xref: /openbmc/linux/net/ipv4/ip_output.c (revision 2874c5fd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	netdev_features_t features;
244 	struct sk_buff *segs;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	do {
276 		struct sk_buff *nskb = segs->next;
277 		int err;
278 
279 		skb_mark_not_on_list(segs);
280 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 
282 		if (err && ret == 0)
283 			ret = err;
284 		segs = nskb;
285 	} while (segs);
286 
287 	return ret;
288 }
289 
290 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291 {
292 	unsigned int mtu;
293 	int ret;
294 
295 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
296 	if (ret) {
297 		kfree_skb(skb);
298 		return ret;
299 	}
300 
301 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
302 	/* Policy lookup after SNAT yielded a new policy */
303 	if (skb_dst(skb)->xfrm) {
304 		IPCB(skb)->flags |= IPSKB_REROUTED;
305 		return dst_output(net, sk, skb);
306 	}
307 #endif
308 	mtu = ip_skb_dst_mtu(sk, skb);
309 	if (skb_is_gso(skb))
310 		return ip_finish_output_gso(net, sk, skb, mtu);
311 
312 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
313 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
314 
315 	return ip_finish_output2(net, sk, skb);
316 }
317 
318 static int ip_mc_finish_output(struct net *net, struct sock *sk,
319 			       struct sk_buff *skb)
320 {
321 	int ret;
322 
323 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
324 	if (ret) {
325 		kfree_skb(skb);
326 		return ret;
327 	}
328 
329 	return dev_loopback_xmit(net, sk, skb);
330 }
331 
332 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
333 {
334 	struct rtable *rt = skb_rtable(skb);
335 	struct net_device *dev = rt->dst.dev;
336 
337 	/*
338 	 *	If the indicated interface is up and running, send the packet.
339 	 */
340 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
341 
342 	skb->dev = dev;
343 	skb->protocol = htons(ETH_P_IP);
344 
345 	/*
346 	 *	Multicasts are looped back for other local users
347 	 */
348 
349 	if (rt->rt_flags&RTCF_MULTICAST) {
350 		if (sk_mc_loop(sk)
351 #ifdef CONFIG_IP_MROUTE
352 		/* Small optimization: do not loopback not local frames,
353 		   which returned after forwarding; they will be  dropped
354 		   by ip_mr_input in any case.
355 		   Note, that local frames are looped back to be delivered
356 		   to local recipients.
357 
358 		   This check is duplicated in ip_mr_input at the moment.
359 		 */
360 		    &&
361 		    ((rt->rt_flags & RTCF_LOCAL) ||
362 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
363 #endif
364 		   ) {
365 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
366 			if (newskb)
367 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
368 					net, sk, newskb, NULL, newskb->dev,
369 					ip_mc_finish_output);
370 		}
371 
372 		/* Multicasts with ttl 0 must not go beyond the host */
373 
374 		if (ip_hdr(skb)->ttl == 0) {
375 			kfree_skb(skb);
376 			return 0;
377 		}
378 	}
379 
380 	if (rt->rt_flags&RTCF_BROADCAST) {
381 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
382 		if (newskb)
383 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
384 				net, sk, newskb, NULL, newskb->dev,
385 				ip_mc_finish_output);
386 	}
387 
388 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
389 			    net, sk, skb, NULL, skb->dev,
390 			    ip_finish_output,
391 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
392 }
393 
394 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
395 {
396 	struct net_device *dev = skb_dst(skb)->dev;
397 
398 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
399 
400 	skb->dev = dev;
401 	skb->protocol = htons(ETH_P_IP);
402 
403 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
404 			    net, sk, skb, NULL, dev,
405 			    ip_finish_output,
406 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
407 }
408 
409 /*
410  * copy saddr and daddr, possibly using 64bit load/stores
411  * Equivalent to :
412  *   iph->saddr = fl4->saddr;
413  *   iph->daddr = fl4->daddr;
414  */
415 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
416 {
417 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
418 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
419 	memcpy(&iph->saddr, &fl4->saddr,
420 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
421 }
422 
423 /* Note: skb->sk can be different from sk, in case of tunnels */
424 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
425 		    __u8 tos)
426 {
427 	struct inet_sock *inet = inet_sk(sk);
428 	struct net *net = sock_net(sk);
429 	struct ip_options_rcu *inet_opt;
430 	struct flowi4 *fl4;
431 	struct rtable *rt;
432 	struct iphdr *iph;
433 	int res;
434 
435 	/* Skip all of this if the packet is already routed,
436 	 * f.e. by something like SCTP.
437 	 */
438 	rcu_read_lock();
439 	inet_opt = rcu_dereference(inet->inet_opt);
440 	fl4 = &fl->u.ip4;
441 	rt = skb_rtable(skb);
442 	if (rt)
443 		goto packet_routed;
444 
445 	/* Make sure we can route this packet. */
446 	rt = (struct rtable *)__sk_dst_check(sk, 0);
447 	if (!rt) {
448 		__be32 daddr;
449 
450 		/* Use correct destination address if we have options. */
451 		daddr = inet->inet_daddr;
452 		if (inet_opt && inet_opt->opt.srr)
453 			daddr = inet_opt->opt.faddr;
454 
455 		/* If this fails, retransmit mechanism of transport layer will
456 		 * keep trying until route appears or the connection times
457 		 * itself out.
458 		 */
459 		rt = ip_route_output_ports(net, fl4, sk,
460 					   daddr, inet->inet_saddr,
461 					   inet->inet_dport,
462 					   inet->inet_sport,
463 					   sk->sk_protocol,
464 					   RT_CONN_FLAGS_TOS(sk, tos),
465 					   sk->sk_bound_dev_if);
466 		if (IS_ERR(rt))
467 			goto no_route;
468 		sk_setup_caps(sk, &rt->dst);
469 	}
470 	skb_dst_set_noref(skb, &rt->dst);
471 
472 packet_routed:
473 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_gw_family)
474 		goto no_route;
475 
476 	/* OK, we know where to send it, allocate and build IP header. */
477 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
478 	skb_reset_network_header(skb);
479 	iph = ip_hdr(skb);
480 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
481 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
482 		iph->frag_off = htons(IP_DF);
483 	else
484 		iph->frag_off = 0;
485 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
486 	iph->protocol = sk->sk_protocol;
487 	ip_copy_addrs(iph, fl4);
488 
489 	/* Transport layer set skb->h.foo itself. */
490 
491 	if (inet_opt && inet_opt->opt.optlen) {
492 		iph->ihl += inet_opt->opt.optlen >> 2;
493 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
494 	}
495 
496 	ip_select_ident_segs(net, skb, sk,
497 			     skb_shinfo(skb)->gso_segs ?: 1);
498 
499 	/* TODO : should we use skb->sk here instead of sk ? */
500 	skb->priority = sk->sk_priority;
501 	skb->mark = sk->sk_mark;
502 
503 	res = ip_local_out(net, sk, skb);
504 	rcu_read_unlock();
505 	return res;
506 
507 no_route:
508 	rcu_read_unlock();
509 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
510 	kfree_skb(skb);
511 	return -EHOSTUNREACH;
512 }
513 EXPORT_SYMBOL(__ip_queue_xmit);
514 
515 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
516 {
517 	to->pkt_type = from->pkt_type;
518 	to->priority = from->priority;
519 	to->protocol = from->protocol;
520 	to->skb_iif = from->skb_iif;
521 	skb_dst_drop(to);
522 	skb_dst_copy(to, from);
523 	to->dev = from->dev;
524 	to->mark = from->mark;
525 
526 	skb_copy_hash(to, from);
527 
528 	/* Copy the flags to each fragment. */
529 	IPCB(to)->flags = IPCB(from)->flags;
530 
531 #ifdef CONFIG_NET_SCHED
532 	to->tc_index = from->tc_index;
533 #endif
534 	nf_copy(to, from);
535 	skb_ext_copy(to, from);
536 #if IS_ENABLED(CONFIG_IP_VS)
537 	to->ipvs_property = from->ipvs_property;
538 #endif
539 	skb_copy_secmark(to, from);
540 }
541 
542 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
543 		       unsigned int mtu,
544 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
545 {
546 	struct iphdr *iph = ip_hdr(skb);
547 
548 	if ((iph->frag_off & htons(IP_DF)) == 0)
549 		return ip_do_fragment(net, sk, skb, output);
550 
551 	if (unlikely(!skb->ignore_df ||
552 		     (IPCB(skb)->frag_max_size &&
553 		      IPCB(skb)->frag_max_size > mtu))) {
554 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
555 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
556 			  htonl(mtu));
557 		kfree_skb(skb);
558 		return -EMSGSIZE;
559 	}
560 
561 	return ip_do_fragment(net, sk, skb, output);
562 }
563 
564 /*
565  *	This IP datagram is too large to be sent in one piece.  Break it up into
566  *	smaller pieces (each of size equal to IP header plus
567  *	a block of the data of the original IP data part) that will yet fit in a
568  *	single device frame, and queue such a frame for sending.
569  */
570 
571 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
572 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
573 {
574 	struct iphdr *iph;
575 	int ptr;
576 	struct sk_buff *skb2;
577 	unsigned int mtu, hlen, left, len, ll_rs;
578 	int offset;
579 	__be16 not_last_frag;
580 	struct rtable *rt = skb_rtable(skb);
581 	int err = 0;
582 
583 	/* for offloaded checksums cleanup checksum before fragmentation */
584 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
585 	    (err = skb_checksum_help(skb)))
586 		goto fail;
587 
588 	/*
589 	 *	Point into the IP datagram header.
590 	 */
591 
592 	iph = ip_hdr(skb);
593 
594 	mtu = ip_skb_dst_mtu(sk, skb);
595 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
596 		mtu = IPCB(skb)->frag_max_size;
597 
598 	/*
599 	 *	Setup starting values.
600 	 */
601 
602 	hlen = iph->ihl * 4;
603 	mtu = mtu - hlen;	/* Size of data space */
604 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
605 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
606 
607 	/* When frag_list is given, use it. First, check its validity:
608 	 * some transformers could create wrong frag_list or break existing
609 	 * one, it is not prohibited. In this case fall back to copying.
610 	 *
611 	 * LATER: this step can be merged to real generation of fragments,
612 	 * we can switch to copy when see the first bad fragment.
613 	 */
614 	if (skb_has_frag_list(skb)) {
615 		struct sk_buff *frag, *frag2;
616 		unsigned int first_len = skb_pagelen(skb);
617 
618 		if (first_len - hlen > mtu ||
619 		    ((first_len - hlen) & 7) ||
620 		    ip_is_fragment(iph) ||
621 		    skb_cloned(skb) ||
622 		    skb_headroom(skb) < ll_rs)
623 			goto slow_path;
624 
625 		skb_walk_frags(skb, frag) {
626 			/* Correct geometry. */
627 			if (frag->len > mtu ||
628 			    ((frag->len & 7) && frag->next) ||
629 			    skb_headroom(frag) < hlen + ll_rs)
630 				goto slow_path_clean;
631 
632 			/* Partially cloned skb? */
633 			if (skb_shared(frag))
634 				goto slow_path_clean;
635 
636 			BUG_ON(frag->sk);
637 			if (skb->sk) {
638 				frag->sk = skb->sk;
639 				frag->destructor = sock_wfree;
640 			}
641 			skb->truesize -= frag->truesize;
642 		}
643 
644 		/* Everything is OK. Generate! */
645 
646 		err = 0;
647 		offset = 0;
648 		frag = skb_shinfo(skb)->frag_list;
649 		skb_frag_list_init(skb);
650 		skb->data_len = first_len - skb_headlen(skb);
651 		skb->len = first_len;
652 		iph->tot_len = htons(first_len);
653 		iph->frag_off = htons(IP_MF);
654 		ip_send_check(iph);
655 
656 		for (;;) {
657 			/* Prepare header of the next frame,
658 			 * before previous one went down. */
659 			if (frag) {
660 				frag->ip_summed = CHECKSUM_NONE;
661 				skb_reset_transport_header(frag);
662 				__skb_push(frag, hlen);
663 				skb_reset_network_header(frag);
664 				memcpy(skb_network_header(frag), iph, hlen);
665 				iph = ip_hdr(frag);
666 				iph->tot_len = htons(frag->len);
667 				ip_copy_metadata(frag, skb);
668 				if (offset == 0)
669 					ip_options_fragment(frag);
670 				offset += skb->len - hlen;
671 				iph->frag_off = htons(offset>>3);
672 				if (frag->next)
673 					iph->frag_off |= htons(IP_MF);
674 				/* Ready, complete checksum */
675 				ip_send_check(iph);
676 			}
677 
678 			err = output(net, sk, skb);
679 
680 			if (!err)
681 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
682 			if (err || !frag)
683 				break;
684 
685 			skb = frag;
686 			frag = skb->next;
687 			skb_mark_not_on_list(skb);
688 		}
689 
690 		if (err == 0) {
691 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
692 			return 0;
693 		}
694 
695 		kfree_skb_list(frag);
696 
697 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
698 		return err;
699 
700 slow_path_clean:
701 		skb_walk_frags(skb, frag2) {
702 			if (frag2 == frag)
703 				break;
704 			frag2->sk = NULL;
705 			frag2->destructor = NULL;
706 			skb->truesize += frag2->truesize;
707 		}
708 	}
709 
710 slow_path:
711 	iph = ip_hdr(skb);
712 
713 	left = skb->len - hlen;		/* Space per frame */
714 	ptr = hlen;		/* Where to start from */
715 
716 	/*
717 	 *	Fragment the datagram.
718 	 */
719 
720 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
721 	not_last_frag = iph->frag_off & htons(IP_MF);
722 
723 	/*
724 	 *	Keep copying data until we run out.
725 	 */
726 
727 	while (left > 0) {
728 		len = left;
729 		/* IF: it doesn't fit, use 'mtu' - the data space left */
730 		if (len > mtu)
731 			len = mtu;
732 		/* IF: we are not sending up to and including the packet end
733 		   then align the next start on an eight byte boundary */
734 		if (len < left)	{
735 			len &= ~7;
736 		}
737 
738 		/* Allocate buffer */
739 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
740 		if (!skb2) {
741 			err = -ENOMEM;
742 			goto fail;
743 		}
744 
745 		/*
746 		 *	Set up data on packet
747 		 */
748 
749 		ip_copy_metadata(skb2, skb);
750 		skb_reserve(skb2, ll_rs);
751 		skb_put(skb2, len + hlen);
752 		skb_reset_network_header(skb2);
753 		skb2->transport_header = skb2->network_header + hlen;
754 
755 		/*
756 		 *	Charge the memory for the fragment to any owner
757 		 *	it might possess
758 		 */
759 
760 		if (skb->sk)
761 			skb_set_owner_w(skb2, skb->sk);
762 
763 		/*
764 		 *	Copy the packet header into the new buffer.
765 		 */
766 
767 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
768 
769 		/*
770 		 *	Copy a block of the IP datagram.
771 		 */
772 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
773 			BUG();
774 		left -= len;
775 
776 		/*
777 		 *	Fill in the new header fields.
778 		 */
779 		iph = ip_hdr(skb2);
780 		iph->frag_off = htons((offset >> 3));
781 
782 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
783 			iph->frag_off |= htons(IP_DF);
784 
785 		/* ANK: dirty, but effective trick. Upgrade options only if
786 		 * the segment to be fragmented was THE FIRST (otherwise,
787 		 * options are already fixed) and make it ONCE
788 		 * on the initial skb, so that all the following fragments
789 		 * will inherit fixed options.
790 		 */
791 		if (offset == 0)
792 			ip_options_fragment(skb);
793 
794 		/*
795 		 *	Added AC : If we are fragmenting a fragment that's not the
796 		 *		   last fragment then keep MF on each bit
797 		 */
798 		if (left > 0 || not_last_frag)
799 			iph->frag_off |= htons(IP_MF);
800 		ptr += len;
801 		offset += len;
802 
803 		/*
804 		 *	Put this fragment into the sending queue.
805 		 */
806 		iph->tot_len = htons(len + hlen);
807 
808 		ip_send_check(iph);
809 
810 		err = output(net, sk, skb2);
811 		if (err)
812 			goto fail;
813 
814 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
815 	}
816 	consume_skb(skb);
817 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
818 	return err;
819 
820 fail:
821 	kfree_skb(skb);
822 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
823 	return err;
824 }
825 EXPORT_SYMBOL(ip_do_fragment);
826 
827 int
828 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
829 {
830 	struct msghdr *msg = from;
831 
832 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
833 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
834 			return -EFAULT;
835 	} else {
836 		__wsum csum = 0;
837 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
838 			return -EFAULT;
839 		skb->csum = csum_block_add(skb->csum, csum, odd);
840 	}
841 	return 0;
842 }
843 EXPORT_SYMBOL(ip_generic_getfrag);
844 
845 static inline __wsum
846 csum_page(struct page *page, int offset, int copy)
847 {
848 	char *kaddr;
849 	__wsum csum;
850 	kaddr = kmap(page);
851 	csum = csum_partial(kaddr + offset, copy, 0);
852 	kunmap(page);
853 	return csum;
854 }
855 
856 static int __ip_append_data(struct sock *sk,
857 			    struct flowi4 *fl4,
858 			    struct sk_buff_head *queue,
859 			    struct inet_cork *cork,
860 			    struct page_frag *pfrag,
861 			    int getfrag(void *from, char *to, int offset,
862 					int len, int odd, struct sk_buff *skb),
863 			    void *from, int length, int transhdrlen,
864 			    unsigned int flags)
865 {
866 	struct inet_sock *inet = inet_sk(sk);
867 	struct ubuf_info *uarg = NULL;
868 	struct sk_buff *skb;
869 
870 	struct ip_options *opt = cork->opt;
871 	int hh_len;
872 	int exthdrlen;
873 	int mtu;
874 	int copy;
875 	int err;
876 	int offset = 0;
877 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
878 	int csummode = CHECKSUM_NONE;
879 	struct rtable *rt = (struct rtable *)cork->dst;
880 	unsigned int wmem_alloc_delta = 0;
881 	bool paged, extra_uref;
882 	u32 tskey = 0;
883 
884 	skb = skb_peek_tail(queue);
885 
886 	exthdrlen = !skb ? rt->dst.header_len : 0;
887 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
888 	paged = !!cork->gso_size;
889 
890 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
891 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
892 		tskey = sk->sk_tskey++;
893 
894 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
895 
896 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
897 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
898 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
899 
900 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
901 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
902 			       mtu - (opt ? opt->optlen : 0));
903 		return -EMSGSIZE;
904 	}
905 
906 	/*
907 	 * transhdrlen > 0 means that this is the first fragment and we wish
908 	 * it won't be fragmented in the future.
909 	 */
910 	if (transhdrlen &&
911 	    length + fragheaderlen <= mtu &&
912 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
913 	    (!(flags & MSG_MORE) || cork->gso_size) &&
914 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
915 		csummode = CHECKSUM_PARTIAL;
916 
917 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
918 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
919 		if (!uarg)
920 			return -ENOBUFS;
921 		extra_uref = true;
922 		if (rt->dst.dev->features & NETIF_F_SG &&
923 		    csummode == CHECKSUM_PARTIAL) {
924 			paged = true;
925 		} else {
926 			uarg->zerocopy = 0;
927 			skb_zcopy_set(skb, uarg, &extra_uref);
928 		}
929 	}
930 
931 	cork->length += length;
932 
933 	/* So, what's going on in the loop below?
934 	 *
935 	 * We use calculated fragment length to generate chained skb,
936 	 * each of segments is IP fragment ready for sending to network after
937 	 * adding appropriate IP header.
938 	 */
939 
940 	if (!skb)
941 		goto alloc_new_skb;
942 
943 	while (length > 0) {
944 		/* Check if the remaining data fits into current packet. */
945 		copy = mtu - skb->len;
946 		if (copy < length)
947 			copy = maxfraglen - skb->len;
948 		if (copy <= 0) {
949 			char *data;
950 			unsigned int datalen;
951 			unsigned int fraglen;
952 			unsigned int fraggap;
953 			unsigned int alloclen;
954 			unsigned int pagedlen;
955 			struct sk_buff *skb_prev;
956 alloc_new_skb:
957 			skb_prev = skb;
958 			if (skb_prev)
959 				fraggap = skb_prev->len - maxfraglen;
960 			else
961 				fraggap = 0;
962 
963 			/*
964 			 * If remaining data exceeds the mtu,
965 			 * we know we need more fragment(s).
966 			 */
967 			datalen = length + fraggap;
968 			if (datalen > mtu - fragheaderlen)
969 				datalen = maxfraglen - fragheaderlen;
970 			fraglen = datalen + fragheaderlen;
971 			pagedlen = 0;
972 
973 			if ((flags & MSG_MORE) &&
974 			    !(rt->dst.dev->features&NETIF_F_SG))
975 				alloclen = mtu;
976 			else if (!paged)
977 				alloclen = fraglen;
978 			else {
979 				alloclen = min_t(int, fraglen, MAX_HEADER);
980 				pagedlen = fraglen - alloclen;
981 			}
982 
983 			alloclen += exthdrlen;
984 
985 			/* The last fragment gets additional space at tail.
986 			 * Note, with MSG_MORE we overallocate on fragments,
987 			 * because we have no idea what fragment will be
988 			 * the last.
989 			 */
990 			if (datalen == length + fraggap)
991 				alloclen += rt->dst.trailer_len;
992 
993 			if (transhdrlen) {
994 				skb = sock_alloc_send_skb(sk,
995 						alloclen + hh_len + 15,
996 						(flags & MSG_DONTWAIT), &err);
997 			} else {
998 				skb = NULL;
999 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1000 				    2 * sk->sk_sndbuf)
1001 					skb = alloc_skb(alloclen + hh_len + 15,
1002 							sk->sk_allocation);
1003 				if (unlikely(!skb))
1004 					err = -ENOBUFS;
1005 			}
1006 			if (!skb)
1007 				goto error;
1008 
1009 			/*
1010 			 *	Fill in the control structures
1011 			 */
1012 			skb->ip_summed = csummode;
1013 			skb->csum = 0;
1014 			skb_reserve(skb, hh_len);
1015 
1016 			/*
1017 			 *	Find where to start putting bytes.
1018 			 */
1019 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1020 			skb_set_network_header(skb, exthdrlen);
1021 			skb->transport_header = (skb->network_header +
1022 						 fragheaderlen);
1023 			data += fragheaderlen + exthdrlen;
1024 
1025 			if (fraggap) {
1026 				skb->csum = skb_copy_and_csum_bits(
1027 					skb_prev, maxfraglen,
1028 					data + transhdrlen, fraggap, 0);
1029 				skb_prev->csum = csum_sub(skb_prev->csum,
1030 							  skb->csum);
1031 				data += fraggap;
1032 				pskb_trim_unique(skb_prev, maxfraglen);
1033 			}
1034 
1035 			copy = datalen - transhdrlen - fraggap - pagedlen;
1036 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1037 				err = -EFAULT;
1038 				kfree_skb(skb);
1039 				goto error;
1040 			}
1041 
1042 			offset += copy;
1043 			length -= copy + transhdrlen;
1044 			transhdrlen = 0;
1045 			exthdrlen = 0;
1046 			csummode = CHECKSUM_NONE;
1047 
1048 			/* only the initial fragment is time stamped */
1049 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1050 			cork->tx_flags = 0;
1051 			skb_shinfo(skb)->tskey = tskey;
1052 			tskey = 0;
1053 			skb_zcopy_set(skb, uarg, &extra_uref);
1054 
1055 			if ((flags & MSG_CONFIRM) && !skb_prev)
1056 				skb_set_dst_pending_confirm(skb, 1);
1057 
1058 			/*
1059 			 * Put the packet on the pending queue.
1060 			 */
1061 			if (!skb->destructor) {
1062 				skb->destructor = sock_wfree;
1063 				skb->sk = sk;
1064 				wmem_alloc_delta += skb->truesize;
1065 			}
1066 			__skb_queue_tail(queue, skb);
1067 			continue;
1068 		}
1069 
1070 		if (copy > length)
1071 			copy = length;
1072 
1073 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1074 		    skb_tailroom(skb) >= copy) {
1075 			unsigned int off;
1076 
1077 			off = skb->len;
1078 			if (getfrag(from, skb_put(skb, copy),
1079 					offset, copy, off, skb) < 0) {
1080 				__skb_trim(skb, off);
1081 				err = -EFAULT;
1082 				goto error;
1083 			}
1084 		} else if (!uarg || !uarg->zerocopy) {
1085 			int i = skb_shinfo(skb)->nr_frags;
1086 
1087 			err = -ENOMEM;
1088 			if (!sk_page_frag_refill(sk, pfrag))
1089 				goto error;
1090 
1091 			if (!skb_can_coalesce(skb, i, pfrag->page,
1092 					      pfrag->offset)) {
1093 				err = -EMSGSIZE;
1094 				if (i == MAX_SKB_FRAGS)
1095 					goto error;
1096 
1097 				__skb_fill_page_desc(skb, i, pfrag->page,
1098 						     pfrag->offset, 0);
1099 				skb_shinfo(skb)->nr_frags = ++i;
1100 				get_page(pfrag->page);
1101 			}
1102 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1103 			if (getfrag(from,
1104 				    page_address(pfrag->page) + pfrag->offset,
1105 				    offset, copy, skb->len, skb) < 0)
1106 				goto error_efault;
1107 
1108 			pfrag->offset += copy;
1109 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1110 			skb->len += copy;
1111 			skb->data_len += copy;
1112 			skb->truesize += copy;
1113 			wmem_alloc_delta += copy;
1114 		} else {
1115 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1116 			if (err < 0)
1117 				goto error;
1118 		}
1119 		offset += copy;
1120 		length -= copy;
1121 	}
1122 
1123 	if (wmem_alloc_delta)
1124 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1125 	return 0;
1126 
1127 error_efault:
1128 	err = -EFAULT;
1129 error:
1130 	if (uarg)
1131 		sock_zerocopy_put_abort(uarg, extra_uref);
1132 	cork->length -= length;
1133 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1134 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1135 	return err;
1136 }
1137 
1138 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1139 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1140 {
1141 	struct ip_options_rcu *opt;
1142 	struct rtable *rt;
1143 
1144 	rt = *rtp;
1145 	if (unlikely(!rt))
1146 		return -EFAULT;
1147 
1148 	/*
1149 	 * setup for corking.
1150 	 */
1151 	opt = ipc->opt;
1152 	if (opt) {
1153 		if (!cork->opt) {
1154 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1155 					    sk->sk_allocation);
1156 			if (unlikely(!cork->opt))
1157 				return -ENOBUFS;
1158 		}
1159 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1160 		cork->flags |= IPCORK_OPT;
1161 		cork->addr = ipc->addr;
1162 	}
1163 
1164 	/*
1165 	 * We steal reference to this route, caller should not release it
1166 	 */
1167 	*rtp = NULL;
1168 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1169 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1170 
1171 	cork->gso_size = ipc->gso_size;
1172 	cork->dst = &rt->dst;
1173 	cork->length = 0;
1174 	cork->ttl = ipc->ttl;
1175 	cork->tos = ipc->tos;
1176 	cork->priority = ipc->priority;
1177 	cork->transmit_time = ipc->sockc.transmit_time;
1178 	cork->tx_flags = 0;
1179 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  *	ip_append_data() and ip_append_page() can make one large IP datagram
1186  *	from many pieces of data. Each pieces will be holded on the socket
1187  *	until ip_push_pending_frames() is called. Each piece can be a page
1188  *	or non-page data.
1189  *
1190  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1191  *	this interface potentially.
1192  *
1193  *	LATER: length must be adjusted by pad at tail, when it is required.
1194  */
1195 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1196 		   int getfrag(void *from, char *to, int offset, int len,
1197 			       int odd, struct sk_buff *skb),
1198 		   void *from, int length, int transhdrlen,
1199 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1200 		   unsigned int flags)
1201 {
1202 	struct inet_sock *inet = inet_sk(sk);
1203 	int err;
1204 
1205 	if (flags&MSG_PROBE)
1206 		return 0;
1207 
1208 	if (skb_queue_empty(&sk->sk_write_queue)) {
1209 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1210 		if (err)
1211 			return err;
1212 	} else {
1213 		transhdrlen = 0;
1214 	}
1215 
1216 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1217 				sk_page_frag(sk), getfrag,
1218 				from, length, transhdrlen, flags);
1219 }
1220 
1221 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1222 		       int offset, size_t size, int flags)
1223 {
1224 	struct inet_sock *inet = inet_sk(sk);
1225 	struct sk_buff *skb;
1226 	struct rtable *rt;
1227 	struct ip_options *opt = NULL;
1228 	struct inet_cork *cork;
1229 	int hh_len;
1230 	int mtu;
1231 	int len;
1232 	int err;
1233 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1234 
1235 	if (inet->hdrincl)
1236 		return -EPERM;
1237 
1238 	if (flags&MSG_PROBE)
1239 		return 0;
1240 
1241 	if (skb_queue_empty(&sk->sk_write_queue))
1242 		return -EINVAL;
1243 
1244 	cork = &inet->cork.base;
1245 	rt = (struct rtable *)cork->dst;
1246 	if (cork->flags & IPCORK_OPT)
1247 		opt = cork->opt;
1248 
1249 	if (!(rt->dst.dev->features&NETIF_F_SG))
1250 		return -EOPNOTSUPP;
1251 
1252 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1253 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1254 
1255 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1256 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1257 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1258 
1259 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1260 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1261 			       mtu - (opt ? opt->optlen : 0));
1262 		return -EMSGSIZE;
1263 	}
1264 
1265 	skb = skb_peek_tail(&sk->sk_write_queue);
1266 	if (!skb)
1267 		return -EINVAL;
1268 
1269 	cork->length += size;
1270 
1271 	while (size > 0) {
1272 		/* Check if the remaining data fits into current packet. */
1273 		len = mtu - skb->len;
1274 		if (len < size)
1275 			len = maxfraglen - skb->len;
1276 
1277 		if (len <= 0) {
1278 			struct sk_buff *skb_prev;
1279 			int alloclen;
1280 
1281 			skb_prev = skb;
1282 			fraggap = skb_prev->len - maxfraglen;
1283 
1284 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1285 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1286 			if (unlikely(!skb)) {
1287 				err = -ENOBUFS;
1288 				goto error;
1289 			}
1290 
1291 			/*
1292 			 *	Fill in the control structures
1293 			 */
1294 			skb->ip_summed = CHECKSUM_NONE;
1295 			skb->csum = 0;
1296 			skb_reserve(skb, hh_len);
1297 
1298 			/*
1299 			 *	Find where to start putting bytes.
1300 			 */
1301 			skb_put(skb, fragheaderlen + fraggap);
1302 			skb_reset_network_header(skb);
1303 			skb->transport_header = (skb->network_header +
1304 						 fragheaderlen);
1305 			if (fraggap) {
1306 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1307 								   maxfraglen,
1308 						    skb_transport_header(skb),
1309 								   fraggap, 0);
1310 				skb_prev->csum = csum_sub(skb_prev->csum,
1311 							  skb->csum);
1312 				pskb_trim_unique(skb_prev, maxfraglen);
1313 			}
1314 
1315 			/*
1316 			 * Put the packet on the pending queue.
1317 			 */
1318 			__skb_queue_tail(&sk->sk_write_queue, skb);
1319 			continue;
1320 		}
1321 
1322 		if (len > size)
1323 			len = size;
1324 
1325 		if (skb_append_pagefrags(skb, page, offset, len)) {
1326 			err = -EMSGSIZE;
1327 			goto error;
1328 		}
1329 
1330 		if (skb->ip_summed == CHECKSUM_NONE) {
1331 			__wsum csum;
1332 			csum = csum_page(page, offset, len);
1333 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1334 		}
1335 
1336 		skb->len += len;
1337 		skb->data_len += len;
1338 		skb->truesize += len;
1339 		refcount_add(len, &sk->sk_wmem_alloc);
1340 		offset += len;
1341 		size -= len;
1342 	}
1343 	return 0;
1344 
1345 error:
1346 	cork->length -= size;
1347 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1348 	return err;
1349 }
1350 
1351 static void ip_cork_release(struct inet_cork *cork)
1352 {
1353 	cork->flags &= ~IPCORK_OPT;
1354 	kfree(cork->opt);
1355 	cork->opt = NULL;
1356 	dst_release(cork->dst);
1357 	cork->dst = NULL;
1358 }
1359 
1360 /*
1361  *	Combined all pending IP fragments on the socket as one IP datagram
1362  *	and push them out.
1363  */
1364 struct sk_buff *__ip_make_skb(struct sock *sk,
1365 			      struct flowi4 *fl4,
1366 			      struct sk_buff_head *queue,
1367 			      struct inet_cork *cork)
1368 {
1369 	struct sk_buff *skb, *tmp_skb;
1370 	struct sk_buff **tail_skb;
1371 	struct inet_sock *inet = inet_sk(sk);
1372 	struct net *net = sock_net(sk);
1373 	struct ip_options *opt = NULL;
1374 	struct rtable *rt = (struct rtable *)cork->dst;
1375 	struct iphdr *iph;
1376 	__be16 df = 0;
1377 	__u8 ttl;
1378 
1379 	skb = __skb_dequeue(queue);
1380 	if (!skb)
1381 		goto out;
1382 	tail_skb = &(skb_shinfo(skb)->frag_list);
1383 
1384 	/* move skb->data to ip header from ext header */
1385 	if (skb->data < skb_network_header(skb))
1386 		__skb_pull(skb, skb_network_offset(skb));
1387 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1388 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1389 		*tail_skb = tmp_skb;
1390 		tail_skb = &(tmp_skb->next);
1391 		skb->len += tmp_skb->len;
1392 		skb->data_len += tmp_skb->len;
1393 		skb->truesize += tmp_skb->truesize;
1394 		tmp_skb->destructor = NULL;
1395 		tmp_skb->sk = NULL;
1396 	}
1397 
1398 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1399 	 * to fragment the frame generated here. No matter, what transforms
1400 	 * how transforms change size of the packet, it will come out.
1401 	 */
1402 	skb->ignore_df = ip_sk_ignore_df(sk);
1403 
1404 	/* DF bit is set when we want to see DF on outgoing frames.
1405 	 * If ignore_df is set too, we still allow to fragment this frame
1406 	 * locally. */
1407 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1408 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1409 	    (skb->len <= dst_mtu(&rt->dst) &&
1410 	     ip_dont_fragment(sk, &rt->dst)))
1411 		df = htons(IP_DF);
1412 
1413 	if (cork->flags & IPCORK_OPT)
1414 		opt = cork->opt;
1415 
1416 	if (cork->ttl != 0)
1417 		ttl = cork->ttl;
1418 	else if (rt->rt_type == RTN_MULTICAST)
1419 		ttl = inet->mc_ttl;
1420 	else
1421 		ttl = ip_select_ttl(inet, &rt->dst);
1422 
1423 	iph = ip_hdr(skb);
1424 	iph->version = 4;
1425 	iph->ihl = 5;
1426 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1427 	iph->frag_off = df;
1428 	iph->ttl = ttl;
1429 	iph->protocol = sk->sk_protocol;
1430 	ip_copy_addrs(iph, fl4);
1431 	ip_select_ident(net, skb, sk);
1432 
1433 	if (opt) {
1434 		iph->ihl += opt->optlen>>2;
1435 		ip_options_build(skb, opt, cork->addr, rt, 0);
1436 	}
1437 
1438 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1439 	skb->mark = sk->sk_mark;
1440 	skb->tstamp = cork->transmit_time;
1441 	/*
1442 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1443 	 * on dst refcount
1444 	 */
1445 	cork->dst = NULL;
1446 	skb_dst_set(skb, &rt->dst);
1447 
1448 	if (iph->protocol == IPPROTO_ICMP)
1449 		icmp_out_count(net, ((struct icmphdr *)
1450 			skb_transport_header(skb))->type);
1451 
1452 	ip_cork_release(cork);
1453 out:
1454 	return skb;
1455 }
1456 
1457 int ip_send_skb(struct net *net, struct sk_buff *skb)
1458 {
1459 	int err;
1460 
1461 	err = ip_local_out(net, skb->sk, skb);
1462 	if (err) {
1463 		if (err > 0)
1464 			err = net_xmit_errno(err);
1465 		if (err)
1466 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1467 	}
1468 
1469 	return err;
1470 }
1471 
1472 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1473 {
1474 	struct sk_buff *skb;
1475 
1476 	skb = ip_finish_skb(sk, fl4);
1477 	if (!skb)
1478 		return 0;
1479 
1480 	/* Netfilter gets whole the not fragmented skb. */
1481 	return ip_send_skb(sock_net(sk), skb);
1482 }
1483 
1484 /*
1485  *	Throw away all pending data on the socket.
1486  */
1487 static void __ip_flush_pending_frames(struct sock *sk,
1488 				      struct sk_buff_head *queue,
1489 				      struct inet_cork *cork)
1490 {
1491 	struct sk_buff *skb;
1492 
1493 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1494 		kfree_skb(skb);
1495 
1496 	ip_cork_release(cork);
1497 }
1498 
1499 void ip_flush_pending_frames(struct sock *sk)
1500 {
1501 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1502 }
1503 
1504 struct sk_buff *ip_make_skb(struct sock *sk,
1505 			    struct flowi4 *fl4,
1506 			    int getfrag(void *from, char *to, int offset,
1507 					int len, int odd, struct sk_buff *skb),
1508 			    void *from, int length, int transhdrlen,
1509 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1510 			    struct inet_cork *cork, unsigned int flags)
1511 {
1512 	struct sk_buff_head queue;
1513 	int err;
1514 
1515 	if (flags & MSG_PROBE)
1516 		return NULL;
1517 
1518 	__skb_queue_head_init(&queue);
1519 
1520 	cork->flags = 0;
1521 	cork->addr = 0;
1522 	cork->opt = NULL;
1523 	err = ip_setup_cork(sk, cork, ipc, rtp);
1524 	if (err)
1525 		return ERR_PTR(err);
1526 
1527 	err = __ip_append_data(sk, fl4, &queue, cork,
1528 			       &current->task_frag, getfrag,
1529 			       from, length, transhdrlen, flags);
1530 	if (err) {
1531 		__ip_flush_pending_frames(sk, &queue, cork);
1532 		return ERR_PTR(err);
1533 	}
1534 
1535 	return __ip_make_skb(sk, fl4, &queue, cork);
1536 }
1537 
1538 /*
1539  *	Fetch data from kernel space and fill in checksum if needed.
1540  */
1541 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1542 			      int len, int odd, struct sk_buff *skb)
1543 {
1544 	__wsum csum;
1545 
1546 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1547 	skb->csum = csum_block_add(skb->csum, csum, odd);
1548 	return 0;
1549 }
1550 
1551 /*
1552  *	Generic function to send a packet as reply to another packet.
1553  *	Used to send some TCP resets/acks so far.
1554  */
1555 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1556 			   const struct ip_options *sopt,
1557 			   __be32 daddr, __be32 saddr,
1558 			   const struct ip_reply_arg *arg,
1559 			   unsigned int len)
1560 {
1561 	struct ip_options_data replyopts;
1562 	struct ipcm_cookie ipc;
1563 	struct flowi4 fl4;
1564 	struct rtable *rt = skb_rtable(skb);
1565 	struct net *net = sock_net(sk);
1566 	struct sk_buff *nskb;
1567 	int err;
1568 	int oif;
1569 
1570 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1571 		return;
1572 
1573 	ipcm_init(&ipc);
1574 	ipc.addr = daddr;
1575 
1576 	if (replyopts.opt.opt.optlen) {
1577 		ipc.opt = &replyopts.opt;
1578 
1579 		if (replyopts.opt.opt.srr)
1580 			daddr = replyopts.opt.opt.faddr;
1581 	}
1582 
1583 	oif = arg->bound_dev_if;
1584 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1585 		oif = skb->skb_iif;
1586 
1587 	flowi4_init_output(&fl4, oif,
1588 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1589 			   RT_TOS(arg->tos),
1590 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1591 			   ip_reply_arg_flowi_flags(arg),
1592 			   daddr, saddr,
1593 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1594 			   arg->uid);
1595 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1596 	rt = ip_route_output_key(net, &fl4);
1597 	if (IS_ERR(rt))
1598 		return;
1599 
1600 	inet_sk(sk)->tos = arg->tos;
1601 
1602 	sk->sk_priority = skb->priority;
1603 	sk->sk_protocol = ip_hdr(skb)->protocol;
1604 	sk->sk_bound_dev_if = arg->bound_dev_if;
1605 	sk->sk_sndbuf = sysctl_wmem_default;
1606 	sk->sk_mark = fl4.flowi4_mark;
1607 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1608 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1609 	if (unlikely(err)) {
1610 		ip_flush_pending_frames(sk);
1611 		goto out;
1612 	}
1613 
1614 	nskb = skb_peek(&sk->sk_write_queue);
1615 	if (nskb) {
1616 		if (arg->csumoffset >= 0)
1617 			*((__sum16 *)skb_transport_header(nskb) +
1618 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1619 								arg->csum));
1620 		nskb->ip_summed = CHECKSUM_NONE;
1621 		ip_push_pending_frames(sk, &fl4);
1622 	}
1623 out:
1624 	ip_rt_put(rt);
1625 }
1626 
1627 void __init ip_init(void)
1628 {
1629 	ip_rt_init();
1630 	inet_initpeers();
1631 
1632 #if defined(CONFIG_IP_MULTICAST)
1633 	igmp_mc_init();
1634 #endif
1635 }
1636