1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <asm/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <linux/igmp.h> 77 #include <linux/netfilter_ipv4.h> 78 #include <linux/netfilter_bridge.h> 79 #include <linux/mroute.h> 80 #include <linux/netlink.h> 81 #include <linux/tcp.h> 82 83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL; 84 EXPORT_SYMBOL(sysctl_ip_default_ttl); 85 86 static int ip_fragment(struct sock *sk, struct sk_buff *skb, 87 unsigned int mtu, 88 int (*output)(struct sock *, struct sk_buff *)); 89 90 /* Generate a checksum for an outgoing IP datagram. */ 91 void ip_send_check(struct iphdr *iph) 92 { 93 iph->check = 0; 94 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 95 } 96 EXPORT_SYMBOL(ip_send_check); 97 98 static int __ip_local_out_sk(struct sock *sk, struct sk_buff *skb) 99 { 100 struct net *net = dev_net(skb_dst(skb)->dev); 101 struct iphdr *iph = ip_hdr(skb); 102 103 iph->tot_len = htons(skb->len); 104 ip_send_check(iph); 105 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 106 net, sk, skb, NULL, skb_dst(skb)->dev, 107 dst_output_okfn); 108 } 109 110 int __ip_local_out(struct sk_buff *skb) 111 { 112 return __ip_local_out_sk(skb->sk, skb); 113 } 114 115 int ip_local_out_sk(struct sock *sk, struct sk_buff *skb) 116 { 117 int err; 118 119 err = __ip_local_out(skb); 120 if (likely(err == 1)) 121 err = dst_output(sk, skb); 122 123 return err; 124 } 125 EXPORT_SYMBOL_GPL(ip_local_out_sk); 126 127 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 128 { 129 int ttl = inet->uc_ttl; 130 131 if (ttl < 0) 132 ttl = ip4_dst_hoplimit(dst); 133 return ttl; 134 } 135 136 /* 137 * Add an ip header to a skbuff and send it out. 138 * 139 */ 140 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk, 141 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 142 { 143 struct inet_sock *inet = inet_sk(sk); 144 struct rtable *rt = skb_rtable(skb); 145 struct iphdr *iph; 146 147 /* Build the IP header. */ 148 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 149 skb_reset_network_header(skb); 150 iph = ip_hdr(skb); 151 iph->version = 4; 152 iph->ihl = 5; 153 iph->tos = inet->tos; 154 if (ip_dont_fragment(sk, &rt->dst)) 155 iph->frag_off = htons(IP_DF); 156 else 157 iph->frag_off = 0; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 ip_select_ident(sock_net(sk), skb, sk); 163 164 if (opt && opt->opt.optlen) { 165 iph->ihl += opt->opt.optlen>>2; 166 ip_options_build(skb, &opt->opt, daddr, rt, 0); 167 } 168 169 skb->priority = sk->sk_priority; 170 skb->mark = sk->sk_mark; 171 172 /* Send it out. */ 173 return ip_local_out(skb); 174 } 175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 176 177 static int ip_finish_output2(struct sock *sk, struct sk_buff *skb) 178 { 179 struct dst_entry *dst = skb_dst(skb); 180 struct rtable *rt = (struct rtable *)dst; 181 struct net_device *dev = dst->dev; 182 struct net *net = dev_net(dev); 183 unsigned int hh_len = LL_RESERVED_SPACE(dev); 184 struct neighbour *neigh; 185 u32 nexthop; 186 187 if (rt->rt_type == RTN_MULTICAST) { 188 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 189 } else if (rt->rt_type == RTN_BROADCAST) 190 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 191 192 /* Be paranoid, rather than too clever. */ 193 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 194 struct sk_buff *skb2; 195 196 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 197 if (!skb2) { 198 kfree_skb(skb); 199 return -ENOMEM; 200 } 201 if (skb->sk) 202 skb_set_owner_w(skb2, skb->sk); 203 consume_skb(skb); 204 skb = skb2; 205 } 206 207 rcu_read_lock_bh(); 208 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 209 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 210 if (unlikely(!neigh)) 211 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 212 if (!IS_ERR(neigh)) { 213 int res = dst_neigh_output(dst, neigh, skb); 214 215 rcu_read_unlock_bh(); 216 return res; 217 } 218 rcu_read_unlock_bh(); 219 220 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 221 __func__); 222 kfree_skb(skb); 223 return -EINVAL; 224 } 225 226 static int ip_finish_output_gso(struct sock *sk, struct sk_buff *skb, 227 unsigned int mtu) 228 { 229 netdev_features_t features; 230 struct sk_buff *segs; 231 int ret = 0; 232 233 /* common case: locally created skb or seglen is <= mtu */ 234 if (((IPCB(skb)->flags & IPSKB_FORWARDED) == 0) || 235 skb_gso_network_seglen(skb) <= mtu) 236 return ip_finish_output2(sk, skb); 237 238 /* Slowpath - GSO segment length is exceeding the dst MTU. 239 * 240 * This can happen in two cases: 241 * 1) TCP GRO packet, DF bit not set 242 * 2) skb arrived via virtio-net, we thus get TSO/GSO skbs directly 243 * from host network stack. 244 */ 245 features = netif_skb_features(skb); 246 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 247 if (IS_ERR_OR_NULL(segs)) { 248 kfree_skb(skb); 249 return -ENOMEM; 250 } 251 252 consume_skb(skb); 253 254 do { 255 struct sk_buff *nskb = segs->next; 256 int err; 257 258 segs->next = NULL; 259 err = ip_fragment(sk, segs, mtu, ip_finish_output2); 260 261 if (err && ret == 0) 262 ret = err; 263 segs = nskb; 264 } while (segs); 265 266 return ret; 267 } 268 269 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 270 { 271 unsigned int mtu; 272 273 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 274 /* Policy lookup after SNAT yielded a new policy */ 275 if (skb_dst(skb)->xfrm) { 276 IPCB(skb)->flags |= IPSKB_REROUTED; 277 return dst_output(sk, skb); 278 } 279 #endif 280 mtu = ip_skb_dst_mtu(skb); 281 if (skb_is_gso(skb)) 282 return ip_finish_output_gso(sk, skb, mtu); 283 284 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 285 return ip_fragment(sk, skb, mtu, ip_finish_output2); 286 287 return ip_finish_output2(sk, skb); 288 } 289 290 int ip_mc_output(struct sock *sk, struct sk_buff *skb) 291 { 292 struct rtable *rt = skb_rtable(skb); 293 struct net_device *dev = rt->dst.dev; 294 struct net *net = dev_net(dev); 295 296 /* 297 * If the indicated interface is up and running, send the packet. 298 */ 299 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 300 301 skb->dev = dev; 302 skb->protocol = htons(ETH_P_IP); 303 304 /* 305 * Multicasts are looped back for other local users 306 */ 307 308 if (rt->rt_flags&RTCF_MULTICAST) { 309 if (sk_mc_loop(sk) 310 #ifdef CONFIG_IP_MROUTE 311 /* Small optimization: do not loopback not local frames, 312 which returned after forwarding; they will be dropped 313 by ip_mr_input in any case. 314 Note, that local frames are looped back to be delivered 315 to local recipients. 316 317 This check is duplicated in ip_mr_input at the moment. 318 */ 319 && 320 ((rt->rt_flags & RTCF_LOCAL) || 321 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 322 #endif 323 ) { 324 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 325 if (newskb) 326 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 327 net, sk, newskb, NULL, newskb->dev, 328 dev_loopback_xmit); 329 } 330 331 /* Multicasts with ttl 0 must not go beyond the host */ 332 333 if (ip_hdr(skb)->ttl == 0) { 334 kfree_skb(skb); 335 return 0; 336 } 337 } 338 339 if (rt->rt_flags&RTCF_BROADCAST) { 340 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 341 if (newskb) 342 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 343 net, sk, newskb, NULL, newskb->dev, 344 dev_loopback_xmit); 345 } 346 347 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 348 net, sk, skb, NULL, skb->dev, 349 ip_finish_output, 350 !(IPCB(skb)->flags & IPSKB_REROUTED)); 351 } 352 353 int ip_output(struct sock *sk, struct sk_buff *skb) 354 { 355 struct net_device *dev = skb_dst(skb)->dev; 356 struct net *net = dev_net(dev); 357 358 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 359 360 skb->dev = dev; 361 skb->protocol = htons(ETH_P_IP); 362 363 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 364 net, sk, skb, NULL, dev, 365 ip_finish_output, 366 !(IPCB(skb)->flags & IPSKB_REROUTED)); 367 } 368 369 /* 370 * copy saddr and daddr, possibly using 64bit load/stores 371 * Equivalent to : 372 * iph->saddr = fl4->saddr; 373 * iph->daddr = fl4->daddr; 374 */ 375 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 376 { 377 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 378 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 379 memcpy(&iph->saddr, &fl4->saddr, 380 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 381 } 382 383 /* Note: skb->sk can be different from sk, in case of tunnels */ 384 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 385 { 386 struct inet_sock *inet = inet_sk(sk); 387 struct ip_options_rcu *inet_opt; 388 struct flowi4 *fl4; 389 struct rtable *rt; 390 struct iphdr *iph; 391 int res; 392 393 /* Skip all of this if the packet is already routed, 394 * f.e. by something like SCTP. 395 */ 396 rcu_read_lock(); 397 inet_opt = rcu_dereference(inet->inet_opt); 398 fl4 = &fl->u.ip4; 399 rt = skb_rtable(skb); 400 if (rt) 401 goto packet_routed; 402 403 /* Make sure we can route this packet. */ 404 rt = (struct rtable *)__sk_dst_check(sk, 0); 405 if (!rt) { 406 __be32 daddr; 407 408 /* Use correct destination address if we have options. */ 409 daddr = inet->inet_daddr; 410 if (inet_opt && inet_opt->opt.srr) 411 daddr = inet_opt->opt.faddr; 412 413 /* If this fails, retransmit mechanism of transport layer will 414 * keep trying until route appears or the connection times 415 * itself out. 416 */ 417 rt = ip_route_output_ports(sock_net(sk), fl4, sk, 418 daddr, inet->inet_saddr, 419 inet->inet_dport, 420 inet->inet_sport, 421 sk->sk_protocol, 422 RT_CONN_FLAGS(sk), 423 sk->sk_bound_dev_if); 424 if (IS_ERR(rt)) 425 goto no_route; 426 sk_setup_caps(sk, &rt->dst); 427 } 428 skb_dst_set_noref(skb, &rt->dst); 429 430 packet_routed: 431 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 432 goto no_route; 433 434 /* OK, we know where to send it, allocate and build IP header. */ 435 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 436 skb_reset_network_header(skb); 437 iph = ip_hdr(skb); 438 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 439 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 440 iph->frag_off = htons(IP_DF); 441 else 442 iph->frag_off = 0; 443 iph->ttl = ip_select_ttl(inet, &rt->dst); 444 iph->protocol = sk->sk_protocol; 445 ip_copy_addrs(iph, fl4); 446 447 /* Transport layer set skb->h.foo itself. */ 448 449 if (inet_opt && inet_opt->opt.optlen) { 450 iph->ihl += inet_opt->opt.optlen >> 2; 451 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 452 } 453 454 ip_select_ident_segs(sock_net(sk), skb, sk, 455 skb_shinfo(skb)->gso_segs ?: 1); 456 457 /* TODO : should we use skb->sk here instead of sk ? */ 458 skb->priority = sk->sk_priority; 459 skb->mark = sk->sk_mark; 460 461 res = ip_local_out(skb); 462 rcu_read_unlock(); 463 return res; 464 465 no_route: 466 rcu_read_unlock(); 467 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 468 kfree_skb(skb); 469 return -EHOSTUNREACH; 470 } 471 EXPORT_SYMBOL(ip_queue_xmit); 472 473 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 474 { 475 to->pkt_type = from->pkt_type; 476 to->priority = from->priority; 477 to->protocol = from->protocol; 478 skb_dst_drop(to); 479 skb_dst_copy(to, from); 480 to->dev = from->dev; 481 to->mark = from->mark; 482 483 /* Copy the flags to each fragment. */ 484 IPCB(to)->flags = IPCB(from)->flags; 485 486 #ifdef CONFIG_NET_SCHED 487 to->tc_index = from->tc_index; 488 #endif 489 nf_copy(to, from); 490 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 491 to->ipvs_property = from->ipvs_property; 492 #endif 493 skb_copy_secmark(to, from); 494 } 495 496 static int ip_fragment(struct sock *sk, struct sk_buff *skb, 497 unsigned int mtu, 498 int (*output)(struct sock *, struct sk_buff *)) 499 { 500 struct iphdr *iph = ip_hdr(skb); 501 502 if ((iph->frag_off & htons(IP_DF)) == 0) 503 return ip_do_fragment(sk, skb, output); 504 505 if (unlikely(!skb->ignore_df || 506 (IPCB(skb)->frag_max_size && 507 IPCB(skb)->frag_max_size > mtu))) { 508 struct net *net = dev_net(skb_rtable(skb)->dst.dev); 509 510 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 511 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 512 htonl(mtu)); 513 kfree_skb(skb); 514 return -EMSGSIZE; 515 } 516 517 return ip_do_fragment(sk, skb, output); 518 } 519 520 /* 521 * This IP datagram is too large to be sent in one piece. Break it up into 522 * smaller pieces (each of size equal to IP header plus 523 * a block of the data of the original IP data part) that will yet fit in a 524 * single device frame, and queue such a frame for sending. 525 */ 526 527 int ip_do_fragment(struct sock *sk, struct sk_buff *skb, 528 int (*output)(struct sock *, struct sk_buff *)) 529 { 530 struct iphdr *iph; 531 int ptr; 532 struct net_device *dev; 533 struct sk_buff *skb2; 534 unsigned int mtu, hlen, left, len, ll_rs; 535 int offset; 536 __be16 not_last_frag; 537 struct rtable *rt = skb_rtable(skb); 538 struct net *net; 539 int err = 0; 540 541 dev = rt->dst.dev; 542 net = dev_net(dev); 543 544 /* 545 * Point into the IP datagram header. 546 */ 547 548 iph = ip_hdr(skb); 549 550 mtu = ip_skb_dst_mtu(skb); 551 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 552 mtu = IPCB(skb)->frag_max_size; 553 554 /* 555 * Setup starting values. 556 */ 557 558 hlen = iph->ihl * 4; 559 mtu = mtu - hlen; /* Size of data space */ 560 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 561 562 /* When frag_list is given, use it. First, check its validity: 563 * some transformers could create wrong frag_list or break existing 564 * one, it is not prohibited. In this case fall back to copying. 565 * 566 * LATER: this step can be merged to real generation of fragments, 567 * we can switch to copy when see the first bad fragment. 568 */ 569 if (skb_has_frag_list(skb)) { 570 struct sk_buff *frag, *frag2; 571 int first_len = skb_pagelen(skb); 572 573 if (first_len - hlen > mtu || 574 ((first_len - hlen) & 7) || 575 ip_is_fragment(iph) || 576 skb_cloned(skb)) 577 goto slow_path; 578 579 skb_walk_frags(skb, frag) { 580 /* Correct geometry. */ 581 if (frag->len > mtu || 582 ((frag->len & 7) && frag->next) || 583 skb_headroom(frag) < hlen) 584 goto slow_path_clean; 585 586 /* Partially cloned skb? */ 587 if (skb_shared(frag)) 588 goto slow_path_clean; 589 590 BUG_ON(frag->sk); 591 if (skb->sk) { 592 frag->sk = skb->sk; 593 frag->destructor = sock_wfree; 594 } 595 skb->truesize -= frag->truesize; 596 } 597 598 /* Everything is OK. Generate! */ 599 600 err = 0; 601 offset = 0; 602 frag = skb_shinfo(skb)->frag_list; 603 skb_frag_list_init(skb); 604 skb->data_len = first_len - skb_headlen(skb); 605 skb->len = first_len; 606 iph->tot_len = htons(first_len); 607 iph->frag_off = htons(IP_MF); 608 ip_send_check(iph); 609 610 for (;;) { 611 /* Prepare header of the next frame, 612 * before previous one went down. */ 613 if (frag) { 614 frag->ip_summed = CHECKSUM_NONE; 615 skb_reset_transport_header(frag); 616 __skb_push(frag, hlen); 617 skb_reset_network_header(frag); 618 memcpy(skb_network_header(frag), iph, hlen); 619 iph = ip_hdr(frag); 620 iph->tot_len = htons(frag->len); 621 ip_copy_metadata(frag, skb); 622 if (offset == 0) 623 ip_options_fragment(frag); 624 offset += skb->len - hlen; 625 iph->frag_off = htons(offset>>3); 626 if (frag->next) 627 iph->frag_off |= htons(IP_MF); 628 /* Ready, complete checksum */ 629 ip_send_check(iph); 630 } 631 632 err = output(sk, skb); 633 634 if (!err) 635 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 636 if (err || !frag) 637 break; 638 639 skb = frag; 640 frag = skb->next; 641 skb->next = NULL; 642 } 643 644 if (err == 0) { 645 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 646 return 0; 647 } 648 649 while (frag) { 650 skb = frag->next; 651 kfree_skb(frag); 652 frag = skb; 653 } 654 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 655 return err; 656 657 slow_path_clean: 658 skb_walk_frags(skb, frag2) { 659 if (frag2 == frag) 660 break; 661 frag2->sk = NULL; 662 frag2->destructor = NULL; 663 skb->truesize += frag2->truesize; 664 } 665 } 666 667 slow_path: 668 /* for offloaded checksums cleanup checksum before fragmentation */ 669 if ((skb->ip_summed == CHECKSUM_PARTIAL) && skb_checksum_help(skb)) 670 goto fail; 671 iph = ip_hdr(skb); 672 673 left = skb->len - hlen; /* Space per frame */ 674 ptr = hlen; /* Where to start from */ 675 676 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 677 678 /* 679 * Fragment the datagram. 680 */ 681 682 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 683 not_last_frag = iph->frag_off & htons(IP_MF); 684 685 /* 686 * Keep copying data until we run out. 687 */ 688 689 while (left > 0) { 690 len = left; 691 /* IF: it doesn't fit, use 'mtu' - the data space left */ 692 if (len > mtu) 693 len = mtu; 694 /* IF: we are not sending up to and including the packet end 695 then align the next start on an eight byte boundary */ 696 if (len < left) { 697 len &= ~7; 698 } 699 700 /* Allocate buffer */ 701 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 702 if (!skb2) { 703 err = -ENOMEM; 704 goto fail; 705 } 706 707 /* 708 * Set up data on packet 709 */ 710 711 ip_copy_metadata(skb2, skb); 712 skb_reserve(skb2, ll_rs); 713 skb_put(skb2, len + hlen); 714 skb_reset_network_header(skb2); 715 skb2->transport_header = skb2->network_header + hlen; 716 717 /* 718 * Charge the memory for the fragment to any owner 719 * it might possess 720 */ 721 722 if (skb->sk) 723 skb_set_owner_w(skb2, skb->sk); 724 725 /* 726 * Copy the packet header into the new buffer. 727 */ 728 729 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 730 731 /* 732 * Copy a block of the IP datagram. 733 */ 734 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 735 BUG(); 736 left -= len; 737 738 /* 739 * Fill in the new header fields. 740 */ 741 iph = ip_hdr(skb2); 742 iph->frag_off = htons((offset >> 3)); 743 744 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 745 iph->frag_off |= htons(IP_DF); 746 747 /* ANK: dirty, but effective trick. Upgrade options only if 748 * the segment to be fragmented was THE FIRST (otherwise, 749 * options are already fixed) and make it ONCE 750 * on the initial skb, so that all the following fragments 751 * will inherit fixed options. 752 */ 753 if (offset == 0) 754 ip_options_fragment(skb); 755 756 /* 757 * Added AC : If we are fragmenting a fragment that's not the 758 * last fragment then keep MF on each bit 759 */ 760 if (left > 0 || not_last_frag) 761 iph->frag_off |= htons(IP_MF); 762 ptr += len; 763 offset += len; 764 765 /* 766 * Put this fragment into the sending queue. 767 */ 768 iph->tot_len = htons(len + hlen); 769 770 ip_send_check(iph); 771 772 err = output(sk, skb2); 773 if (err) 774 goto fail; 775 776 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 777 } 778 consume_skb(skb); 779 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 780 return err; 781 782 fail: 783 kfree_skb(skb); 784 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 785 return err; 786 } 787 EXPORT_SYMBOL(ip_do_fragment); 788 789 int 790 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 791 { 792 struct msghdr *msg = from; 793 794 if (skb->ip_summed == CHECKSUM_PARTIAL) { 795 if (copy_from_iter(to, len, &msg->msg_iter) != len) 796 return -EFAULT; 797 } else { 798 __wsum csum = 0; 799 if (csum_and_copy_from_iter(to, len, &csum, &msg->msg_iter) != len) 800 return -EFAULT; 801 skb->csum = csum_block_add(skb->csum, csum, odd); 802 } 803 return 0; 804 } 805 EXPORT_SYMBOL(ip_generic_getfrag); 806 807 static inline __wsum 808 csum_page(struct page *page, int offset, int copy) 809 { 810 char *kaddr; 811 __wsum csum; 812 kaddr = kmap(page); 813 csum = csum_partial(kaddr + offset, copy, 0); 814 kunmap(page); 815 return csum; 816 } 817 818 static inline int ip_ufo_append_data(struct sock *sk, 819 struct sk_buff_head *queue, 820 int getfrag(void *from, char *to, int offset, int len, 821 int odd, struct sk_buff *skb), 822 void *from, int length, int hh_len, int fragheaderlen, 823 int transhdrlen, int maxfraglen, unsigned int flags) 824 { 825 struct sk_buff *skb; 826 int err; 827 828 /* There is support for UDP fragmentation offload by network 829 * device, so create one single skb packet containing complete 830 * udp datagram 831 */ 832 skb = skb_peek_tail(queue); 833 if (!skb) { 834 skb = sock_alloc_send_skb(sk, 835 hh_len + fragheaderlen + transhdrlen + 20, 836 (flags & MSG_DONTWAIT), &err); 837 838 if (!skb) 839 return err; 840 841 /* reserve space for Hardware header */ 842 skb_reserve(skb, hh_len); 843 844 /* create space for UDP/IP header */ 845 skb_put(skb, fragheaderlen + transhdrlen); 846 847 /* initialize network header pointer */ 848 skb_reset_network_header(skb); 849 850 /* initialize protocol header pointer */ 851 skb->transport_header = skb->network_header + fragheaderlen; 852 853 skb->csum = 0; 854 855 __skb_queue_tail(queue, skb); 856 } else if (skb_is_gso(skb)) { 857 goto append; 858 } 859 860 skb->ip_summed = CHECKSUM_PARTIAL; 861 /* specify the length of each IP datagram fragment */ 862 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 863 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 864 865 append: 866 return skb_append_datato_frags(sk, skb, getfrag, from, 867 (length - transhdrlen)); 868 } 869 870 static int __ip_append_data(struct sock *sk, 871 struct flowi4 *fl4, 872 struct sk_buff_head *queue, 873 struct inet_cork *cork, 874 struct page_frag *pfrag, 875 int getfrag(void *from, char *to, int offset, 876 int len, int odd, struct sk_buff *skb), 877 void *from, int length, int transhdrlen, 878 unsigned int flags) 879 { 880 struct inet_sock *inet = inet_sk(sk); 881 struct sk_buff *skb; 882 883 struct ip_options *opt = cork->opt; 884 int hh_len; 885 int exthdrlen; 886 int mtu; 887 int copy; 888 int err; 889 int offset = 0; 890 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 891 int csummode = CHECKSUM_NONE; 892 struct rtable *rt = (struct rtable *)cork->dst; 893 u32 tskey = 0; 894 895 skb = skb_peek_tail(queue); 896 897 exthdrlen = !skb ? rt->dst.header_len : 0; 898 mtu = cork->fragsize; 899 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 900 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 901 tskey = sk->sk_tskey++; 902 903 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 904 905 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 906 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 907 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 908 909 if (cork->length + length > maxnonfragsize - fragheaderlen) { 910 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 911 mtu - (opt ? opt->optlen : 0)); 912 return -EMSGSIZE; 913 } 914 915 /* 916 * transhdrlen > 0 means that this is the first fragment and we wish 917 * it won't be fragmented in the future. 918 */ 919 if (transhdrlen && 920 length + fragheaderlen <= mtu && 921 rt->dst.dev->features & NETIF_F_V4_CSUM && 922 !exthdrlen) 923 csummode = CHECKSUM_PARTIAL; 924 925 cork->length += length; 926 if (((length > mtu) || (skb && skb_is_gso(skb))) && 927 (sk->sk_protocol == IPPROTO_UDP) && 928 (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len && 929 (sk->sk_type == SOCK_DGRAM)) { 930 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 931 hh_len, fragheaderlen, transhdrlen, 932 maxfraglen, flags); 933 if (err) 934 goto error; 935 return 0; 936 } 937 938 /* So, what's going on in the loop below? 939 * 940 * We use calculated fragment length to generate chained skb, 941 * each of segments is IP fragment ready for sending to network after 942 * adding appropriate IP header. 943 */ 944 945 if (!skb) 946 goto alloc_new_skb; 947 948 while (length > 0) { 949 /* Check if the remaining data fits into current packet. */ 950 copy = mtu - skb->len; 951 if (copy < length) 952 copy = maxfraglen - skb->len; 953 if (copy <= 0) { 954 char *data; 955 unsigned int datalen; 956 unsigned int fraglen; 957 unsigned int fraggap; 958 unsigned int alloclen; 959 struct sk_buff *skb_prev; 960 alloc_new_skb: 961 skb_prev = skb; 962 if (skb_prev) 963 fraggap = skb_prev->len - maxfraglen; 964 else 965 fraggap = 0; 966 967 /* 968 * If remaining data exceeds the mtu, 969 * we know we need more fragment(s). 970 */ 971 datalen = length + fraggap; 972 if (datalen > mtu - fragheaderlen) 973 datalen = maxfraglen - fragheaderlen; 974 fraglen = datalen + fragheaderlen; 975 976 if ((flags & MSG_MORE) && 977 !(rt->dst.dev->features&NETIF_F_SG)) 978 alloclen = mtu; 979 else 980 alloclen = fraglen; 981 982 alloclen += exthdrlen; 983 984 /* The last fragment gets additional space at tail. 985 * Note, with MSG_MORE we overallocate on fragments, 986 * because we have no idea what fragment will be 987 * the last. 988 */ 989 if (datalen == length + fraggap) 990 alloclen += rt->dst.trailer_len; 991 992 if (transhdrlen) { 993 skb = sock_alloc_send_skb(sk, 994 alloclen + hh_len + 15, 995 (flags & MSG_DONTWAIT), &err); 996 } else { 997 skb = NULL; 998 if (atomic_read(&sk->sk_wmem_alloc) <= 999 2 * sk->sk_sndbuf) 1000 skb = sock_wmalloc(sk, 1001 alloclen + hh_len + 15, 1, 1002 sk->sk_allocation); 1003 if (unlikely(!skb)) 1004 err = -ENOBUFS; 1005 } 1006 if (!skb) 1007 goto error; 1008 1009 /* 1010 * Fill in the control structures 1011 */ 1012 skb->ip_summed = csummode; 1013 skb->csum = 0; 1014 skb_reserve(skb, hh_len); 1015 1016 /* only the initial fragment is time stamped */ 1017 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1018 cork->tx_flags = 0; 1019 skb_shinfo(skb)->tskey = tskey; 1020 tskey = 0; 1021 1022 /* 1023 * Find where to start putting bytes. 1024 */ 1025 data = skb_put(skb, fraglen + exthdrlen); 1026 skb_set_network_header(skb, exthdrlen); 1027 skb->transport_header = (skb->network_header + 1028 fragheaderlen); 1029 data += fragheaderlen + exthdrlen; 1030 1031 if (fraggap) { 1032 skb->csum = skb_copy_and_csum_bits( 1033 skb_prev, maxfraglen, 1034 data + transhdrlen, fraggap, 0); 1035 skb_prev->csum = csum_sub(skb_prev->csum, 1036 skb->csum); 1037 data += fraggap; 1038 pskb_trim_unique(skb_prev, maxfraglen); 1039 } 1040 1041 copy = datalen - transhdrlen - fraggap; 1042 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1043 err = -EFAULT; 1044 kfree_skb(skb); 1045 goto error; 1046 } 1047 1048 offset += copy; 1049 length -= datalen - fraggap; 1050 transhdrlen = 0; 1051 exthdrlen = 0; 1052 csummode = CHECKSUM_NONE; 1053 1054 /* 1055 * Put the packet on the pending queue. 1056 */ 1057 __skb_queue_tail(queue, skb); 1058 continue; 1059 } 1060 1061 if (copy > length) 1062 copy = length; 1063 1064 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1065 unsigned int off; 1066 1067 off = skb->len; 1068 if (getfrag(from, skb_put(skb, copy), 1069 offset, copy, off, skb) < 0) { 1070 __skb_trim(skb, off); 1071 err = -EFAULT; 1072 goto error; 1073 } 1074 } else { 1075 int i = skb_shinfo(skb)->nr_frags; 1076 1077 err = -ENOMEM; 1078 if (!sk_page_frag_refill(sk, pfrag)) 1079 goto error; 1080 1081 if (!skb_can_coalesce(skb, i, pfrag->page, 1082 pfrag->offset)) { 1083 err = -EMSGSIZE; 1084 if (i == MAX_SKB_FRAGS) 1085 goto error; 1086 1087 __skb_fill_page_desc(skb, i, pfrag->page, 1088 pfrag->offset, 0); 1089 skb_shinfo(skb)->nr_frags = ++i; 1090 get_page(pfrag->page); 1091 } 1092 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1093 if (getfrag(from, 1094 page_address(pfrag->page) + pfrag->offset, 1095 offset, copy, skb->len, skb) < 0) 1096 goto error_efault; 1097 1098 pfrag->offset += copy; 1099 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1100 skb->len += copy; 1101 skb->data_len += copy; 1102 skb->truesize += copy; 1103 atomic_add(copy, &sk->sk_wmem_alloc); 1104 } 1105 offset += copy; 1106 length -= copy; 1107 } 1108 1109 return 0; 1110 1111 error_efault: 1112 err = -EFAULT; 1113 error: 1114 cork->length -= length; 1115 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1116 return err; 1117 } 1118 1119 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1120 struct ipcm_cookie *ipc, struct rtable **rtp) 1121 { 1122 struct ip_options_rcu *opt; 1123 struct rtable *rt; 1124 1125 /* 1126 * setup for corking. 1127 */ 1128 opt = ipc->opt; 1129 if (opt) { 1130 if (!cork->opt) { 1131 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1132 sk->sk_allocation); 1133 if (unlikely(!cork->opt)) 1134 return -ENOBUFS; 1135 } 1136 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1137 cork->flags |= IPCORK_OPT; 1138 cork->addr = ipc->addr; 1139 } 1140 rt = *rtp; 1141 if (unlikely(!rt)) 1142 return -EFAULT; 1143 /* 1144 * We steal reference to this route, caller should not release it 1145 */ 1146 *rtp = NULL; 1147 cork->fragsize = ip_sk_use_pmtu(sk) ? 1148 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1149 cork->dst = &rt->dst; 1150 cork->length = 0; 1151 cork->ttl = ipc->ttl; 1152 cork->tos = ipc->tos; 1153 cork->priority = ipc->priority; 1154 cork->tx_flags = ipc->tx_flags; 1155 1156 return 0; 1157 } 1158 1159 /* 1160 * ip_append_data() and ip_append_page() can make one large IP datagram 1161 * from many pieces of data. Each pieces will be holded on the socket 1162 * until ip_push_pending_frames() is called. Each piece can be a page 1163 * or non-page data. 1164 * 1165 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1166 * this interface potentially. 1167 * 1168 * LATER: length must be adjusted by pad at tail, when it is required. 1169 */ 1170 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1171 int getfrag(void *from, char *to, int offset, int len, 1172 int odd, struct sk_buff *skb), 1173 void *from, int length, int transhdrlen, 1174 struct ipcm_cookie *ipc, struct rtable **rtp, 1175 unsigned int flags) 1176 { 1177 struct inet_sock *inet = inet_sk(sk); 1178 int err; 1179 1180 if (flags&MSG_PROBE) 1181 return 0; 1182 1183 if (skb_queue_empty(&sk->sk_write_queue)) { 1184 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1185 if (err) 1186 return err; 1187 } else { 1188 transhdrlen = 0; 1189 } 1190 1191 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1192 sk_page_frag(sk), getfrag, 1193 from, length, transhdrlen, flags); 1194 } 1195 1196 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1197 int offset, size_t size, int flags) 1198 { 1199 struct inet_sock *inet = inet_sk(sk); 1200 struct sk_buff *skb; 1201 struct rtable *rt; 1202 struct ip_options *opt = NULL; 1203 struct inet_cork *cork; 1204 int hh_len; 1205 int mtu; 1206 int len; 1207 int err; 1208 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1209 1210 if (inet->hdrincl) 1211 return -EPERM; 1212 1213 if (flags&MSG_PROBE) 1214 return 0; 1215 1216 if (skb_queue_empty(&sk->sk_write_queue)) 1217 return -EINVAL; 1218 1219 cork = &inet->cork.base; 1220 rt = (struct rtable *)cork->dst; 1221 if (cork->flags & IPCORK_OPT) 1222 opt = cork->opt; 1223 1224 if (!(rt->dst.dev->features&NETIF_F_SG)) 1225 return -EOPNOTSUPP; 1226 1227 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1228 mtu = cork->fragsize; 1229 1230 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1231 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1232 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1233 1234 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1235 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1236 mtu - (opt ? opt->optlen : 0)); 1237 return -EMSGSIZE; 1238 } 1239 1240 skb = skb_peek_tail(&sk->sk_write_queue); 1241 if (!skb) 1242 return -EINVAL; 1243 1244 cork->length += size; 1245 if ((size + skb->len > mtu) && 1246 (sk->sk_protocol == IPPROTO_UDP) && 1247 (rt->dst.dev->features & NETIF_F_UFO)) { 1248 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1249 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1250 } 1251 1252 while (size > 0) { 1253 if (skb_is_gso(skb)) { 1254 len = size; 1255 } else { 1256 1257 /* Check if the remaining data fits into current packet. */ 1258 len = mtu - skb->len; 1259 if (len < size) 1260 len = maxfraglen - skb->len; 1261 } 1262 if (len <= 0) { 1263 struct sk_buff *skb_prev; 1264 int alloclen; 1265 1266 skb_prev = skb; 1267 fraggap = skb_prev->len - maxfraglen; 1268 1269 alloclen = fragheaderlen + hh_len + fraggap + 15; 1270 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1271 if (unlikely(!skb)) { 1272 err = -ENOBUFS; 1273 goto error; 1274 } 1275 1276 /* 1277 * Fill in the control structures 1278 */ 1279 skb->ip_summed = CHECKSUM_NONE; 1280 skb->csum = 0; 1281 skb_reserve(skb, hh_len); 1282 1283 /* 1284 * Find where to start putting bytes. 1285 */ 1286 skb_put(skb, fragheaderlen + fraggap); 1287 skb_reset_network_header(skb); 1288 skb->transport_header = (skb->network_header + 1289 fragheaderlen); 1290 if (fraggap) { 1291 skb->csum = skb_copy_and_csum_bits(skb_prev, 1292 maxfraglen, 1293 skb_transport_header(skb), 1294 fraggap, 0); 1295 skb_prev->csum = csum_sub(skb_prev->csum, 1296 skb->csum); 1297 pskb_trim_unique(skb_prev, maxfraglen); 1298 } 1299 1300 /* 1301 * Put the packet on the pending queue. 1302 */ 1303 __skb_queue_tail(&sk->sk_write_queue, skb); 1304 continue; 1305 } 1306 1307 if (len > size) 1308 len = size; 1309 1310 if (skb_append_pagefrags(skb, page, offset, len)) { 1311 err = -EMSGSIZE; 1312 goto error; 1313 } 1314 1315 if (skb->ip_summed == CHECKSUM_NONE) { 1316 __wsum csum; 1317 csum = csum_page(page, offset, len); 1318 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1319 } 1320 1321 skb->len += len; 1322 skb->data_len += len; 1323 skb->truesize += len; 1324 atomic_add(len, &sk->sk_wmem_alloc); 1325 offset += len; 1326 size -= len; 1327 } 1328 return 0; 1329 1330 error: 1331 cork->length -= size; 1332 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1333 return err; 1334 } 1335 1336 static void ip_cork_release(struct inet_cork *cork) 1337 { 1338 cork->flags &= ~IPCORK_OPT; 1339 kfree(cork->opt); 1340 cork->opt = NULL; 1341 dst_release(cork->dst); 1342 cork->dst = NULL; 1343 } 1344 1345 /* 1346 * Combined all pending IP fragments on the socket as one IP datagram 1347 * and push them out. 1348 */ 1349 struct sk_buff *__ip_make_skb(struct sock *sk, 1350 struct flowi4 *fl4, 1351 struct sk_buff_head *queue, 1352 struct inet_cork *cork) 1353 { 1354 struct sk_buff *skb, *tmp_skb; 1355 struct sk_buff **tail_skb; 1356 struct inet_sock *inet = inet_sk(sk); 1357 struct net *net = sock_net(sk); 1358 struct ip_options *opt = NULL; 1359 struct rtable *rt = (struct rtable *)cork->dst; 1360 struct iphdr *iph; 1361 __be16 df = 0; 1362 __u8 ttl; 1363 1364 skb = __skb_dequeue(queue); 1365 if (!skb) 1366 goto out; 1367 tail_skb = &(skb_shinfo(skb)->frag_list); 1368 1369 /* move skb->data to ip header from ext header */ 1370 if (skb->data < skb_network_header(skb)) 1371 __skb_pull(skb, skb_network_offset(skb)); 1372 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1373 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1374 *tail_skb = tmp_skb; 1375 tail_skb = &(tmp_skb->next); 1376 skb->len += tmp_skb->len; 1377 skb->data_len += tmp_skb->len; 1378 skb->truesize += tmp_skb->truesize; 1379 tmp_skb->destructor = NULL; 1380 tmp_skb->sk = NULL; 1381 } 1382 1383 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1384 * to fragment the frame generated here. No matter, what transforms 1385 * how transforms change size of the packet, it will come out. 1386 */ 1387 skb->ignore_df = ip_sk_ignore_df(sk); 1388 1389 /* DF bit is set when we want to see DF on outgoing frames. 1390 * If ignore_df is set too, we still allow to fragment this frame 1391 * locally. */ 1392 if (inet->pmtudisc == IP_PMTUDISC_DO || 1393 inet->pmtudisc == IP_PMTUDISC_PROBE || 1394 (skb->len <= dst_mtu(&rt->dst) && 1395 ip_dont_fragment(sk, &rt->dst))) 1396 df = htons(IP_DF); 1397 1398 if (cork->flags & IPCORK_OPT) 1399 opt = cork->opt; 1400 1401 if (cork->ttl != 0) 1402 ttl = cork->ttl; 1403 else if (rt->rt_type == RTN_MULTICAST) 1404 ttl = inet->mc_ttl; 1405 else 1406 ttl = ip_select_ttl(inet, &rt->dst); 1407 1408 iph = ip_hdr(skb); 1409 iph->version = 4; 1410 iph->ihl = 5; 1411 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1412 iph->frag_off = df; 1413 iph->ttl = ttl; 1414 iph->protocol = sk->sk_protocol; 1415 ip_copy_addrs(iph, fl4); 1416 ip_select_ident(net, skb, sk); 1417 1418 if (opt) { 1419 iph->ihl += opt->optlen>>2; 1420 ip_options_build(skb, opt, cork->addr, rt, 0); 1421 } 1422 1423 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1424 skb->mark = sk->sk_mark; 1425 /* 1426 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1427 * on dst refcount 1428 */ 1429 cork->dst = NULL; 1430 skb_dst_set(skb, &rt->dst); 1431 1432 if (iph->protocol == IPPROTO_ICMP) 1433 icmp_out_count(net, ((struct icmphdr *) 1434 skb_transport_header(skb))->type); 1435 1436 ip_cork_release(cork); 1437 out: 1438 return skb; 1439 } 1440 1441 int ip_send_skb(struct net *net, struct sk_buff *skb) 1442 { 1443 int err; 1444 1445 err = ip_local_out(skb); 1446 if (err) { 1447 if (err > 0) 1448 err = net_xmit_errno(err); 1449 if (err) 1450 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1451 } 1452 1453 return err; 1454 } 1455 1456 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1457 { 1458 struct sk_buff *skb; 1459 1460 skb = ip_finish_skb(sk, fl4); 1461 if (!skb) 1462 return 0; 1463 1464 /* Netfilter gets whole the not fragmented skb. */ 1465 return ip_send_skb(sock_net(sk), skb); 1466 } 1467 1468 /* 1469 * Throw away all pending data on the socket. 1470 */ 1471 static void __ip_flush_pending_frames(struct sock *sk, 1472 struct sk_buff_head *queue, 1473 struct inet_cork *cork) 1474 { 1475 struct sk_buff *skb; 1476 1477 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1478 kfree_skb(skb); 1479 1480 ip_cork_release(cork); 1481 } 1482 1483 void ip_flush_pending_frames(struct sock *sk) 1484 { 1485 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1486 } 1487 1488 struct sk_buff *ip_make_skb(struct sock *sk, 1489 struct flowi4 *fl4, 1490 int getfrag(void *from, char *to, int offset, 1491 int len, int odd, struct sk_buff *skb), 1492 void *from, int length, int transhdrlen, 1493 struct ipcm_cookie *ipc, struct rtable **rtp, 1494 unsigned int flags) 1495 { 1496 struct inet_cork cork; 1497 struct sk_buff_head queue; 1498 int err; 1499 1500 if (flags & MSG_PROBE) 1501 return NULL; 1502 1503 __skb_queue_head_init(&queue); 1504 1505 cork.flags = 0; 1506 cork.addr = 0; 1507 cork.opt = NULL; 1508 err = ip_setup_cork(sk, &cork, ipc, rtp); 1509 if (err) 1510 return ERR_PTR(err); 1511 1512 err = __ip_append_data(sk, fl4, &queue, &cork, 1513 ¤t->task_frag, getfrag, 1514 from, length, transhdrlen, flags); 1515 if (err) { 1516 __ip_flush_pending_frames(sk, &queue, &cork); 1517 return ERR_PTR(err); 1518 } 1519 1520 return __ip_make_skb(sk, fl4, &queue, &cork); 1521 } 1522 1523 /* 1524 * Fetch data from kernel space and fill in checksum if needed. 1525 */ 1526 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1527 int len, int odd, struct sk_buff *skb) 1528 { 1529 __wsum csum; 1530 1531 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1532 skb->csum = csum_block_add(skb->csum, csum, odd); 1533 return 0; 1534 } 1535 1536 /* 1537 * Generic function to send a packet as reply to another packet. 1538 * Used to send some TCP resets/acks so far. 1539 */ 1540 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1541 const struct ip_options *sopt, 1542 __be32 daddr, __be32 saddr, 1543 const struct ip_reply_arg *arg, 1544 unsigned int len) 1545 { 1546 struct ip_options_data replyopts; 1547 struct ipcm_cookie ipc; 1548 struct flowi4 fl4; 1549 struct rtable *rt = skb_rtable(skb); 1550 struct net *net = sock_net(sk); 1551 struct sk_buff *nskb; 1552 int err; 1553 int oif; 1554 1555 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1556 return; 1557 1558 ipc.addr = daddr; 1559 ipc.opt = NULL; 1560 ipc.tx_flags = 0; 1561 ipc.ttl = 0; 1562 ipc.tos = -1; 1563 1564 if (replyopts.opt.opt.optlen) { 1565 ipc.opt = &replyopts.opt; 1566 1567 if (replyopts.opt.opt.srr) 1568 daddr = replyopts.opt.opt.faddr; 1569 } 1570 1571 oif = arg->bound_dev_if; 1572 if (!oif && netif_index_is_vrf(net, skb->skb_iif)) 1573 oif = skb->skb_iif; 1574 1575 flowi4_init_output(&fl4, oif, 1576 IP4_REPLY_MARK(net, skb->mark), 1577 RT_TOS(arg->tos), 1578 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1579 ip_reply_arg_flowi_flags(arg), 1580 daddr, saddr, 1581 tcp_hdr(skb)->source, tcp_hdr(skb)->dest); 1582 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1583 rt = ip_route_output_key(net, &fl4); 1584 if (IS_ERR(rt)) 1585 return; 1586 1587 inet_sk(sk)->tos = arg->tos; 1588 1589 sk->sk_priority = skb->priority; 1590 sk->sk_protocol = ip_hdr(skb)->protocol; 1591 sk->sk_bound_dev_if = arg->bound_dev_if; 1592 sk->sk_sndbuf = sysctl_wmem_default; 1593 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1594 len, 0, &ipc, &rt, MSG_DONTWAIT); 1595 if (unlikely(err)) { 1596 ip_flush_pending_frames(sk); 1597 goto out; 1598 } 1599 1600 nskb = skb_peek(&sk->sk_write_queue); 1601 if (nskb) { 1602 if (arg->csumoffset >= 0) 1603 *((__sum16 *)skb_transport_header(nskb) + 1604 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1605 arg->csum)); 1606 nskb->ip_summed = CHECKSUM_NONE; 1607 skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb)); 1608 ip_push_pending_frames(sk, &fl4); 1609 } 1610 out: 1611 ip_rt_put(rt); 1612 } 1613 1614 void __init ip_init(void) 1615 { 1616 ip_rt_init(); 1617 inet_initpeers(); 1618 1619 #if defined(CONFIG_IP_MULTICAST) 1620 igmp_mc_init(); 1621 #endif 1622 } 1623