xref: /openbmc/linux/net/ipv4/ip_output.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 static int ip_fragment(struct sock *sk, struct sk_buff *skb,
87 		       unsigned int mtu,
88 		       int (*output)(struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 static int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
99 {
100 	struct net *net = dev_net(skb_dst(skb)->dev);
101 	struct iphdr *iph = ip_hdr(skb);
102 
103 	iph->tot_len = htons(skb->len);
104 	ip_send_check(iph);
105 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
106 		       net, sk, skb, NULL, skb_dst(skb)->dev,
107 		       dst_output_okfn);
108 }
109 
110 int __ip_local_out(struct sk_buff *skb)
111 {
112 	return __ip_local_out_sk(skb->sk, skb);
113 }
114 
115 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb)
116 {
117 	int err;
118 
119 	err = __ip_local_out(skb);
120 	if (likely(err == 1))
121 		err = dst_output(sk, skb);
122 
123 	return err;
124 }
125 EXPORT_SYMBOL_GPL(ip_local_out_sk);
126 
127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 {
129 	int ttl = inet->uc_ttl;
130 
131 	if (ttl < 0)
132 		ttl = ip4_dst_hoplimit(dst);
133 	return ttl;
134 }
135 
136 /*
137  *		Add an ip header to a skbuff and send it out.
138  *
139  */
140 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
141 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
142 {
143 	struct inet_sock *inet = inet_sk(sk);
144 	struct rtable *rt = skb_rtable(skb);
145 	struct iphdr *iph;
146 
147 	/* Build the IP header. */
148 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
149 	skb_reset_network_header(skb);
150 	iph = ip_hdr(skb);
151 	iph->version  = 4;
152 	iph->ihl      = 5;
153 	iph->tos      = inet->tos;
154 	if (ip_dont_fragment(sk, &rt->dst))
155 		iph->frag_off = htons(IP_DF);
156 	else
157 		iph->frag_off = 0;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	ip_select_ident(sock_net(sk), skb, sk);
163 
164 	if (opt && opt->opt.optlen) {
165 		iph->ihl += opt->opt.optlen>>2;
166 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
167 	}
168 
169 	skb->priority = sk->sk_priority;
170 	skb->mark = sk->sk_mark;
171 
172 	/* Send it out. */
173 	return ip_local_out(skb);
174 }
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
176 
177 static int ip_finish_output2(struct sock *sk, struct sk_buff *skb)
178 {
179 	struct dst_entry *dst = skb_dst(skb);
180 	struct rtable *rt = (struct rtable *)dst;
181 	struct net_device *dev = dst->dev;
182 	struct net *net = dev_net(dev);
183 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 	struct neighbour *neigh;
185 	u32 nexthop;
186 
187 	if (rt->rt_type == RTN_MULTICAST) {
188 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
189 	} else if (rt->rt_type == RTN_BROADCAST)
190 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
191 
192 	/* Be paranoid, rather than too clever. */
193 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
194 		struct sk_buff *skb2;
195 
196 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
197 		if (!skb2) {
198 			kfree_skb(skb);
199 			return -ENOMEM;
200 		}
201 		if (skb->sk)
202 			skb_set_owner_w(skb2, skb->sk);
203 		consume_skb(skb);
204 		skb = skb2;
205 	}
206 
207 	rcu_read_lock_bh();
208 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
209 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
210 	if (unlikely(!neigh))
211 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
212 	if (!IS_ERR(neigh)) {
213 		int res = dst_neigh_output(dst, neigh, skb);
214 
215 		rcu_read_unlock_bh();
216 		return res;
217 	}
218 	rcu_read_unlock_bh();
219 
220 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
221 			    __func__);
222 	kfree_skb(skb);
223 	return -EINVAL;
224 }
225 
226 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb,
227 				unsigned int mtu)
228 {
229 	netdev_features_t features;
230 	struct sk_buff *segs;
231 	int ret = 0;
232 
233 	/* common case: locally created skb or seglen is <= mtu */
234 	if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) ||
235 	      skb_gso_network_seglen(skb) <= mtu)
236 		return ip_finish_output2(sk, skb);
237 
238 	/* Slowpath -  GSO segment length is exceeding the dst MTU.
239 	 *
240 	 * This can happen in two cases:
241 	 * 1) TCP GRO packet, DF bit not set
242 	 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly
243 	 * from host network stack.
244 	 */
245 	features = netif_skb_features(skb);
246 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
247 	if (IS_ERR_OR_NULL(segs)) {
248 		kfree_skb(skb);
249 		return -ENOMEM;
250 	}
251 
252 	consume_skb(skb);
253 
254 	do {
255 		struct sk_buff *nskb = segs->next;
256 		int err;
257 
258 		segs->next = NULL;
259 		err = ip_fragment(sk, segs, mtu, ip_finish_output2);
260 
261 		if (err && ret == 0)
262 			ret = err;
263 		segs = nskb;
264 	} while (segs);
265 
266 	return ret;
267 }
268 
269 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
270 {
271 	unsigned int mtu;
272 
273 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
274 	/* Policy lookup after SNAT yielded a new policy */
275 	if (skb_dst(skb)->xfrm) {
276 		IPCB(skb)->flags |= IPSKB_REROUTED;
277 		return dst_output(sk, skb);
278 	}
279 #endif
280 	mtu = ip_skb_dst_mtu(skb);
281 	if (skb_is_gso(skb))
282 		return ip_finish_output_gso(sk, skb, mtu);
283 
284 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
285 		return ip_fragment(sk, skb, mtu, ip_finish_output2);
286 
287 	return ip_finish_output2(sk, skb);
288 }
289 
290 int ip_mc_output(struct sock *sk, struct sk_buff *skb)
291 {
292 	struct rtable *rt = skb_rtable(skb);
293 	struct net_device *dev = rt->dst.dev;
294 	struct net *net = dev_net(dev);
295 
296 	/*
297 	 *	If the indicated interface is up and running, send the packet.
298 	 */
299 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
300 
301 	skb->dev = dev;
302 	skb->protocol = htons(ETH_P_IP);
303 
304 	/*
305 	 *	Multicasts are looped back for other local users
306 	 */
307 
308 	if (rt->rt_flags&RTCF_MULTICAST) {
309 		if (sk_mc_loop(sk)
310 #ifdef CONFIG_IP_MROUTE
311 		/* Small optimization: do not loopback not local frames,
312 		   which returned after forwarding; they will be  dropped
313 		   by ip_mr_input in any case.
314 		   Note, that local frames are looped back to be delivered
315 		   to local recipients.
316 
317 		   This check is duplicated in ip_mr_input at the moment.
318 		 */
319 		    &&
320 		    ((rt->rt_flags & RTCF_LOCAL) ||
321 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
322 #endif
323 		   ) {
324 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
325 			if (newskb)
326 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
327 					net, sk, newskb, NULL, newskb->dev,
328 					dev_loopback_xmit);
329 		}
330 
331 		/* Multicasts with ttl 0 must not go beyond the host */
332 
333 		if (ip_hdr(skb)->ttl == 0) {
334 			kfree_skb(skb);
335 			return 0;
336 		}
337 	}
338 
339 	if (rt->rt_flags&RTCF_BROADCAST) {
340 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
341 		if (newskb)
342 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
343 				net, sk, newskb, NULL, newskb->dev,
344 				dev_loopback_xmit);
345 	}
346 
347 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
348 			    net, sk, skb, NULL, skb->dev,
349 			    ip_finish_output,
350 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
351 }
352 
353 int ip_output(struct sock *sk, struct sk_buff *skb)
354 {
355 	struct net_device *dev = skb_dst(skb)->dev;
356 	struct net *net = dev_net(dev);
357 
358 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
359 
360 	skb->dev = dev;
361 	skb->protocol = htons(ETH_P_IP);
362 
363 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
364 			    net, sk, skb, NULL, dev,
365 			    ip_finish_output,
366 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
367 }
368 
369 /*
370  * copy saddr and daddr, possibly using 64bit load/stores
371  * Equivalent to :
372  *   iph->saddr = fl4->saddr;
373  *   iph->daddr = fl4->daddr;
374  */
375 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
376 {
377 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
378 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
379 	memcpy(&iph->saddr, &fl4->saddr,
380 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
381 }
382 
383 /* Note: skb->sk can be different from sk, in case of tunnels */
384 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
385 {
386 	struct inet_sock *inet = inet_sk(sk);
387 	struct ip_options_rcu *inet_opt;
388 	struct flowi4 *fl4;
389 	struct rtable *rt;
390 	struct iphdr *iph;
391 	int res;
392 
393 	/* Skip all of this if the packet is already routed,
394 	 * f.e. by something like SCTP.
395 	 */
396 	rcu_read_lock();
397 	inet_opt = rcu_dereference(inet->inet_opt);
398 	fl4 = &fl->u.ip4;
399 	rt = skb_rtable(skb);
400 	if (rt)
401 		goto packet_routed;
402 
403 	/* Make sure we can route this packet. */
404 	rt = (struct rtable *)__sk_dst_check(sk, 0);
405 	if (!rt) {
406 		__be32 daddr;
407 
408 		/* Use correct destination address if we have options. */
409 		daddr = inet->inet_daddr;
410 		if (inet_opt && inet_opt->opt.srr)
411 			daddr = inet_opt->opt.faddr;
412 
413 		/* If this fails, retransmit mechanism of transport layer will
414 		 * keep trying until route appears or the connection times
415 		 * itself out.
416 		 */
417 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
418 					   daddr, inet->inet_saddr,
419 					   inet->inet_dport,
420 					   inet->inet_sport,
421 					   sk->sk_protocol,
422 					   RT_CONN_FLAGS(sk),
423 					   sk->sk_bound_dev_if);
424 		if (IS_ERR(rt))
425 			goto no_route;
426 		sk_setup_caps(sk, &rt->dst);
427 	}
428 	skb_dst_set_noref(skb, &rt->dst);
429 
430 packet_routed:
431 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
432 		goto no_route;
433 
434 	/* OK, we know where to send it, allocate and build IP header. */
435 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
436 	skb_reset_network_header(skb);
437 	iph = ip_hdr(skb);
438 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
439 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
440 		iph->frag_off = htons(IP_DF);
441 	else
442 		iph->frag_off = 0;
443 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
444 	iph->protocol = sk->sk_protocol;
445 	ip_copy_addrs(iph, fl4);
446 
447 	/* Transport layer set skb->h.foo itself. */
448 
449 	if (inet_opt && inet_opt->opt.optlen) {
450 		iph->ihl += inet_opt->opt.optlen >> 2;
451 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
452 	}
453 
454 	ip_select_ident_segs(sock_net(sk), skb, sk,
455 			     skb_shinfo(skb)->gso_segs ?: 1);
456 
457 	/* TODO : should we use skb->sk here instead of sk ? */
458 	skb->priority = sk->sk_priority;
459 	skb->mark = sk->sk_mark;
460 
461 	res = ip_local_out(skb);
462 	rcu_read_unlock();
463 	return res;
464 
465 no_route:
466 	rcu_read_unlock();
467 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
468 	kfree_skb(skb);
469 	return -EHOSTUNREACH;
470 }
471 EXPORT_SYMBOL(ip_queue_xmit);
472 
473 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
474 {
475 	to->pkt_type = from->pkt_type;
476 	to->priority = from->priority;
477 	to->protocol = from->protocol;
478 	skb_dst_drop(to);
479 	skb_dst_copy(to, from);
480 	to->dev = from->dev;
481 	to->mark = from->mark;
482 
483 	/* Copy the flags to each fragment. */
484 	IPCB(to)->flags = IPCB(from)->flags;
485 
486 #ifdef CONFIG_NET_SCHED
487 	to->tc_index = from->tc_index;
488 #endif
489 	nf_copy(to, from);
490 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
491 	to->ipvs_property = from->ipvs_property;
492 #endif
493 	skb_copy_secmark(to, from);
494 }
495 
496 static int ip_fragment(struct sock *sk, struct sk_buff *skb,
497 		       unsigned int mtu,
498 		       int (*output)(struct sock *, struct sk_buff *))
499 {
500 	struct iphdr *iph = ip_hdr(skb);
501 
502 	if ((iph->frag_off & htons(IP_DF)) == 0)
503 		return ip_do_fragment(sk, skb, output);
504 
505 	if (unlikely(!skb->ignore_df ||
506 		     (IPCB(skb)->frag_max_size &&
507 		      IPCB(skb)->frag_max_size > mtu))) {
508 		struct net *net = dev_net(skb_rtable(skb)->dst.dev);
509 
510 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
511 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
512 			  htonl(mtu));
513 		kfree_skb(skb);
514 		return -EMSGSIZE;
515 	}
516 
517 	return ip_do_fragment(sk, skb, output);
518 }
519 
520 /*
521  *	This IP datagram is too large to be sent in one piece.  Break it up into
522  *	smaller pieces (each of size equal to IP header plus
523  *	a block of the data of the original IP data part) that will yet fit in a
524  *	single device frame, and queue such a frame for sending.
525  */
526 
527 int ip_do_fragment(struct sock *sk, struct sk_buff *skb,
528 		   int (*output)(struct sock *, struct sk_buff *))
529 {
530 	struct iphdr *iph;
531 	int ptr;
532 	struct net_device *dev;
533 	struct sk_buff *skb2;
534 	unsigned int mtu, hlen, left, len, ll_rs;
535 	int offset;
536 	__be16 not_last_frag;
537 	struct rtable *rt = skb_rtable(skb);
538 	struct net *net;
539 	int err = 0;
540 
541 	dev = rt->dst.dev;
542 	net = dev_net(dev);
543 
544 	/*
545 	 *	Point into the IP datagram header.
546 	 */
547 
548 	iph = ip_hdr(skb);
549 
550 	mtu = ip_skb_dst_mtu(skb);
551 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
552 		mtu = IPCB(skb)->frag_max_size;
553 
554 	/*
555 	 *	Setup starting values.
556 	 */
557 
558 	hlen = iph->ihl * 4;
559 	mtu = mtu - hlen;	/* Size of data space */
560 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
561 
562 	/* When frag_list is given, use it. First, check its validity:
563 	 * some transformers could create wrong frag_list or break existing
564 	 * one, it is not prohibited. In this case fall back to copying.
565 	 *
566 	 * LATER: this step can be merged to real generation of fragments,
567 	 * we can switch to copy when see the first bad fragment.
568 	 */
569 	if (skb_has_frag_list(skb)) {
570 		struct sk_buff *frag, *frag2;
571 		int first_len = skb_pagelen(skb);
572 
573 		if (first_len - hlen > mtu ||
574 		    ((first_len - hlen) & 7) ||
575 		    ip_is_fragment(iph) ||
576 		    skb_cloned(skb))
577 			goto slow_path;
578 
579 		skb_walk_frags(skb, frag) {
580 			/* Correct geometry. */
581 			if (frag->len > mtu ||
582 			    ((frag->len & 7) && frag->next) ||
583 			    skb_headroom(frag) < hlen)
584 				goto slow_path_clean;
585 
586 			/* Partially cloned skb? */
587 			if (skb_shared(frag))
588 				goto slow_path_clean;
589 
590 			BUG_ON(frag->sk);
591 			if (skb->sk) {
592 				frag->sk = skb->sk;
593 				frag->destructor = sock_wfree;
594 			}
595 			skb->truesize -= frag->truesize;
596 		}
597 
598 		/* Everything is OK. Generate! */
599 
600 		err = 0;
601 		offset = 0;
602 		frag = skb_shinfo(skb)->frag_list;
603 		skb_frag_list_init(skb);
604 		skb->data_len = first_len - skb_headlen(skb);
605 		skb->len = first_len;
606 		iph->tot_len = htons(first_len);
607 		iph->frag_off = htons(IP_MF);
608 		ip_send_check(iph);
609 
610 		for (;;) {
611 			/* Prepare header of the next frame,
612 			 * before previous one went down. */
613 			if (frag) {
614 				frag->ip_summed = CHECKSUM_NONE;
615 				skb_reset_transport_header(frag);
616 				__skb_push(frag, hlen);
617 				skb_reset_network_header(frag);
618 				memcpy(skb_network_header(frag), iph, hlen);
619 				iph = ip_hdr(frag);
620 				iph->tot_len = htons(frag->len);
621 				ip_copy_metadata(frag, skb);
622 				if (offset == 0)
623 					ip_options_fragment(frag);
624 				offset += skb->len - hlen;
625 				iph->frag_off = htons(offset>>3);
626 				if (frag->next)
627 					iph->frag_off |= htons(IP_MF);
628 				/* Ready, complete checksum */
629 				ip_send_check(iph);
630 			}
631 
632 			err = output(sk, skb);
633 
634 			if (!err)
635 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
636 			if (err || !frag)
637 				break;
638 
639 			skb = frag;
640 			frag = skb->next;
641 			skb->next = NULL;
642 		}
643 
644 		if (err == 0) {
645 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
646 			return 0;
647 		}
648 
649 		while (frag) {
650 			skb = frag->next;
651 			kfree_skb(frag);
652 			frag = skb;
653 		}
654 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
655 		return err;
656 
657 slow_path_clean:
658 		skb_walk_frags(skb, frag2) {
659 			if (frag2 == frag)
660 				break;
661 			frag2->sk = NULL;
662 			frag2->destructor = NULL;
663 			skb->truesize += frag2->truesize;
664 		}
665 	}
666 
667 slow_path:
668 	/* for offloaded checksums cleanup checksum before fragmentation */
669 	if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb))
670 		goto fail;
671 	iph = ip_hdr(skb);
672 
673 	left = skb->len - hlen;		/* Space per frame */
674 	ptr = hlen;		/* Where to start from */
675 
676 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
677 
678 	/*
679 	 *	Fragment the datagram.
680 	 */
681 
682 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
683 	not_last_frag = iph->frag_off & htons(IP_MF);
684 
685 	/*
686 	 *	Keep copying data until we run out.
687 	 */
688 
689 	while (left > 0) {
690 		len = left;
691 		/* IF: it doesn't fit, use 'mtu' - the data space left */
692 		if (len > mtu)
693 			len = mtu;
694 		/* IF: we are not sending up to and including the packet end
695 		   then align the next start on an eight byte boundary */
696 		if (len < left)	{
697 			len &= ~7;
698 		}
699 
700 		/* Allocate buffer */
701 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
702 		if (!skb2) {
703 			err = -ENOMEM;
704 			goto fail;
705 		}
706 
707 		/*
708 		 *	Set up data on packet
709 		 */
710 
711 		ip_copy_metadata(skb2, skb);
712 		skb_reserve(skb2, ll_rs);
713 		skb_put(skb2, len + hlen);
714 		skb_reset_network_header(skb2);
715 		skb2->transport_header = skb2->network_header + hlen;
716 
717 		/*
718 		 *	Charge the memory for the fragment to any owner
719 		 *	it might possess
720 		 */
721 
722 		if (skb->sk)
723 			skb_set_owner_w(skb2, skb->sk);
724 
725 		/*
726 		 *	Copy the packet header into the new buffer.
727 		 */
728 
729 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
730 
731 		/*
732 		 *	Copy a block of the IP datagram.
733 		 */
734 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
735 			BUG();
736 		left -= len;
737 
738 		/*
739 		 *	Fill in the new header fields.
740 		 */
741 		iph = ip_hdr(skb2);
742 		iph->frag_off = htons((offset >> 3));
743 
744 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
745 			iph->frag_off |= htons(IP_DF);
746 
747 		/* ANK: dirty, but effective trick. Upgrade options only if
748 		 * the segment to be fragmented was THE FIRST (otherwise,
749 		 * options are already fixed) and make it ONCE
750 		 * on the initial skb, so that all the following fragments
751 		 * will inherit fixed options.
752 		 */
753 		if (offset == 0)
754 			ip_options_fragment(skb);
755 
756 		/*
757 		 *	Added AC : If we are fragmenting a fragment that's not the
758 		 *		   last fragment then keep MF on each bit
759 		 */
760 		if (left > 0 || not_last_frag)
761 			iph->frag_off |= htons(IP_MF);
762 		ptr += len;
763 		offset += len;
764 
765 		/*
766 		 *	Put this fragment into the sending queue.
767 		 */
768 		iph->tot_len = htons(len + hlen);
769 
770 		ip_send_check(iph);
771 
772 		err = output(sk, skb2);
773 		if (err)
774 			goto fail;
775 
776 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
777 	}
778 	consume_skb(skb);
779 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
780 	return err;
781 
782 fail:
783 	kfree_skb(skb);
784 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
785 	return err;
786 }
787 EXPORT_SYMBOL(ip_do_fragment);
788 
789 int
790 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
791 {
792 	struct msghdr *msg = from;
793 
794 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
795 		if (copy_from_iter(to, len, &msg->msg_iter) != len)
796 			return -EFAULT;
797 	} else {
798 		__wsum csum = 0;
799 		if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len)
800 			return -EFAULT;
801 		skb->csum = csum_block_add(skb->csum, csum, odd);
802 	}
803 	return 0;
804 }
805 EXPORT_SYMBOL(ip_generic_getfrag);
806 
807 static inline __wsum
808 csum_page(struct page *page, int offset, int copy)
809 {
810 	char *kaddr;
811 	__wsum csum;
812 	kaddr = kmap(page);
813 	csum = csum_partial(kaddr + offset, copy, 0);
814 	kunmap(page);
815 	return csum;
816 }
817 
818 static inline int ip_ufo_append_data(struct sock *sk,
819 			struct sk_buff_head *queue,
820 			int getfrag(void *from, char *to, int offset, int len,
821 			       int odd, struct sk_buff *skb),
822 			void *from, int length, int hh_len, int fragheaderlen,
823 			int transhdrlen, int maxfraglen, unsigned int flags)
824 {
825 	struct sk_buff *skb;
826 	int err;
827 
828 	/* There is support for UDP fragmentation offload by network
829 	 * device, so create one single skb packet containing complete
830 	 * udp datagram
831 	 */
832 	skb = skb_peek_tail(queue);
833 	if (!skb) {
834 		skb = sock_alloc_send_skb(sk,
835 			hh_len + fragheaderlen + transhdrlen + 20,
836 			(flags & MSG_DONTWAIT), &err);
837 
838 		if (!skb)
839 			return err;
840 
841 		/* reserve space for Hardware header */
842 		skb_reserve(skb, hh_len);
843 
844 		/* create space for UDP/IP header */
845 		skb_put(skb, fragheaderlen + transhdrlen);
846 
847 		/* initialize network header pointer */
848 		skb_reset_network_header(skb);
849 
850 		/* initialize protocol header pointer */
851 		skb->transport_header = skb->network_header + fragheaderlen;
852 
853 		skb->csum = 0;
854 
855 		__skb_queue_tail(queue, skb);
856 	} else if (skb_is_gso(skb)) {
857 		goto append;
858 	}
859 
860 	skb->ip_summed = CHECKSUM_PARTIAL;
861 	/* specify the length of each IP datagram fragment */
862 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
863 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
864 
865 append:
866 	return skb_append_datato_frags(sk, skb, getfrag, from,
867 				       (length - transhdrlen));
868 }
869 
870 static int __ip_append_data(struct sock *sk,
871 			    struct flowi4 *fl4,
872 			    struct sk_buff_head *queue,
873 			    struct inet_cork *cork,
874 			    struct page_frag *pfrag,
875 			    int getfrag(void *from, char *to, int offset,
876 					int len, int odd, struct sk_buff *skb),
877 			    void *from, int length, int transhdrlen,
878 			    unsigned int flags)
879 {
880 	struct inet_sock *inet = inet_sk(sk);
881 	struct sk_buff *skb;
882 
883 	struct ip_options *opt = cork->opt;
884 	int hh_len;
885 	int exthdrlen;
886 	int mtu;
887 	int copy;
888 	int err;
889 	int offset = 0;
890 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
891 	int csummode = CHECKSUM_NONE;
892 	struct rtable *rt = (struct rtable *)cork->dst;
893 	u32 tskey = 0;
894 
895 	skb = skb_peek_tail(queue);
896 
897 	exthdrlen = !skb ? rt->dst.header_len : 0;
898 	mtu = cork->fragsize;
899 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
900 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
901 		tskey = sk->sk_tskey++;
902 
903 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
904 
905 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
906 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
907 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
908 
909 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
910 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
911 			       mtu - (opt ? opt->optlen : 0));
912 		return -EMSGSIZE;
913 	}
914 
915 	/*
916 	 * transhdrlen > 0 means that this is the first fragment and we wish
917 	 * it won't be fragmented in the future.
918 	 */
919 	if (transhdrlen &&
920 	    length + fragheaderlen <= mtu &&
921 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
922 	    !exthdrlen)
923 		csummode = CHECKSUM_PARTIAL;
924 
925 	cork->length += length;
926 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
927 	    (sk->sk_protocol == IPPROTO_UDP) &&
928 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len &&
929 	    (sk->sk_type == SOCK_DGRAM)) {
930 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
931 					 hh_len, fragheaderlen, transhdrlen,
932 					 maxfraglen, flags);
933 		if (err)
934 			goto error;
935 		return 0;
936 	}
937 
938 	/* So, what's going on in the loop below?
939 	 *
940 	 * We use calculated fragment length to generate chained skb,
941 	 * each of segments is IP fragment ready for sending to network after
942 	 * adding appropriate IP header.
943 	 */
944 
945 	if (!skb)
946 		goto alloc_new_skb;
947 
948 	while (length > 0) {
949 		/* Check if the remaining data fits into current packet. */
950 		copy = mtu - skb->len;
951 		if (copy < length)
952 			copy = maxfraglen - skb->len;
953 		if (copy <= 0) {
954 			char *data;
955 			unsigned int datalen;
956 			unsigned int fraglen;
957 			unsigned int fraggap;
958 			unsigned int alloclen;
959 			struct sk_buff *skb_prev;
960 alloc_new_skb:
961 			skb_prev = skb;
962 			if (skb_prev)
963 				fraggap = skb_prev->len - maxfraglen;
964 			else
965 				fraggap = 0;
966 
967 			/*
968 			 * If remaining data exceeds the mtu,
969 			 * we know we need more fragment(s).
970 			 */
971 			datalen = length + fraggap;
972 			if (datalen > mtu - fragheaderlen)
973 				datalen = maxfraglen - fragheaderlen;
974 			fraglen = datalen + fragheaderlen;
975 
976 			if ((flags & MSG_MORE) &&
977 			    !(rt->dst.dev->features&NETIF_F_SG))
978 				alloclen = mtu;
979 			else
980 				alloclen = fraglen;
981 
982 			alloclen += exthdrlen;
983 
984 			/* The last fragment gets additional space at tail.
985 			 * Note, with MSG_MORE we overallocate on fragments,
986 			 * because we have no idea what fragment will be
987 			 * the last.
988 			 */
989 			if (datalen == length + fraggap)
990 				alloclen += rt->dst.trailer_len;
991 
992 			if (transhdrlen) {
993 				skb = sock_alloc_send_skb(sk,
994 						alloclen + hh_len + 15,
995 						(flags & MSG_DONTWAIT), &err);
996 			} else {
997 				skb = NULL;
998 				if (atomic_read(&sk->sk_wmem_alloc) <=
999 				    2 * sk->sk_sndbuf)
1000 					skb = sock_wmalloc(sk,
1001 							   alloclen + hh_len + 15, 1,
1002 							   sk->sk_allocation);
1003 				if (unlikely(!skb))
1004 					err = -ENOBUFS;
1005 			}
1006 			if (!skb)
1007 				goto error;
1008 
1009 			/*
1010 			 *	Fill in the control structures
1011 			 */
1012 			skb->ip_summed = csummode;
1013 			skb->csum = 0;
1014 			skb_reserve(skb, hh_len);
1015 
1016 			/* only the initial fragment is time stamped */
1017 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1018 			cork->tx_flags = 0;
1019 			skb_shinfo(skb)->tskey = tskey;
1020 			tskey = 0;
1021 
1022 			/*
1023 			 *	Find where to start putting bytes.
1024 			 */
1025 			data = skb_put(skb, fraglen + exthdrlen);
1026 			skb_set_network_header(skb, exthdrlen);
1027 			skb->transport_header = (skb->network_header +
1028 						 fragheaderlen);
1029 			data += fragheaderlen + exthdrlen;
1030 
1031 			if (fraggap) {
1032 				skb->csum = skb_copy_and_csum_bits(
1033 					skb_prev, maxfraglen,
1034 					data + transhdrlen, fraggap, 0);
1035 				skb_prev->csum = csum_sub(skb_prev->csum,
1036 							  skb->csum);
1037 				data += fraggap;
1038 				pskb_trim_unique(skb_prev, maxfraglen);
1039 			}
1040 
1041 			copy = datalen - transhdrlen - fraggap;
1042 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1043 				err = -EFAULT;
1044 				kfree_skb(skb);
1045 				goto error;
1046 			}
1047 
1048 			offset += copy;
1049 			length -= datalen - fraggap;
1050 			transhdrlen = 0;
1051 			exthdrlen = 0;
1052 			csummode = CHECKSUM_NONE;
1053 
1054 			/*
1055 			 * Put the packet on the pending queue.
1056 			 */
1057 			__skb_queue_tail(queue, skb);
1058 			continue;
1059 		}
1060 
1061 		if (copy > length)
1062 			copy = length;
1063 
1064 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1065 			unsigned int off;
1066 
1067 			off = skb->len;
1068 			if (getfrag(from, skb_put(skb, copy),
1069 					offset, copy, off, skb) < 0) {
1070 				__skb_trim(skb, off);
1071 				err = -EFAULT;
1072 				goto error;
1073 			}
1074 		} else {
1075 			int i = skb_shinfo(skb)->nr_frags;
1076 
1077 			err = -ENOMEM;
1078 			if (!sk_page_frag_refill(sk, pfrag))
1079 				goto error;
1080 
1081 			if (!skb_can_coalesce(skb, i, pfrag->page,
1082 					      pfrag->offset)) {
1083 				err = -EMSGSIZE;
1084 				if (i == MAX_SKB_FRAGS)
1085 					goto error;
1086 
1087 				__skb_fill_page_desc(skb, i, pfrag->page,
1088 						     pfrag->offset, 0);
1089 				skb_shinfo(skb)->nr_frags = ++i;
1090 				get_page(pfrag->page);
1091 			}
1092 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1093 			if (getfrag(from,
1094 				    page_address(pfrag->page) + pfrag->offset,
1095 				    offset, copy, skb->len, skb) < 0)
1096 				goto error_efault;
1097 
1098 			pfrag->offset += copy;
1099 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1100 			skb->len += copy;
1101 			skb->data_len += copy;
1102 			skb->truesize += copy;
1103 			atomic_add(copy, &sk->sk_wmem_alloc);
1104 		}
1105 		offset += copy;
1106 		length -= copy;
1107 	}
1108 
1109 	return 0;
1110 
1111 error_efault:
1112 	err = -EFAULT;
1113 error:
1114 	cork->length -= length;
1115 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1116 	return err;
1117 }
1118 
1119 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1120 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1121 {
1122 	struct ip_options_rcu *opt;
1123 	struct rtable *rt;
1124 
1125 	/*
1126 	 * setup for corking.
1127 	 */
1128 	opt = ipc->opt;
1129 	if (opt) {
1130 		if (!cork->opt) {
1131 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1132 					    sk->sk_allocation);
1133 			if (unlikely(!cork->opt))
1134 				return -ENOBUFS;
1135 		}
1136 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1137 		cork->flags |= IPCORK_OPT;
1138 		cork->addr = ipc->addr;
1139 	}
1140 	rt = *rtp;
1141 	if (unlikely(!rt))
1142 		return -EFAULT;
1143 	/*
1144 	 * We steal reference to this route, caller should not release it
1145 	 */
1146 	*rtp = NULL;
1147 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1148 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1149 	cork->dst = &rt->dst;
1150 	cork->length = 0;
1151 	cork->ttl = ipc->ttl;
1152 	cork->tos = ipc->tos;
1153 	cork->priority = ipc->priority;
1154 	cork->tx_flags = ipc->tx_flags;
1155 
1156 	return 0;
1157 }
1158 
1159 /*
1160  *	ip_append_data() and ip_append_page() can make one large IP datagram
1161  *	from many pieces of data. Each pieces will be holded on the socket
1162  *	until ip_push_pending_frames() is called. Each piece can be a page
1163  *	or non-page data.
1164  *
1165  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1166  *	this interface potentially.
1167  *
1168  *	LATER: length must be adjusted by pad at tail, when it is required.
1169  */
1170 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1171 		   int getfrag(void *from, char *to, int offset, int len,
1172 			       int odd, struct sk_buff *skb),
1173 		   void *from, int length, int transhdrlen,
1174 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1175 		   unsigned int flags)
1176 {
1177 	struct inet_sock *inet = inet_sk(sk);
1178 	int err;
1179 
1180 	if (flags&MSG_PROBE)
1181 		return 0;
1182 
1183 	if (skb_queue_empty(&sk->sk_write_queue)) {
1184 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1185 		if (err)
1186 			return err;
1187 	} else {
1188 		transhdrlen = 0;
1189 	}
1190 
1191 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1192 				sk_page_frag(sk), getfrag,
1193 				from, length, transhdrlen, flags);
1194 }
1195 
1196 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1197 		       int offset, size_t size, int flags)
1198 {
1199 	struct inet_sock *inet = inet_sk(sk);
1200 	struct sk_buff *skb;
1201 	struct rtable *rt;
1202 	struct ip_options *opt = NULL;
1203 	struct inet_cork *cork;
1204 	int hh_len;
1205 	int mtu;
1206 	int len;
1207 	int err;
1208 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1209 
1210 	if (inet->hdrincl)
1211 		return -EPERM;
1212 
1213 	if (flags&MSG_PROBE)
1214 		return 0;
1215 
1216 	if (skb_queue_empty(&sk->sk_write_queue))
1217 		return -EINVAL;
1218 
1219 	cork = &inet->cork.base;
1220 	rt = (struct rtable *)cork->dst;
1221 	if (cork->flags & IPCORK_OPT)
1222 		opt = cork->opt;
1223 
1224 	if (!(rt->dst.dev->features&NETIF_F_SG))
1225 		return -EOPNOTSUPP;
1226 
1227 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1228 	mtu = cork->fragsize;
1229 
1230 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1231 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1232 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1233 
1234 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1235 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1236 			       mtu - (opt ? opt->optlen : 0));
1237 		return -EMSGSIZE;
1238 	}
1239 
1240 	skb = skb_peek_tail(&sk->sk_write_queue);
1241 	if (!skb)
1242 		return -EINVAL;
1243 
1244 	cork->length += size;
1245 	if ((size + skb->len > mtu) &&
1246 	    (sk->sk_protocol == IPPROTO_UDP) &&
1247 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1248 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1249 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1250 	}
1251 
1252 	while (size > 0) {
1253 		if (skb_is_gso(skb)) {
1254 			len = size;
1255 		} else {
1256 
1257 			/* Check if the remaining data fits into current packet. */
1258 			len = mtu - skb->len;
1259 			if (len < size)
1260 				len = maxfraglen - skb->len;
1261 		}
1262 		if (len <= 0) {
1263 			struct sk_buff *skb_prev;
1264 			int alloclen;
1265 
1266 			skb_prev = skb;
1267 			fraggap = skb_prev->len - maxfraglen;
1268 
1269 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1270 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1271 			if (unlikely(!skb)) {
1272 				err = -ENOBUFS;
1273 				goto error;
1274 			}
1275 
1276 			/*
1277 			 *	Fill in the control structures
1278 			 */
1279 			skb->ip_summed = CHECKSUM_NONE;
1280 			skb->csum = 0;
1281 			skb_reserve(skb, hh_len);
1282 
1283 			/*
1284 			 *	Find where to start putting bytes.
1285 			 */
1286 			skb_put(skb, fragheaderlen + fraggap);
1287 			skb_reset_network_header(skb);
1288 			skb->transport_header = (skb->network_header +
1289 						 fragheaderlen);
1290 			if (fraggap) {
1291 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1292 								   maxfraglen,
1293 						    skb_transport_header(skb),
1294 								   fraggap, 0);
1295 				skb_prev->csum = csum_sub(skb_prev->csum,
1296 							  skb->csum);
1297 				pskb_trim_unique(skb_prev, maxfraglen);
1298 			}
1299 
1300 			/*
1301 			 * Put the packet on the pending queue.
1302 			 */
1303 			__skb_queue_tail(&sk->sk_write_queue, skb);
1304 			continue;
1305 		}
1306 
1307 		if (len > size)
1308 			len = size;
1309 
1310 		if (skb_append_pagefrags(skb, page, offset, len)) {
1311 			err = -EMSGSIZE;
1312 			goto error;
1313 		}
1314 
1315 		if (skb->ip_summed == CHECKSUM_NONE) {
1316 			__wsum csum;
1317 			csum = csum_page(page, offset, len);
1318 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1319 		}
1320 
1321 		skb->len += len;
1322 		skb->data_len += len;
1323 		skb->truesize += len;
1324 		atomic_add(len, &sk->sk_wmem_alloc);
1325 		offset += len;
1326 		size -= len;
1327 	}
1328 	return 0;
1329 
1330 error:
1331 	cork->length -= size;
1332 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1333 	return err;
1334 }
1335 
1336 static void ip_cork_release(struct inet_cork *cork)
1337 {
1338 	cork->flags &= ~IPCORK_OPT;
1339 	kfree(cork->opt);
1340 	cork->opt = NULL;
1341 	dst_release(cork->dst);
1342 	cork->dst = NULL;
1343 }
1344 
1345 /*
1346  *	Combined all pending IP fragments on the socket as one IP datagram
1347  *	and push them out.
1348  */
1349 struct sk_buff *__ip_make_skb(struct sock *sk,
1350 			      struct flowi4 *fl4,
1351 			      struct sk_buff_head *queue,
1352 			      struct inet_cork *cork)
1353 {
1354 	struct sk_buff *skb, *tmp_skb;
1355 	struct sk_buff **tail_skb;
1356 	struct inet_sock *inet = inet_sk(sk);
1357 	struct net *net = sock_net(sk);
1358 	struct ip_options *opt = NULL;
1359 	struct rtable *rt = (struct rtable *)cork->dst;
1360 	struct iphdr *iph;
1361 	__be16 df = 0;
1362 	__u8 ttl;
1363 
1364 	skb = __skb_dequeue(queue);
1365 	if (!skb)
1366 		goto out;
1367 	tail_skb = &(skb_shinfo(skb)->frag_list);
1368 
1369 	/* move skb->data to ip header from ext header */
1370 	if (skb->data < skb_network_header(skb))
1371 		__skb_pull(skb, skb_network_offset(skb));
1372 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1373 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1374 		*tail_skb = tmp_skb;
1375 		tail_skb = &(tmp_skb->next);
1376 		skb->len += tmp_skb->len;
1377 		skb->data_len += tmp_skb->len;
1378 		skb->truesize += tmp_skb->truesize;
1379 		tmp_skb->destructor = NULL;
1380 		tmp_skb->sk = NULL;
1381 	}
1382 
1383 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1384 	 * to fragment the frame generated here. No matter, what transforms
1385 	 * how transforms change size of the packet, it will come out.
1386 	 */
1387 	skb->ignore_df = ip_sk_ignore_df(sk);
1388 
1389 	/* DF bit is set when we want to see DF on outgoing frames.
1390 	 * If ignore_df is set too, we still allow to fragment this frame
1391 	 * locally. */
1392 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1393 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1394 	    (skb->len <= dst_mtu(&rt->dst) &&
1395 	     ip_dont_fragment(sk, &rt->dst)))
1396 		df = htons(IP_DF);
1397 
1398 	if (cork->flags & IPCORK_OPT)
1399 		opt = cork->opt;
1400 
1401 	if (cork->ttl != 0)
1402 		ttl = cork->ttl;
1403 	else if (rt->rt_type == RTN_MULTICAST)
1404 		ttl = inet->mc_ttl;
1405 	else
1406 		ttl = ip_select_ttl(inet, &rt->dst);
1407 
1408 	iph = ip_hdr(skb);
1409 	iph->version = 4;
1410 	iph->ihl = 5;
1411 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1412 	iph->frag_off = df;
1413 	iph->ttl = ttl;
1414 	iph->protocol = sk->sk_protocol;
1415 	ip_copy_addrs(iph, fl4);
1416 	ip_select_ident(net, skb, sk);
1417 
1418 	if (opt) {
1419 		iph->ihl += opt->optlen>>2;
1420 		ip_options_build(skb, opt, cork->addr, rt, 0);
1421 	}
1422 
1423 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1424 	skb->mark = sk->sk_mark;
1425 	/*
1426 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1427 	 * on dst refcount
1428 	 */
1429 	cork->dst = NULL;
1430 	skb_dst_set(skb, &rt->dst);
1431 
1432 	if (iph->protocol == IPPROTO_ICMP)
1433 		icmp_out_count(net, ((struct icmphdr *)
1434 			skb_transport_header(skb))->type);
1435 
1436 	ip_cork_release(cork);
1437 out:
1438 	return skb;
1439 }
1440 
1441 int ip_send_skb(struct net *net, struct sk_buff *skb)
1442 {
1443 	int err;
1444 
1445 	err = ip_local_out(skb);
1446 	if (err) {
1447 		if (err > 0)
1448 			err = net_xmit_errno(err);
1449 		if (err)
1450 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1451 	}
1452 
1453 	return err;
1454 }
1455 
1456 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1457 {
1458 	struct sk_buff *skb;
1459 
1460 	skb = ip_finish_skb(sk, fl4);
1461 	if (!skb)
1462 		return 0;
1463 
1464 	/* Netfilter gets whole the not fragmented skb. */
1465 	return ip_send_skb(sock_net(sk), skb);
1466 }
1467 
1468 /*
1469  *	Throw away all pending data on the socket.
1470  */
1471 static void __ip_flush_pending_frames(struct sock *sk,
1472 				      struct sk_buff_head *queue,
1473 				      struct inet_cork *cork)
1474 {
1475 	struct sk_buff *skb;
1476 
1477 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1478 		kfree_skb(skb);
1479 
1480 	ip_cork_release(cork);
1481 }
1482 
1483 void ip_flush_pending_frames(struct sock *sk)
1484 {
1485 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1486 }
1487 
1488 struct sk_buff *ip_make_skb(struct sock *sk,
1489 			    struct flowi4 *fl4,
1490 			    int getfrag(void *from, char *to, int offset,
1491 					int len, int odd, struct sk_buff *skb),
1492 			    void *from, int length, int transhdrlen,
1493 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1494 			    unsigned int flags)
1495 {
1496 	struct inet_cork cork;
1497 	struct sk_buff_head queue;
1498 	int err;
1499 
1500 	if (flags & MSG_PROBE)
1501 		return NULL;
1502 
1503 	__skb_queue_head_init(&queue);
1504 
1505 	cork.flags = 0;
1506 	cork.addr = 0;
1507 	cork.opt = NULL;
1508 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1509 	if (err)
1510 		return ERR_PTR(err);
1511 
1512 	err = __ip_append_data(sk, fl4, &queue, &cork,
1513 			       &current->task_frag, getfrag,
1514 			       from, length, transhdrlen, flags);
1515 	if (err) {
1516 		__ip_flush_pending_frames(sk, &queue, &cork);
1517 		return ERR_PTR(err);
1518 	}
1519 
1520 	return __ip_make_skb(sk, fl4, &queue, &cork);
1521 }
1522 
1523 /*
1524  *	Fetch data from kernel space and fill in checksum if needed.
1525  */
1526 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1527 			      int len, int odd, struct sk_buff *skb)
1528 {
1529 	__wsum csum;
1530 
1531 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1532 	skb->csum = csum_block_add(skb->csum, csum, odd);
1533 	return 0;
1534 }
1535 
1536 /*
1537  *	Generic function to send a packet as reply to another packet.
1538  *	Used to send some TCP resets/acks so far.
1539  */
1540 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1541 			   const struct ip_options *sopt,
1542 			   __be32 daddr, __be32 saddr,
1543 			   const struct ip_reply_arg *arg,
1544 			   unsigned int len)
1545 {
1546 	struct ip_options_data replyopts;
1547 	struct ipcm_cookie ipc;
1548 	struct flowi4 fl4;
1549 	struct rtable *rt = skb_rtable(skb);
1550 	struct net *net = sock_net(sk);
1551 	struct sk_buff *nskb;
1552 	int err;
1553 	int oif;
1554 
1555 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1556 		return;
1557 
1558 	ipc.addr = daddr;
1559 	ipc.opt = NULL;
1560 	ipc.tx_flags = 0;
1561 	ipc.ttl = 0;
1562 	ipc.tos = -1;
1563 
1564 	if (replyopts.opt.opt.optlen) {
1565 		ipc.opt = &replyopts.opt;
1566 
1567 		if (replyopts.opt.opt.srr)
1568 			daddr = replyopts.opt.opt.faddr;
1569 	}
1570 
1571 	oif = arg->bound_dev_if;
1572 	if (!oif && netif_index_is_vrf(net, skb->skb_iif))
1573 		oif = skb->skb_iif;
1574 
1575 	flowi4_init_output(&fl4, oif,
1576 			   IP4_REPLY_MARK(net, skb->mark),
1577 			   RT_TOS(arg->tos),
1578 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1579 			   ip_reply_arg_flowi_flags(arg),
1580 			   daddr, saddr,
1581 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1582 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1583 	rt = ip_route_output_key(net, &fl4);
1584 	if (IS_ERR(rt))
1585 		return;
1586 
1587 	inet_sk(sk)->tos = arg->tos;
1588 
1589 	sk->sk_priority = skb->priority;
1590 	sk->sk_protocol = ip_hdr(skb)->protocol;
1591 	sk->sk_bound_dev_if = arg->bound_dev_if;
1592 	sk->sk_sndbuf = sysctl_wmem_default;
1593 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1594 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1595 	if (unlikely(err)) {
1596 		ip_flush_pending_frames(sk);
1597 		goto out;
1598 	}
1599 
1600 	nskb = skb_peek(&sk->sk_write_queue);
1601 	if (nskb) {
1602 		if (arg->csumoffset >= 0)
1603 			*((__sum16 *)skb_transport_header(nskb) +
1604 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1605 								arg->csum));
1606 		nskb->ip_summed = CHECKSUM_NONE;
1607 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1608 		ip_push_pending_frames(sk, &fl4);
1609 	}
1610 out:
1611 	ip_rt_put(rt);
1612 }
1613 
1614 void __init ip_init(void)
1615 {
1616 	ip_rt_init();
1617 	inet_initpeers();
1618 
1619 #if defined(CONFIG_IP_MULTICAST)
1620 	igmp_mc_init();
1621 #endif
1622 }
1623