xref: /openbmc/linux/net/ipv4/ip_output.c (revision 22246614)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Version:	$Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Donald Becker, <becker@super.org>
13  *		Alan Cox, <Alan.Cox@linux.org>
14  *		Richard Underwood
15  *		Stefan Becker, <stefanb@yello.ping.de>
16  *		Jorge Cwik, <jorge@laser.satlink.net>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Hirokazu Takahashi, <taka@valinux.co.jp>
19  *
20  *	See ip_input.c for original log
21  *
22  *	Fixes:
23  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
24  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
25  *		Bradford Johnson:	Fix faulty handling of some frames when
26  *					no route is found.
27  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
28  *					(in case if packet not accepted by
29  *					output firewall rules)
30  *		Mike McLagan	:	Routing by source
31  *		Alexey Kuznetsov:	use new route cache
32  *		Andi Kleen:		Fix broken PMTU recovery and remove
33  *					some redundant tests.
34  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
35  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
36  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
37  *					for decreased register pressure on x86
38  *					and more readibility.
39  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
40  *					silently drop skb instead of failing with -EPERM.
41  *		Detlev Wengorz	:	Copy protocol for fragments.
42  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
43  *					datagrams.
44  *		Hirokazu Takahashi:	sendfile() on UDP works now.
45  */
46 
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/mm.h>
53 #include <linux/string.h>
54 #include <linux/errno.h>
55 #include <linux/highmem.h>
56 
57 #include <linux/socket.h>
58 #include <linux/sockios.h>
59 #include <linux/in.h>
60 #include <linux/inet.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/stat.h>
65 #include <linux/init.h>
66 
67 #include <net/snmp.h>
68 #include <net/ip.h>
69 #include <net/protocol.h>
70 #include <net/route.h>
71 #include <net/xfrm.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/mroute.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
86 
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
89 {
90 	iph->check = 0;
91 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb->dst->dev,
101 		       dst_output);
102 }
103 
104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
116 /* dev_loopback_xmit for use with netfilter. */
117 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
118 {
119 	skb_reset_mac_header(newskb);
120 	__skb_pull(newskb, skb_network_offset(newskb));
121 	newskb->pkt_type = PACKET_LOOPBACK;
122 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
123 	BUG_TRAP(newskb->dst);
124 	netif_rx(newskb);
125 	return 0;
126 }
127 
128 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
129 {
130 	int ttl = inet->uc_ttl;
131 
132 	if (ttl < 0)
133 		ttl = dst_metric(dst, RTAX_HOPLIMIT);
134 	return ttl;
135 }
136 
137 /*
138  *		Add an ip header to a skbuff and send it out.
139  *
140  */
141 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
142 			  __be32 saddr, __be32 daddr, struct ip_options *opt)
143 {
144 	struct inet_sock *inet = inet_sk(sk);
145 	struct rtable *rt = skb->rtable;
146 	struct iphdr *iph;
147 
148 	/* Build the IP header. */
149 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
150 	skb_reset_network_header(skb);
151 	iph = ip_hdr(skb);
152 	iph->version  = 4;
153 	iph->ihl      = 5;
154 	iph->tos      = inet->tos;
155 	if (ip_dont_fragment(sk, &rt->u.dst))
156 		iph->frag_off = htons(IP_DF);
157 	else
158 		iph->frag_off = 0;
159 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
160 	iph->daddr    = rt->rt_dst;
161 	iph->saddr    = rt->rt_src;
162 	iph->protocol = sk->sk_protocol;
163 	ip_select_ident(iph, &rt->u.dst, sk);
164 
165 	if (opt && opt->optlen) {
166 		iph->ihl += opt->optlen>>2;
167 		ip_options_build(skb, opt, daddr, rt, 0);
168 	}
169 
170 	skb->priority = sk->sk_priority;
171 	skb->mark = sk->sk_mark;
172 
173 	/* Send it out. */
174 	return ip_local_out(skb);
175 }
176 
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 	struct dst_entry *dst = skb->dst;
182 	struct rtable *rt = (struct rtable *)dst;
183 	struct net_device *dev = dst->dev;
184 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 
186 	if (rt->rt_type == RTN_MULTICAST)
187 		IP_INC_STATS(IPSTATS_MIB_OUTMCASTPKTS);
188 	else if (rt->rt_type == RTN_BROADCAST)
189 		IP_INC_STATS(IPSTATS_MIB_OUTBCASTPKTS);
190 
191 	/* Be paranoid, rather than too clever. */
192 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 		struct sk_buff *skb2;
194 
195 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 		if (skb2 == NULL) {
197 			kfree_skb(skb);
198 			return -ENOMEM;
199 		}
200 		if (skb->sk)
201 			skb_set_owner_w(skb2, skb->sk);
202 		kfree_skb(skb);
203 		skb = skb2;
204 	}
205 
206 	if (dst->hh)
207 		return neigh_hh_output(dst->hh, skb);
208 	else if (dst->neighbour)
209 		return dst->neighbour->output(skb);
210 
211 	if (net_ratelimit())
212 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 	kfree_skb(skb);
214 	return -EINVAL;
215 }
216 
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 {
219 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 
221 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 	       skb->dst->dev->mtu : dst_mtu(skb->dst);
223 }
224 
225 static int ip_finish_output(struct sk_buff *skb)
226 {
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 	/* Policy lookup after SNAT yielded a new policy */
229 	if (skb->dst->xfrm != NULL) {
230 		IPCB(skb)->flags |= IPSKB_REROUTED;
231 		return dst_output(skb);
232 	}
233 #endif
234 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 		return ip_fragment(skb, ip_finish_output2);
236 	else
237 		return ip_finish_output2(skb);
238 }
239 
240 int ip_mc_output(struct sk_buff *skb)
241 {
242 	struct sock *sk = skb->sk;
243 	struct rtable *rt = skb->rtable;
244 	struct net_device *dev = rt->u.dst.dev;
245 
246 	/*
247 	 *	If the indicated interface is up and running, send the packet.
248 	 */
249 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
250 
251 	skb->dev = dev;
252 	skb->protocol = htons(ETH_P_IP);
253 
254 	/*
255 	 *	Multicasts are looped back for other local users
256 	 */
257 
258 	if (rt->rt_flags&RTCF_MULTICAST) {
259 		if ((!sk || inet_sk(sk)->mc_loop)
260 #ifdef CONFIG_IP_MROUTE
261 		/* Small optimization: do not loopback not local frames,
262 		   which returned after forwarding; they will be  dropped
263 		   by ip_mr_input in any case.
264 		   Note, that local frames are looped back to be delivered
265 		   to local recipients.
266 
267 		   This check is duplicated in ip_mr_input at the moment.
268 		 */
269 		    && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
270 #endif
271 		) {
272 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
273 			if (newskb)
274 				NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
275 					NULL, newskb->dev,
276 					ip_dev_loopback_xmit);
277 		}
278 
279 		/* Multicasts with ttl 0 must not go beyond the host */
280 
281 		if (ip_hdr(skb)->ttl == 0) {
282 			kfree_skb(skb);
283 			return 0;
284 		}
285 	}
286 
287 	if (rt->rt_flags&RTCF_BROADCAST) {
288 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
289 		if (newskb)
290 			NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
291 				newskb->dev, ip_dev_loopback_xmit);
292 	}
293 
294 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
295 			    ip_finish_output,
296 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
297 }
298 
299 int ip_output(struct sk_buff *skb)
300 {
301 	struct net_device *dev = skb->dst->dev;
302 
303 	IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
304 
305 	skb->dev = dev;
306 	skb->protocol = htons(ETH_P_IP);
307 
308 	return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
309 			    ip_finish_output,
310 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
311 }
312 
313 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
314 {
315 	struct sock *sk = skb->sk;
316 	struct inet_sock *inet = inet_sk(sk);
317 	struct ip_options *opt = inet->opt;
318 	struct rtable *rt;
319 	struct iphdr *iph;
320 
321 	/* Skip all of this if the packet is already routed,
322 	 * f.e. by something like SCTP.
323 	 */
324 	rt = skb->rtable;
325 	if (rt != NULL)
326 		goto packet_routed;
327 
328 	/* Make sure we can route this packet. */
329 	rt = (struct rtable *)__sk_dst_check(sk, 0);
330 	if (rt == NULL) {
331 		__be32 daddr;
332 
333 		/* Use correct destination address if we have options. */
334 		daddr = inet->daddr;
335 		if(opt && opt->srr)
336 			daddr = opt->faddr;
337 
338 		{
339 			struct flowi fl = { .oif = sk->sk_bound_dev_if,
340 					    .nl_u = { .ip4_u =
341 						      { .daddr = daddr,
342 							.saddr = inet->saddr,
343 							.tos = RT_CONN_FLAGS(sk) } },
344 					    .proto = sk->sk_protocol,
345 					    .uli_u = { .ports =
346 						       { .sport = inet->sport,
347 							 .dport = inet->dport } } };
348 
349 			/* If this fails, retransmit mechanism of transport layer will
350 			 * keep trying until route appears or the connection times
351 			 * itself out.
352 			 */
353 			security_sk_classify_flow(sk, &fl);
354 			if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
355 				goto no_route;
356 		}
357 		sk_setup_caps(sk, &rt->u.dst);
358 	}
359 	skb->dst = dst_clone(&rt->u.dst);
360 
361 packet_routed:
362 	if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
363 		goto no_route;
364 
365 	/* OK, we know where to send it, allocate and build IP header. */
366 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
367 	skb_reset_network_header(skb);
368 	iph = ip_hdr(skb);
369 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
370 	if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
371 		iph->frag_off = htons(IP_DF);
372 	else
373 		iph->frag_off = 0;
374 	iph->ttl      = ip_select_ttl(inet, &rt->u.dst);
375 	iph->protocol = sk->sk_protocol;
376 	iph->saddr    = rt->rt_src;
377 	iph->daddr    = rt->rt_dst;
378 	/* Transport layer set skb->h.foo itself. */
379 
380 	if (opt && opt->optlen) {
381 		iph->ihl += opt->optlen >> 2;
382 		ip_options_build(skb, opt, inet->daddr, rt, 0);
383 	}
384 
385 	ip_select_ident_more(iph, &rt->u.dst, sk,
386 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
387 
388 	skb->priority = sk->sk_priority;
389 	skb->mark = sk->sk_mark;
390 
391 	return ip_local_out(skb);
392 
393 no_route:
394 	IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
395 	kfree_skb(skb);
396 	return -EHOSTUNREACH;
397 }
398 
399 
400 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
401 {
402 	to->pkt_type = from->pkt_type;
403 	to->priority = from->priority;
404 	to->protocol = from->protocol;
405 	dst_release(to->dst);
406 	to->dst = dst_clone(from->dst);
407 	to->dev = from->dev;
408 	to->mark = from->mark;
409 
410 	/* Copy the flags to each fragment. */
411 	IPCB(to)->flags = IPCB(from)->flags;
412 
413 #ifdef CONFIG_NET_SCHED
414 	to->tc_index = from->tc_index;
415 #endif
416 	nf_copy(to, from);
417 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
418     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
419 	to->nf_trace = from->nf_trace;
420 #endif
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
422 	to->ipvs_property = from->ipvs_property;
423 #endif
424 	skb_copy_secmark(to, from);
425 }
426 
427 /*
428  *	This IP datagram is too large to be sent in one piece.  Break it up into
429  *	smaller pieces (each of size equal to IP header plus
430  *	a block of the data of the original IP data part) that will yet fit in a
431  *	single device frame, and queue such a frame for sending.
432  */
433 
434 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
435 {
436 	struct iphdr *iph;
437 	int raw = 0;
438 	int ptr;
439 	struct net_device *dev;
440 	struct sk_buff *skb2;
441 	unsigned int mtu, hlen, left, len, ll_rs, pad;
442 	int offset;
443 	__be16 not_last_frag;
444 	struct rtable *rt = skb->rtable;
445 	int err = 0;
446 
447 	dev = rt->u.dst.dev;
448 
449 	/*
450 	 *	Point into the IP datagram header.
451 	 */
452 
453 	iph = ip_hdr(skb);
454 
455 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
456 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
457 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
458 			  htonl(ip_skb_dst_mtu(skb)));
459 		kfree_skb(skb);
460 		return -EMSGSIZE;
461 	}
462 
463 	/*
464 	 *	Setup starting values.
465 	 */
466 
467 	hlen = iph->ihl * 4;
468 	mtu = dst_mtu(&rt->u.dst) - hlen;	/* Size of data space */
469 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
470 
471 	/* When frag_list is given, use it. First, check its validity:
472 	 * some transformers could create wrong frag_list or break existing
473 	 * one, it is not prohibited. In this case fall back to copying.
474 	 *
475 	 * LATER: this step can be merged to real generation of fragments,
476 	 * we can switch to copy when see the first bad fragment.
477 	 */
478 	if (skb_shinfo(skb)->frag_list) {
479 		struct sk_buff *frag;
480 		int first_len = skb_pagelen(skb);
481 		int truesizes = 0;
482 
483 		if (first_len - hlen > mtu ||
484 		    ((first_len - hlen) & 7) ||
485 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
486 		    skb_cloned(skb))
487 			goto slow_path;
488 
489 		for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
490 			/* Correct geometry. */
491 			if (frag->len > mtu ||
492 			    ((frag->len & 7) && frag->next) ||
493 			    skb_headroom(frag) < hlen)
494 			    goto slow_path;
495 
496 			/* Partially cloned skb? */
497 			if (skb_shared(frag))
498 				goto slow_path;
499 
500 			BUG_ON(frag->sk);
501 			if (skb->sk) {
502 				sock_hold(skb->sk);
503 				frag->sk = skb->sk;
504 				frag->destructor = sock_wfree;
505 				truesizes += frag->truesize;
506 			}
507 		}
508 
509 		/* Everything is OK. Generate! */
510 
511 		err = 0;
512 		offset = 0;
513 		frag = skb_shinfo(skb)->frag_list;
514 		skb_shinfo(skb)->frag_list = NULL;
515 		skb->data_len = first_len - skb_headlen(skb);
516 		skb->truesize -= truesizes;
517 		skb->len = first_len;
518 		iph->tot_len = htons(first_len);
519 		iph->frag_off = htons(IP_MF);
520 		ip_send_check(iph);
521 
522 		for (;;) {
523 			/* Prepare header of the next frame,
524 			 * before previous one went down. */
525 			if (frag) {
526 				frag->ip_summed = CHECKSUM_NONE;
527 				skb_reset_transport_header(frag);
528 				__skb_push(frag, hlen);
529 				skb_reset_network_header(frag);
530 				memcpy(skb_network_header(frag), iph, hlen);
531 				iph = ip_hdr(frag);
532 				iph->tot_len = htons(frag->len);
533 				ip_copy_metadata(frag, skb);
534 				if (offset == 0)
535 					ip_options_fragment(frag);
536 				offset += skb->len - hlen;
537 				iph->frag_off = htons(offset>>3);
538 				if (frag->next != NULL)
539 					iph->frag_off |= htons(IP_MF);
540 				/* Ready, complete checksum */
541 				ip_send_check(iph);
542 			}
543 
544 			err = output(skb);
545 
546 			if (!err)
547 				IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
548 			if (err || !frag)
549 				break;
550 
551 			skb = frag;
552 			frag = skb->next;
553 			skb->next = NULL;
554 		}
555 
556 		if (err == 0) {
557 			IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
558 			return 0;
559 		}
560 
561 		while (frag) {
562 			skb = frag->next;
563 			kfree_skb(frag);
564 			frag = skb;
565 		}
566 		IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
567 		return err;
568 	}
569 
570 slow_path:
571 	left = skb->len - hlen;		/* Space per frame */
572 	ptr = raw + hlen;		/* Where to start from */
573 
574 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
575 	 * we need to make room for the encapsulating header
576 	 */
577 	pad = nf_bridge_pad(skb);
578 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
579 	mtu -= pad;
580 
581 	/*
582 	 *	Fragment the datagram.
583 	 */
584 
585 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
586 	not_last_frag = iph->frag_off & htons(IP_MF);
587 
588 	/*
589 	 *	Keep copying data until we run out.
590 	 */
591 
592 	while (left > 0) {
593 		len = left;
594 		/* IF: it doesn't fit, use 'mtu' - the data space left */
595 		if (len > mtu)
596 			len = mtu;
597 		/* IF: we are not sending upto and including the packet end
598 		   then align the next start on an eight byte boundary */
599 		if (len < left)	{
600 			len &= ~7;
601 		}
602 		/*
603 		 *	Allocate buffer.
604 		 */
605 
606 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
607 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
608 			err = -ENOMEM;
609 			goto fail;
610 		}
611 
612 		/*
613 		 *	Set up data on packet
614 		 */
615 
616 		ip_copy_metadata(skb2, skb);
617 		skb_reserve(skb2, ll_rs);
618 		skb_put(skb2, len + hlen);
619 		skb_reset_network_header(skb2);
620 		skb2->transport_header = skb2->network_header + hlen;
621 
622 		/*
623 		 *	Charge the memory for the fragment to any owner
624 		 *	it might possess
625 		 */
626 
627 		if (skb->sk)
628 			skb_set_owner_w(skb2, skb->sk);
629 
630 		/*
631 		 *	Copy the packet header into the new buffer.
632 		 */
633 
634 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
635 
636 		/*
637 		 *	Copy a block of the IP datagram.
638 		 */
639 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
640 			BUG();
641 		left -= len;
642 
643 		/*
644 		 *	Fill in the new header fields.
645 		 */
646 		iph = ip_hdr(skb2);
647 		iph->frag_off = htons((offset >> 3));
648 
649 		/* ANK: dirty, but effective trick. Upgrade options only if
650 		 * the segment to be fragmented was THE FIRST (otherwise,
651 		 * options are already fixed) and make it ONCE
652 		 * on the initial skb, so that all the following fragments
653 		 * will inherit fixed options.
654 		 */
655 		if (offset == 0)
656 			ip_options_fragment(skb);
657 
658 		/*
659 		 *	Added AC : If we are fragmenting a fragment that's not the
660 		 *		   last fragment then keep MF on each bit
661 		 */
662 		if (left > 0 || not_last_frag)
663 			iph->frag_off |= htons(IP_MF);
664 		ptr += len;
665 		offset += len;
666 
667 		/*
668 		 *	Put this fragment into the sending queue.
669 		 */
670 		iph->tot_len = htons(len + hlen);
671 
672 		ip_send_check(iph);
673 
674 		err = output(skb2);
675 		if (err)
676 			goto fail;
677 
678 		IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
679 	}
680 	kfree_skb(skb);
681 	IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
682 	return err;
683 
684 fail:
685 	kfree_skb(skb);
686 	IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
687 	return err;
688 }
689 
690 EXPORT_SYMBOL(ip_fragment);
691 
692 int
693 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
694 {
695 	struct iovec *iov = from;
696 
697 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
698 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
699 			return -EFAULT;
700 	} else {
701 		__wsum csum = 0;
702 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
703 			return -EFAULT;
704 		skb->csum = csum_block_add(skb->csum, csum, odd);
705 	}
706 	return 0;
707 }
708 
709 static inline __wsum
710 csum_page(struct page *page, int offset, int copy)
711 {
712 	char *kaddr;
713 	__wsum csum;
714 	kaddr = kmap(page);
715 	csum = csum_partial(kaddr + offset, copy, 0);
716 	kunmap(page);
717 	return csum;
718 }
719 
720 static inline int ip_ufo_append_data(struct sock *sk,
721 			int getfrag(void *from, char *to, int offset, int len,
722 			       int odd, struct sk_buff *skb),
723 			void *from, int length, int hh_len, int fragheaderlen,
724 			int transhdrlen, int mtu,unsigned int flags)
725 {
726 	struct sk_buff *skb;
727 	int err;
728 
729 	/* There is support for UDP fragmentation offload by network
730 	 * device, so create one single skb packet containing complete
731 	 * udp datagram
732 	 */
733 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
734 		skb = sock_alloc_send_skb(sk,
735 			hh_len + fragheaderlen + transhdrlen + 20,
736 			(flags & MSG_DONTWAIT), &err);
737 
738 		if (skb == NULL)
739 			return err;
740 
741 		/* reserve space for Hardware header */
742 		skb_reserve(skb, hh_len);
743 
744 		/* create space for UDP/IP header */
745 		skb_put(skb,fragheaderlen + transhdrlen);
746 
747 		/* initialize network header pointer */
748 		skb_reset_network_header(skb);
749 
750 		/* initialize protocol header pointer */
751 		skb->transport_header = skb->network_header + fragheaderlen;
752 
753 		skb->ip_summed = CHECKSUM_PARTIAL;
754 		skb->csum = 0;
755 		sk->sk_sndmsg_off = 0;
756 
757 		/* specify the length of each IP datagram fragment */
758 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
759 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
760 		__skb_queue_tail(&sk->sk_write_queue, skb);
761 	}
762 
763 	return skb_append_datato_frags(sk, skb, getfrag, from,
764 				       (length - transhdrlen));
765 }
766 
767 /*
768  *	ip_append_data() and ip_append_page() can make one large IP datagram
769  *	from many pieces of data. Each pieces will be holded on the socket
770  *	until ip_push_pending_frames() is called. Each piece can be a page
771  *	or non-page data.
772  *
773  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
774  *	this interface potentially.
775  *
776  *	LATER: length must be adjusted by pad at tail, when it is required.
777  */
778 int ip_append_data(struct sock *sk,
779 		   int getfrag(void *from, char *to, int offset, int len,
780 			       int odd, struct sk_buff *skb),
781 		   void *from, int length, int transhdrlen,
782 		   struct ipcm_cookie *ipc, struct rtable *rt,
783 		   unsigned int flags)
784 {
785 	struct inet_sock *inet = inet_sk(sk);
786 	struct sk_buff *skb;
787 
788 	struct ip_options *opt = NULL;
789 	int hh_len;
790 	int exthdrlen;
791 	int mtu;
792 	int copy;
793 	int err;
794 	int offset = 0;
795 	unsigned int maxfraglen, fragheaderlen;
796 	int csummode = CHECKSUM_NONE;
797 
798 	if (flags&MSG_PROBE)
799 		return 0;
800 
801 	if (skb_queue_empty(&sk->sk_write_queue)) {
802 		/*
803 		 * setup for corking.
804 		 */
805 		opt = ipc->opt;
806 		if (opt) {
807 			if (inet->cork.opt == NULL) {
808 				inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 				if (unlikely(inet->cork.opt == NULL))
810 					return -ENOBUFS;
811 			}
812 			memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 			inet->cork.flags |= IPCORK_OPT;
814 			inet->cork.addr = ipc->addr;
815 		}
816 		dst_hold(&rt->u.dst);
817 		inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
818 					    rt->u.dst.dev->mtu :
819 					    dst_mtu(rt->u.dst.path);
820 		inet->cork.dst = &rt->u.dst;
821 		inet->cork.length = 0;
822 		sk->sk_sndmsg_page = NULL;
823 		sk->sk_sndmsg_off = 0;
824 		if ((exthdrlen = rt->u.dst.header_len) != 0) {
825 			length += exthdrlen;
826 			transhdrlen += exthdrlen;
827 		}
828 	} else {
829 		rt = (struct rtable *)inet->cork.dst;
830 		if (inet->cork.flags & IPCORK_OPT)
831 			opt = inet->cork.opt;
832 
833 		transhdrlen = 0;
834 		exthdrlen = 0;
835 		mtu = inet->cork.fragsize;
836 	}
837 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
838 
839 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
840 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
841 
842 	if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
843 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
844 		return -EMSGSIZE;
845 	}
846 
847 	/*
848 	 * transhdrlen > 0 means that this is the first fragment and we wish
849 	 * it won't be fragmented in the future.
850 	 */
851 	if (transhdrlen &&
852 	    length + fragheaderlen <= mtu &&
853 	    rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
854 	    !exthdrlen)
855 		csummode = CHECKSUM_PARTIAL;
856 
857 	inet->cork.length += length;
858 	if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
859 	    (sk->sk_protocol == IPPROTO_UDP) &&
860 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
861 		err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
862 					 fragheaderlen, transhdrlen, mtu,
863 					 flags);
864 		if (err)
865 			goto error;
866 		return 0;
867 	}
868 
869 	/* So, what's going on in the loop below?
870 	 *
871 	 * We use calculated fragment length to generate chained skb,
872 	 * each of segments is IP fragment ready for sending to network after
873 	 * adding appropriate IP header.
874 	 */
875 
876 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
877 		goto alloc_new_skb;
878 
879 	while (length > 0) {
880 		/* Check if the remaining data fits into current packet. */
881 		copy = mtu - skb->len;
882 		if (copy < length)
883 			copy = maxfraglen - skb->len;
884 		if (copy <= 0) {
885 			char *data;
886 			unsigned int datalen;
887 			unsigned int fraglen;
888 			unsigned int fraggap;
889 			unsigned int alloclen;
890 			struct sk_buff *skb_prev;
891 alloc_new_skb:
892 			skb_prev = skb;
893 			if (skb_prev)
894 				fraggap = skb_prev->len - maxfraglen;
895 			else
896 				fraggap = 0;
897 
898 			/*
899 			 * If remaining data exceeds the mtu,
900 			 * we know we need more fragment(s).
901 			 */
902 			datalen = length + fraggap;
903 			if (datalen > mtu - fragheaderlen)
904 				datalen = maxfraglen - fragheaderlen;
905 			fraglen = datalen + fragheaderlen;
906 
907 			if ((flags & MSG_MORE) &&
908 			    !(rt->u.dst.dev->features&NETIF_F_SG))
909 				alloclen = mtu;
910 			else
911 				alloclen = datalen + fragheaderlen;
912 
913 			/* The last fragment gets additional space at tail.
914 			 * Note, with MSG_MORE we overallocate on fragments,
915 			 * because we have no idea what fragment will be
916 			 * the last.
917 			 */
918 			if (datalen == length + fraggap)
919 				alloclen += rt->u.dst.trailer_len;
920 
921 			if (transhdrlen) {
922 				skb = sock_alloc_send_skb(sk,
923 						alloclen + hh_len + 15,
924 						(flags & MSG_DONTWAIT), &err);
925 			} else {
926 				skb = NULL;
927 				if (atomic_read(&sk->sk_wmem_alloc) <=
928 				    2 * sk->sk_sndbuf)
929 					skb = sock_wmalloc(sk,
930 							   alloclen + hh_len + 15, 1,
931 							   sk->sk_allocation);
932 				if (unlikely(skb == NULL))
933 					err = -ENOBUFS;
934 			}
935 			if (skb == NULL)
936 				goto error;
937 
938 			/*
939 			 *	Fill in the control structures
940 			 */
941 			skb->ip_summed = csummode;
942 			skb->csum = 0;
943 			skb_reserve(skb, hh_len);
944 
945 			/*
946 			 *	Find where to start putting bytes.
947 			 */
948 			data = skb_put(skb, fraglen);
949 			skb_set_network_header(skb, exthdrlen);
950 			skb->transport_header = (skb->network_header +
951 						 fragheaderlen);
952 			data += fragheaderlen;
953 
954 			if (fraggap) {
955 				skb->csum = skb_copy_and_csum_bits(
956 					skb_prev, maxfraglen,
957 					data + transhdrlen, fraggap, 0);
958 				skb_prev->csum = csum_sub(skb_prev->csum,
959 							  skb->csum);
960 				data += fraggap;
961 				pskb_trim_unique(skb_prev, maxfraglen);
962 			}
963 
964 			copy = datalen - transhdrlen - fraggap;
965 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
966 				err = -EFAULT;
967 				kfree_skb(skb);
968 				goto error;
969 			}
970 
971 			offset += copy;
972 			length -= datalen - fraggap;
973 			transhdrlen = 0;
974 			exthdrlen = 0;
975 			csummode = CHECKSUM_NONE;
976 
977 			/*
978 			 * Put the packet on the pending queue.
979 			 */
980 			__skb_queue_tail(&sk->sk_write_queue, skb);
981 			continue;
982 		}
983 
984 		if (copy > length)
985 			copy = length;
986 
987 		if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
988 			unsigned int off;
989 
990 			off = skb->len;
991 			if (getfrag(from, skb_put(skb, copy),
992 					offset, copy, off, skb) < 0) {
993 				__skb_trim(skb, off);
994 				err = -EFAULT;
995 				goto error;
996 			}
997 		} else {
998 			int i = skb_shinfo(skb)->nr_frags;
999 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1000 			struct page *page = sk->sk_sndmsg_page;
1001 			int off = sk->sk_sndmsg_off;
1002 			unsigned int left;
1003 
1004 			if (page && (left = PAGE_SIZE - off) > 0) {
1005 				if (copy >= left)
1006 					copy = left;
1007 				if (page != frag->page) {
1008 					if (i == MAX_SKB_FRAGS) {
1009 						err = -EMSGSIZE;
1010 						goto error;
1011 					}
1012 					get_page(page);
1013 					skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1014 					frag = &skb_shinfo(skb)->frags[i];
1015 				}
1016 			} else if (i < MAX_SKB_FRAGS) {
1017 				if (copy > PAGE_SIZE)
1018 					copy = PAGE_SIZE;
1019 				page = alloc_pages(sk->sk_allocation, 0);
1020 				if (page == NULL)  {
1021 					err = -ENOMEM;
1022 					goto error;
1023 				}
1024 				sk->sk_sndmsg_page = page;
1025 				sk->sk_sndmsg_off = 0;
1026 
1027 				skb_fill_page_desc(skb, i, page, 0, 0);
1028 				frag = &skb_shinfo(skb)->frags[i];
1029 			} else {
1030 				err = -EMSGSIZE;
1031 				goto error;
1032 			}
1033 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1034 				err = -EFAULT;
1035 				goto error;
1036 			}
1037 			sk->sk_sndmsg_off += copy;
1038 			frag->size += copy;
1039 			skb->len += copy;
1040 			skb->data_len += copy;
1041 			skb->truesize += copy;
1042 			atomic_add(copy, &sk->sk_wmem_alloc);
1043 		}
1044 		offset += copy;
1045 		length -= copy;
1046 	}
1047 
1048 	return 0;
1049 
1050 error:
1051 	inet->cork.length -= length;
1052 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1053 	return err;
1054 }
1055 
1056 ssize_t	ip_append_page(struct sock *sk, struct page *page,
1057 		       int offset, size_t size, int flags)
1058 {
1059 	struct inet_sock *inet = inet_sk(sk);
1060 	struct sk_buff *skb;
1061 	struct rtable *rt;
1062 	struct ip_options *opt = NULL;
1063 	int hh_len;
1064 	int mtu;
1065 	int len;
1066 	int err;
1067 	unsigned int maxfraglen, fragheaderlen, fraggap;
1068 
1069 	if (inet->hdrincl)
1070 		return -EPERM;
1071 
1072 	if (flags&MSG_PROBE)
1073 		return 0;
1074 
1075 	if (skb_queue_empty(&sk->sk_write_queue))
1076 		return -EINVAL;
1077 
1078 	rt = (struct rtable *)inet->cork.dst;
1079 	if (inet->cork.flags & IPCORK_OPT)
1080 		opt = inet->cork.opt;
1081 
1082 	if (!(rt->u.dst.dev->features&NETIF_F_SG))
1083 		return -EOPNOTSUPP;
1084 
1085 	hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1086 	mtu = inet->cork.fragsize;
1087 
1088 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1089 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1090 
1091 	if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1092 		ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1093 		return -EMSGSIZE;
1094 	}
1095 
1096 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1097 		return -EINVAL;
1098 
1099 	inet->cork.length += size;
1100 	if ((sk->sk_protocol == IPPROTO_UDP) &&
1101 	    (rt->u.dst.dev->features & NETIF_F_UFO)) {
1102 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1103 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1104 	}
1105 
1106 
1107 	while (size > 0) {
1108 		int i;
1109 
1110 		if (skb_is_gso(skb))
1111 			len = size;
1112 		else {
1113 
1114 			/* Check if the remaining data fits into current packet. */
1115 			len = mtu - skb->len;
1116 			if (len < size)
1117 				len = maxfraglen - skb->len;
1118 		}
1119 		if (len <= 0) {
1120 			struct sk_buff *skb_prev;
1121 			int alloclen;
1122 
1123 			skb_prev = skb;
1124 			fraggap = skb_prev->len - maxfraglen;
1125 
1126 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1127 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1128 			if (unlikely(!skb)) {
1129 				err = -ENOBUFS;
1130 				goto error;
1131 			}
1132 
1133 			/*
1134 			 *	Fill in the control structures
1135 			 */
1136 			skb->ip_summed = CHECKSUM_NONE;
1137 			skb->csum = 0;
1138 			skb_reserve(skb, hh_len);
1139 
1140 			/*
1141 			 *	Find where to start putting bytes.
1142 			 */
1143 			skb_put(skb, fragheaderlen + fraggap);
1144 			skb_reset_network_header(skb);
1145 			skb->transport_header = (skb->network_header +
1146 						 fragheaderlen);
1147 			if (fraggap) {
1148 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1149 								   maxfraglen,
1150 						    skb_transport_header(skb),
1151 								   fraggap, 0);
1152 				skb_prev->csum = csum_sub(skb_prev->csum,
1153 							  skb->csum);
1154 				pskb_trim_unique(skb_prev, maxfraglen);
1155 			}
1156 
1157 			/*
1158 			 * Put the packet on the pending queue.
1159 			 */
1160 			__skb_queue_tail(&sk->sk_write_queue, skb);
1161 			continue;
1162 		}
1163 
1164 		i = skb_shinfo(skb)->nr_frags;
1165 		if (len > size)
1166 			len = size;
1167 		if (skb_can_coalesce(skb, i, page, offset)) {
1168 			skb_shinfo(skb)->frags[i-1].size += len;
1169 		} else if (i < MAX_SKB_FRAGS) {
1170 			get_page(page);
1171 			skb_fill_page_desc(skb, i, page, offset, len);
1172 		} else {
1173 			err = -EMSGSIZE;
1174 			goto error;
1175 		}
1176 
1177 		if (skb->ip_summed == CHECKSUM_NONE) {
1178 			__wsum csum;
1179 			csum = csum_page(page, offset, len);
1180 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1181 		}
1182 
1183 		skb->len += len;
1184 		skb->data_len += len;
1185 		skb->truesize += len;
1186 		atomic_add(len, &sk->sk_wmem_alloc);
1187 		offset += len;
1188 		size -= len;
1189 	}
1190 	return 0;
1191 
1192 error:
1193 	inet->cork.length -= size;
1194 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1195 	return err;
1196 }
1197 
1198 static void ip_cork_release(struct inet_sock *inet)
1199 {
1200 	inet->cork.flags &= ~IPCORK_OPT;
1201 	kfree(inet->cork.opt);
1202 	inet->cork.opt = NULL;
1203 	dst_release(inet->cork.dst);
1204 	inet->cork.dst = NULL;
1205 }
1206 
1207 /*
1208  *	Combined all pending IP fragments on the socket as one IP datagram
1209  *	and push them out.
1210  */
1211 int ip_push_pending_frames(struct sock *sk)
1212 {
1213 	struct sk_buff *skb, *tmp_skb;
1214 	struct sk_buff **tail_skb;
1215 	struct inet_sock *inet = inet_sk(sk);
1216 	struct ip_options *opt = NULL;
1217 	struct rtable *rt = (struct rtable *)inet->cork.dst;
1218 	struct iphdr *iph;
1219 	__be16 df = 0;
1220 	__u8 ttl;
1221 	int err = 0;
1222 
1223 	if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1224 		goto out;
1225 	tail_skb = &(skb_shinfo(skb)->frag_list);
1226 
1227 	/* move skb->data to ip header from ext header */
1228 	if (skb->data < skb_network_header(skb))
1229 		__skb_pull(skb, skb_network_offset(skb));
1230 	while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1231 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1232 		*tail_skb = tmp_skb;
1233 		tail_skb = &(tmp_skb->next);
1234 		skb->len += tmp_skb->len;
1235 		skb->data_len += tmp_skb->len;
1236 		skb->truesize += tmp_skb->truesize;
1237 		__sock_put(tmp_skb->sk);
1238 		tmp_skb->destructor = NULL;
1239 		tmp_skb->sk = NULL;
1240 	}
1241 
1242 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1243 	 * to fragment the frame generated here. No matter, what transforms
1244 	 * how transforms change size of the packet, it will come out.
1245 	 */
1246 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1247 		skb->local_df = 1;
1248 
1249 	/* DF bit is set when we want to see DF on outgoing frames.
1250 	 * If local_df is set too, we still allow to fragment this frame
1251 	 * locally. */
1252 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1253 	    (skb->len <= dst_mtu(&rt->u.dst) &&
1254 	     ip_dont_fragment(sk, &rt->u.dst)))
1255 		df = htons(IP_DF);
1256 
1257 	if (inet->cork.flags & IPCORK_OPT)
1258 		opt = inet->cork.opt;
1259 
1260 	if (rt->rt_type == RTN_MULTICAST)
1261 		ttl = inet->mc_ttl;
1262 	else
1263 		ttl = ip_select_ttl(inet, &rt->u.dst);
1264 
1265 	iph = (struct iphdr *)skb->data;
1266 	iph->version = 4;
1267 	iph->ihl = 5;
1268 	if (opt) {
1269 		iph->ihl += opt->optlen>>2;
1270 		ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1271 	}
1272 	iph->tos = inet->tos;
1273 	iph->frag_off = df;
1274 	ip_select_ident(iph, &rt->u.dst, sk);
1275 	iph->ttl = ttl;
1276 	iph->protocol = sk->sk_protocol;
1277 	iph->saddr = rt->rt_src;
1278 	iph->daddr = rt->rt_dst;
1279 
1280 	skb->priority = sk->sk_priority;
1281 	skb->mark = sk->sk_mark;
1282 	skb->dst = dst_clone(&rt->u.dst);
1283 
1284 	if (iph->protocol == IPPROTO_ICMP)
1285 		icmp_out_count(((struct icmphdr *)
1286 			skb_transport_header(skb))->type);
1287 
1288 	/* Netfilter gets whole the not fragmented skb. */
1289 	err = ip_local_out(skb);
1290 	if (err) {
1291 		if (err > 0)
1292 			err = inet->recverr ? net_xmit_errno(err) : 0;
1293 		if (err)
1294 			goto error;
1295 	}
1296 
1297 out:
1298 	ip_cork_release(inet);
1299 	return err;
1300 
1301 error:
1302 	IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1303 	goto out;
1304 }
1305 
1306 /*
1307  *	Throw away all pending data on the socket.
1308  */
1309 void ip_flush_pending_frames(struct sock *sk)
1310 {
1311 	struct sk_buff *skb;
1312 
1313 	while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1314 		kfree_skb(skb);
1315 
1316 	ip_cork_release(inet_sk(sk));
1317 }
1318 
1319 
1320 /*
1321  *	Fetch data from kernel space and fill in checksum if needed.
1322  */
1323 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1324 			      int len, int odd, struct sk_buff *skb)
1325 {
1326 	__wsum csum;
1327 
1328 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1329 	skb->csum = csum_block_add(skb->csum, csum, odd);
1330 	return 0;
1331 }
1332 
1333 /*
1334  *	Generic function to send a packet as reply to another packet.
1335  *	Used to send TCP resets so far. ICMP should use this function too.
1336  *
1337  *	Should run single threaded per socket because it uses the sock
1338  *     	structure to pass arguments.
1339  */
1340 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1341 		   unsigned int len)
1342 {
1343 	struct inet_sock *inet = inet_sk(sk);
1344 	struct {
1345 		struct ip_options	opt;
1346 		char			data[40];
1347 	} replyopts;
1348 	struct ipcm_cookie ipc;
1349 	__be32 daddr;
1350 	struct rtable *rt = skb->rtable;
1351 
1352 	if (ip_options_echo(&replyopts.opt, skb))
1353 		return;
1354 
1355 	daddr = ipc.addr = rt->rt_src;
1356 	ipc.opt = NULL;
1357 
1358 	if (replyopts.opt.optlen) {
1359 		ipc.opt = &replyopts.opt;
1360 
1361 		if (ipc.opt->srr)
1362 			daddr = replyopts.opt.faddr;
1363 	}
1364 
1365 	{
1366 		struct flowi fl = { .oif = arg->bound_dev_if,
1367 				    .nl_u = { .ip4_u =
1368 					      { .daddr = daddr,
1369 						.saddr = rt->rt_spec_dst,
1370 						.tos = RT_TOS(ip_hdr(skb)->tos) } },
1371 				    /* Not quite clean, but right. */
1372 				    .uli_u = { .ports =
1373 					       { .sport = tcp_hdr(skb)->dest,
1374 						 .dport = tcp_hdr(skb)->source } },
1375 				    .proto = sk->sk_protocol };
1376 		security_skb_classify_flow(skb, &fl);
1377 		if (ip_route_output_key(sock_net(sk), &rt, &fl))
1378 			return;
1379 	}
1380 
1381 	/* And let IP do all the hard work.
1382 
1383 	   This chunk is not reenterable, hence spinlock.
1384 	   Note that it uses the fact, that this function is called
1385 	   with locally disabled BH and that sk cannot be already spinlocked.
1386 	 */
1387 	bh_lock_sock(sk);
1388 	inet->tos = ip_hdr(skb)->tos;
1389 	sk->sk_priority = skb->priority;
1390 	sk->sk_protocol = ip_hdr(skb)->protocol;
1391 	sk->sk_bound_dev_if = arg->bound_dev_if;
1392 	ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1393 		       &ipc, rt, MSG_DONTWAIT);
1394 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1395 		if (arg->csumoffset >= 0)
1396 			*((__sum16 *)skb_transport_header(skb) +
1397 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1398 								arg->csum));
1399 		skb->ip_summed = CHECKSUM_NONE;
1400 		ip_push_pending_frames(sk);
1401 	}
1402 
1403 	bh_unlock_sock(sk);
1404 
1405 	ip_rt_put(rt);
1406 }
1407 
1408 void __init ip_init(void)
1409 {
1410 	ip_rt_init();
1411 	inet_initpeers();
1412 
1413 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1414 	igmp_mc_proc_init();
1415 #endif
1416 }
1417 
1418 EXPORT_SYMBOL(ip_generic_getfrag);
1419 EXPORT_SYMBOL(ip_queue_xmit);
1420 EXPORT_SYMBOL(ip_send_check);
1421