 if (err) { 1511 __ip_flush_pending_frames(sk, &queue, &cork); 1512 return ERR_PTR(err); 1513 } 1514 1515 return __ip_make_skb(sk, fl4, &queue, &cork); 1516 } 1517 1518 /* 1519 * Fetch data from kernel space and fill in checksum if needed. 1520 */ 1521 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1522 int len, int odd, struct sk_buff *skb) 1523 { 1524 __wsum csum; 1525 1526 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1527 skb->csum = csum_block_add(skb->csum, csum, odd); 1528 return 0; 1529 } 1530 1531 /* 1532 * Generic function to send a packet as reply to another packet. 1533 * Used to send some TCP resets/acks so far. 1534 */ 1535 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1536 const struct ip_options *sopt, 1537 __be32 daddr, __be32 saddr, 1538 const struct ip_reply_arg *arg, 1539 unsigned int len) 1540 { 1541 struct ip_options_data replyopts; 1542 struct ipcm_cookie ipc; 1543 struct flowi4 fl4; 1544 struct rtable *rt = skb_rtable(skb); 1545 struct net *net = sock_net(sk); 1546 struct sk_buff *nskb; 1547 int err; 1548 int oif; 1549 1550 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1551 return; 1552 1553 ipc.addr = daddr; 1554 ipc.opt = NULL; 1555 ipc.tx_flags = 0; 1556 ipc.ttl = 0; 1557 ipc.tos = -1; 1558 1559 if (replyopts.opt.opt.optlen) { 1560 ipc.opt = &replyopts.opt; 1561 1562 if (replyopts.opt.opt.srr) 1563 daddr = replyopts.opt.opt.faddr; 1564 } 1565 1566 oif = arg->bound_dev_if; 1567 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1568 oif = skb->skb_iif; 1569 1570 flowi4_init_output(&fl4, oif, 1571 IP4_REPLY_MARK(net, skb->mark), 1572 RT_TOS(arg->tos), 1573 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1574 ip_reply_arg_flowi_flags(arg), 1575 daddr, saddr, 1576 tcp_hdr(skb)->source, tcp_hdr(skb)->dest); 1577 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1578 rt = ip_route_output_key(net, &fl4); 1579 if (IS_ERR(rt)) 1580 return; 1581 1582 inet_sk(sk)->tos = arg->tos; 1583 1584 sk->sk_priority = skb->priority; 1585 sk->sk_protocol = ip_hdr(skb)->protocol; 1586 sk->sk_bound_dev_if = arg->bound_dev_if; 1587 sk->sk_sndbuf = sysctl_wmem_default; 1588 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1589 len, 0, &ipc, &rt, MSG_DONTWAIT); 1590 if (unlikely(err)) { 1591 ip_flush_pending_frames(sk); 1592 goto out; 1593 } 1594 1595 nskb = skb_peek(&sk->sk_write_queue); 1596 if (nskb) { 1597 if (arg->csumoffset >= 0) 1598 *((__sum16 *)skb_transport_header(nskb) + 1599 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1600 arg->csum)); 1601 nskb->ip_summed = CHECKSUM_NONE; 1602 ip_push_pending_frames(sk, &fl4); 1603 } 1604 out: 1605 ip_rt_put(rt); 1606 } 1607 1608 void __init ip_init(void) 1609 { 1610 ip_rt_init(); 1611 inet_initpeers(); 1612 1613 #if defined(CONFIG_IP_MULTICAST) 1614 igmp_mc_init(); 1615 #endif 1616 } 1617