1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 if (!skb->mark) 177 skb->mark = sk->sk_mark; 178 179 /* Send it out. */ 180 return ip_local_out(net, skb->sk, skb); 181 } 182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 183 184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 185 { 186 struct dst_entry *dst = skb_dst(skb); 187 struct rtable *rt = (struct rtable *)dst; 188 struct net_device *dev = dst->dev; 189 unsigned int hh_len = LL_RESERVED_SPACE(dev); 190 struct neighbour *neigh; 191 u32 nexthop; 192 193 if (rt->rt_type == RTN_MULTICAST) { 194 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 195 } else if (rt->rt_type == RTN_BROADCAST) 196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 197 198 /* Be paranoid, rather than too clever. */ 199 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 200 struct sk_buff *skb2; 201 202 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 203 if (!skb2) { 204 kfree_skb(skb); 205 return -ENOMEM; 206 } 207 if (skb->sk) 208 skb_set_owner_w(skb2, skb->sk); 209 consume_skb(skb); 210 skb = skb2; 211 } 212 213 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 214 int res = lwtunnel_xmit(skb); 215 216 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 217 return res; 218 } 219 220 rcu_read_lock_bh(); 221 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 222 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 223 if (unlikely(!neigh)) 224 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 225 if (!IS_ERR(neigh)) { 226 int res; 227 228 sock_confirm_neigh(skb, neigh); 229 res = neigh_output(neigh, skb); 230 231 rcu_read_unlock_bh(); 232 return res; 233 } 234 rcu_read_unlock_bh(); 235 236 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 237 __func__); 238 kfree_skb(skb); 239 return -EINVAL; 240 } 241 242 static int ip_finish_output_gso(struct net *net, struct sock *sk, 243 struct sk_buff *skb, unsigned int mtu) 244 { 245 netdev_features_t features; 246 struct sk_buff *segs; 247 int ret = 0; 248 249 /* common case: seglen is <= mtu 250 */ 251 if (skb_gso_validate_network_len(skb, mtu)) 252 return ip_finish_output2(net, sk, skb); 253 254 /* Slowpath - GSO segment length exceeds the egress MTU. 255 * 256 * This can happen in several cases: 257 * - Forwarding of a TCP GRO skb, when DF flag is not set. 258 * - Forwarding of an skb that arrived on a virtualization interface 259 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 260 * stack. 261 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 262 * interface with a smaller MTU. 263 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 264 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 265 * insufficent MTU. 266 */ 267 features = netif_skb_features(skb); 268 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 269 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 270 if (IS_ERR_OR_NULL(segs)) { 271 kfree_skb(skb); 272 return -ENOMEM; 273 } 274 275 consume_skb(skb); 276 277 do { 278 struct sk_buff *nskb = segs->next; 279 int err; 280 281 skb_mark_not_on_list(segs); 282 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 283 284 if (err && ret == 0) 285 ret = err; 286 segs = nskb; 287 } while (segs); 288 289 return ret; 290 } 291 292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 293 { 294 unsigned int mtu; 295 int ret; 296 297 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 298 if (ret) { 299 kfree_skb(skb); 300 return ret; 301 } 302 303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 304 /* Policy lookup after SNAT yielded a new policy */ 305 if (skb_dst(skb)->xfrm) { 306 IPCB(skb)->flags |= IPSKB_REROUTED; 307 return dst_output(net, sk, skb); 308 } 309 #endif 310 mtu = ip_skb_dst_mtu(sk, skb); 311 if (skb_is_gso(skb)) 312 return ip_finish_output_gso(net, sk, skb, mtu); 313 314 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 315 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 316 317 return ip_finish_output2(net, sk, skb); 318 } 319 320 static int ip_mc_finish_output(struct net *net, struct sock *sk, 321 struct sk_buff *skb) 322 { 323 int ret; 324 325 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 326 if (ret) { 327 kfree_skb(skb); 328 return ret; 329 } 330 331 return dev_loopback_xmit(net, sk, skb); 332 } 333 334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 335 { 336 struct rtable *rt = skb_rtable(skb); 337 struct net_device *dev = rt->dst.dev; 338 339 /* 340 * If the indicated interface is up and running, send the packet. 341 */ 342 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 343 344 skb->dev = dev; 345 skb->protocol = htons(ETH_P_IP); 346 347 /* 348 * Multicasts are looped back for other local users 349 */ 350 351 if (rt->rt_flags&RTCF_MULTICAST) { 352 if (sk_mc_loop(sk) 353 #ifdef CONFIG_IP_MROUTE 354 /* Small optimization: do not loopback not local frames, 355 which returned after forwarding; they will be dropped 356 by ip_mr_input in any case. 357 Note, that local frames are looped back to be delivered 358 to local recipients. 359 360 This check is duplicated in ip_mr_input at the moment. 361 */ 362 && 363 ((rt->rt_flags & RTCF_LOCAL) || 364 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 365 #endif 366 ) { 367 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 368 if (newskb) 369 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 370 net, sk, newskb, NULL, newskb->dev, 371 ip_mc_finish_output); 372 } 373 374 /* Multicasts with ttl 0 must not go beyond the host */ 375 376 if (ip_hdr(skb)->ttl == 0) { 377 kfree_skb(skb); 378 return 0; 379 } 380 } 381 382 if (rt->rt_flags&RTCF_BROADCAST) { 383 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 384 if (newskb) 385 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 386 net, sk, newskb, NULL, newskb->dev, 387 ip_mc_finish_output); 388 } 389 390 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 391 net, sk, skb, NULL, skb->dev, 392 ip_finish_output, 393 !(IPCB(skb)->flags & IPSKB_REROUTED)); 394 } 395 396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 397 { 398 struct net_device *dev = skb_dst(skb)->dev; 399 400 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 401 402 skb->dev = dev; 403 skb->protocol = htons(ETH_P_IP); 404 405 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 406 net, sk, skb, NULL, dev, 407 ip_finish_output, 408 !(IPCB(skb)->flags & IPSKB_REROUTED)); 409 } 410 411 /* 412 * copy saddr and daddr, possibly using 64bit load/stores 413 * Equivalent to : 414 * iph->saddr = fl4->saddr; 415 * iph->daddr = fl4->daddr; 416 */ 417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 418 { 419 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 420 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 421 memcpy(&iph->saddr, &fl4->saddr, 422 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 423 } 424 425 /* Note: skb->sk can be different from sk, in case of tunnels */ 426 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, 427 __u8 tos) 428 { 429 struct inet_sock *inet = inet_sk(sk); 430 struct net *net = sock_net(sk); 431 struct ip_options_rcu *inet_opt; 432 struct flowi4 *fl4; 433 struct rtable *rt; 434 struct iphdr *iph; 435 int res; 436 437 /* Skip all of this if the packet is already routed, 438 * f.e. by something like SCTP. 439 */ 440 rcu_read_lock(); 441 inet_opt = rcu_dereference(inet->inet_opt); 442 fl4 = &fl->u.ip4; 443 rt = skb_rtable(skb); 444 if (rt) 445 goto packet_routed; 446 447 /* Make sure we can route this packet. */ 448 rt = (struct rtable *)__sk_dst_check(sk, 0); 449 if (!rt) { 450 __be32 daddr; 451 452 /* Use correct destination address if we have options. */ 453 daddr = inet->inet_daddr; 454 if (inet_opt && inet_opt->opt.srr) 455 daddr = inet_opt->opt.faddr; 456 457 /* If this fails, retransmit mechanism of transport layer will 458 * keep trying until route appears or the connection times 459 * itself out. 460 */ 461 rt = ip_route_output_ports(net, fl4, sk, 462 daddr, inet->inet_saddr, 463 inet->inet_dport, 464 inet->inet_sport, 465 sk->sk_protocol, 466 RT_CONN_FLAGS_TOS(sk, tos), 467 sk->sk_bound_dev_if); 468 if (IS_ERR(rt)) 469 goto no_route; 470 sk_setup_caps(sk, &rt->dst); 471 } 472 skb_dst_set_noref(skb, &rt->dst); 473 474 packet_routed: 475 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 476 goto no_route; 477 478 /* OK, we know where to send it, allocate and build IP header. */ 479 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 480 skb_reset_network_header(skb); 481 iph = ip_hdr(skb); 482 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); 483 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 484 iph->frag_off = htons(IP_DF); 485 else 486 iph->frag_off = 0; 487 iph->ttl = ip_select_ttl(inet, &rt->dst); 488 iph->protocol = sk->sk_protocol; 489 ip_copy_addrs(iph, fl4); 490 491 /* Transport layer set skb->h.foo itself. */ 492 493 if (inet_opt && inet_opt->opt.optlen) { 494 iph->ihl += inet_opt->opt.optlen >> 2; 495 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 496 } 497 498 ip_select_ident_segs(net, skb, sk, 499 skb_shinfo(skb)->gso_segs ?: 1); 500 501 /* TODO : should we use skb->sk here instead of sk ? */ 502 skb->priority = sk->sk_priority; 503 skb->mark = sk->sk_mark; 504 505 res = ip_local_out(net, sk, skb); 506 rcu_read_unlock(); 507 return res; 508 509 no_route: 510 rcu_read_unlock(); 511 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 512 kfree_skb(skb); 513 return -EHOSTUNREACH; 514 } 515 EXPORT_SYMBOL(__ip_queue_xmit); 516 517 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 518 { 519 to->pkt_type = from->pkt_type; 520 to->priority = from->priority; 521 to->protocol = from->protocol; 522 skb_dst_drop(to); 523 skb_dst_copy(to, from); 524 to->dev = from->dev; 525 to->mark = from->mark; 526 527 skb_copy_hash(to, from); 528 529 /* Copy the flags to each fragment. */ 530 IPCB(to)->flags = IPCB(from)->flags; 531 532 #ifdef CONFIG_NET_SCHED 533 to->tc_index = from->tc_index; 534 #endif 535 nf_copy(to, from); 536 #if IS_ENABLED(CONFIG_IP_VS) 537 to->ipvs_property = from->ipvs_property; 538 #endif 539 skb_copy_secmark(to, from); 540 } 541 542 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 543 unsigned int mtu, 544 int (*output)(struct net *, struct sock *, struct sk_buff *)) 545 { 546 struct iphdr *iph = ip_hdr(skb); 547 548 if ((iph->frag_off & htons(IP_DF)) == 0) 549 return ip_do_fragment(net, sk, skb, output); 550 551 if (unlikely(!skb->ignore_df || 552 (IPCB(skb)->frag_max_size && 553 IPCB(skb)->frag_max_size > mtu))) { 554 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 555 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 556 htonl(mtu)); 557 kfree_skb(skb); 558 return -EMSGSIZE; 559 } 560 561 return ip_do_fragment(net, sk, skb, output); 562 } 563 564 /* 565 * This IP datagram is too large to be sent in one piece. Break it up into 566 * smaller pieces (each of size equal to IP header plus 567 * a block of the data of the original IP data part) that will yet fit in a 568 * single device frame, and queue such a frame for sending. 569 */ 570 571 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 572 int (*output)(struct net *, struct sock *, struct sk_buff *)) 573 { 574 struct iphdr *iph; 575 int ptr; 576 struct sk_buff *skb2; 577 unsigned int mtu, hlen, left, len, ll_rs; 578 int offset; 579 __be16 not_last_frag; 580 struct rtable *rt = skb_rtable(skb); 581 int err = 0; 582 583 /* for offloaded checksums cleanup checksum before fragmentation */ 584 if (skb->ip_summed == CHECKSUM_PARTIAL && 585 (err = skb_checksum_help(skb))) 586 goto fail; 587 588 /* 589 * Point into the IP datagram header. 590 */ 591 592 iph = ip_hdr(skb); 593 594 mtu = ip_skb_dst_mtu(sk, skb); 595 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 596 mtu = IPCB(skb)->frag_max_size; 597 598 /* 599 * Setup starting values. 600 */ 601 602 hlen = iph->ihl * 4; 603 mtu = mtu - hlen; /* Size of data space */ 604 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 605 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 606 607 /* When frag_list is given, use it. First, check its validity: 608 * some transformers could create wrong frag_list or break existing 609 * one, it is not prohibited. In this case fall back to copying. 610 * 611 * LATER: this step can be merged to real generation of fragments, 612 * we can switch to copy when see the first bad fragment. 613 */ 614 if (skb_has_frag_list(skb)) { 615 struct sk_buff *frag, *frag2; 616 unsigned int first_len = skb_pagelen(skb); 617 618 if (first_len - hlen > mtu || 619 ((first_len - hlen) & 7) || 620 ip_is_fragment(iph) || 621 skb_cloned(skb) || 622 skb_headroom(skb) < ll_rs) 623 goto slow_path; 624 625 skb_walk_frags(skb, frag) { 626 /* Correct geometry. */ 627 if (frag->len > mtu || 628 ((frag->len & 7) && frag->next) || 629 skb_headroom(frag) < hlen + ll_rs) 630 goto slow_path_clean; 631 632 /* Partially cloned skb? */ 633 if (skb_shared(frag)) 634 goto slow_path_clean; 635 636 BUG_ON(frag->sk); 637 if (skb->sk) { 638 frag->sk = skb->sk; 639 frag->destructor = sock_wfree; 640 } 641 skb->truesize -= frag->truesize; 642 } 643 644 /* Everything is OK. Generate! */ 645 646 err = 0; 647 offset = 0; 648 frag = skb_shinfo(skb)->frag_list; 649 skb_frag_list_init(skb); 650 skb->data_len = first_len - skb_headlen(skb); 651 skb->len = first_len; 652 iph->tot_len = htons(first_len); 653 iph->frag_off = htons(IP_MF); 654 ip_send_check(iph); 655 656 for (;;) { 657 /* Prepare header of the next frame, 658 * before previous one went down. */ 659 if (frag) { 660 frag->ip_summed = CHECKSUM_NONE; 661 skb_reset_transport_header(frag); 662 __skb_push(frag, hlen); 663 skb_reset_network_header(frag); 664 memcpy(skb_network_header(frag), iph, hlen); 665 iph = ip_hdr(frag); 666 iph->tot_len = htons(frag->len); 667 ip_copy_metadata(frag, skb); 668 if (offset == 0) 669 ip_options_fragment(frag); 670 offset += skb->len - hlen; 671 iph->frag_off = htons(offset>>3); 672 if (frag->next) 673 iph->frag_off |= htons(IP_MF); 674 /* Ready, complete checksum */ 675 ip_send_check(iph); 676 } 677 678 err = output(net, sk, skb); 679 680 if (!err) 681 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 682 if (err || !frag) 683 break; 684 685 skb = frag; 686 frag = skb->next; 687 skb_mark_not_on_list(skb); 688 } 689 690 if (err == 0) { 691 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 692 return 0; 693 } 694 695 while (frag) { 696 skb = frag->next; 697 kfree_skb(frag); 698 frag = skb; 699 } 700 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 701 return err; 702 703 slow_path_clean: 704 skb_walk_frags(skb, frag2) { 705 if (frag2 == frag) 706 break; 707 frag2->sk = NULL; 708 frag2->destructor = NULL; 709 skb->truesize += frag2->truesize; 710 } 711 } 712 713 slow_path: 714 iph = ip_hdr(skb); 715 716 left = skb->len - hlen; /* Space per frame */ 717 ptr = hlen; /* Where to start from */ 718 719 /* 720 * Fragment the datagram. 721 */ 722 723 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 724 not_last_frag = iph->frag_off & htons(IP_MF); 725 726 /* 727 * Keep copying data until we run out. 728 */ 729 730 while (left > 0) { 731 len = left; 732 /* IF: it doesn't fit, use 'mtu' - the data space left */ 733 if (len > mtu) 734 len = mtu; 735 /* IF: we are not sending up to and including the packet end 736 then align the next start on an eight byte boundary */ 737 if (len < left) { 738 len &= ~7; 739 } 740 741 /* Allocate buffer */ 742 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 743 if (!skb2) { 744 err = -ENOMEM; 745 goto fail; 746 } 747 748 /* 749 * Set up data on packet 750 */ 751 752 ip_copy_metadata(skb2, skb); 753 skb_reserve(skb2, ll_rs); 754 skb_put(skb2, len + hlen); 755 skb_reset_network_header(skb2); 756 skb2->transport_header = skb2->network_header + hlen; 757 758 /* 759 * Charge the memory for the fragment to any owner 760 * it might possess 761 */ 762 763 if (skb->sk) 764 skb_set_owner_w(skb2, skb->sk); 765 766 /* 767 * Copy the packet header into the new buffer. 768 */ 769 770 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 771 772 /* 773 * Copy a block of the IP datagram. 774 */ 775 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 776 BUG(); 777 left -= len; 778 779 /* 780 * Fill in the new header fields. 781 */ 782 iph = ip_hdr(skb2); 783 iph->frag_off = htons((offset >> 3)); 784 785 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 786 iph->frag_off |= htons(IP_DF); 787 788 /* ANK: dirty, but effective trick. Upgrade options only if 789 * the segment to be fragmented was THE FIRST (otherwise, 790 * options are already fixed) and make it ONCE 791 * on the initial skb, so that all the following fragments 792 * will inherit fixed options. 793 */ 794 if (offset == 0) 795 ip_options_fragment(skb); 796 797 /* 798 * Added AC : If we are fragmenting a fragment that's not the 799 * last fragment then keep MF on each bit 800 */ 801 if (left > 0 || not_last_frag) 802 iph->frag_off |= htons(IP_MF); 803 ptr += len; 804 offset += len; 805 806 /* 807 * Put this fragment into the sending queue. 808 */ 809 iph->tot_len = htons(len + hlen); 810 811 ip_send_check(iph); 812 813 err = output(net, sk, skb2); 814 if (err) 815 goto fail; 816 817 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 818 } 819 consume_skb(skb); 820 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 821 return err; 822 823 fail: 824 kfree_skb(skb); 825 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 826 return err; 827 } 828 EXPORT_SYMBOL(ip_do_fragment); 829 830 int 831 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 832 { 833 struct msghdr *msg = from; 834 835 if (skb->ip_summed == CHECKSUM_PARTIAL) { 836 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 837 return -EFAULT; 838 } else { 839 __wsum csum = 0; 840 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 841 return -EFAULT; 842 skb->csum = csum_block_add(skb->csum, csum, odd); 843 } 844 return 0; 845 } 846 EXPORT_SYMBOL(ip_generic_getfrag); 847 848 static inline __wsum 849 csum_page(struct page *page, int offset, int copy) 850 { 851 char *kaddr; 852 __wsum csum; 853 kaddr = kmap(page); 854 csum = csum_partial(kaddr + offset, copy, 0); 855 kunmap(page); 856 return csum; 857 } 858 859 static int __ip_append_data(struct sock *sk, 860 struct flowi4 *fl4, 861 struct sk_buff_head *queue, 862 struct inet_cork *cork, 863 struct page_frag *pfrag, 864 int getfrag(void *from, char *to, int offset, 865 int len, int odd, struct sk_buff *skb), 866 void *from, int length, int transhdrlen, 867 unsigned int flags) 868 { 869 struct inet_sock *inet = inet_sk(sk); 870 struct sk_buff *skb; 871 872 struct ip_options *opt = cork->opt; 873 int hh_len; 874 int exthdrlen; 875 int mtu; 876 int copy; 877 int err; 878 int offset = 0; 879 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 880 int csummode = CHECKSUM_NONE; 881 struct rtable *rt = (struct rtable *)cork->dst; 882 unsigned int wmem_alloc_delta = 0; 883 u32 tskey = 0; 884 bool paged; 885 886 skb = skb_peek_tail(queue); 887 888 exthdrlen = !skb ? rt->dst.header_len : 0; 889 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 890 paged = !!cork->gso_size; 891 892 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 893 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 894 tskey = sk->sk_tskey++; 895 896 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 897 898 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 899 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 900 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 901 902 if (cork->length + length > maxnonfragsize - fragheaderlen) { 903 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 904 mtu - (opt ? opt->optlen : 0)); 905 return -EMSGSIZE; 906 } 907 908 /* 909 * transhdrlen > 0 means that this is the first fragment and we wish 910 * it won't be fragmented in the future. 911 */ 912 if (transhdrlen && 913 length + fragheaderlen <= mtu && 914 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 915 (!(flags & MSG_MORE) || cork->gso_size) && 916 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) 917 csummode = CHECKSUM_PARTIAL; 918 919 cork->length += length; 920 921 /* So, what's going on in the loop below? 922 * 923 * We use calculated fragment length to generate chained skb, 924 * each of segments is IP fragment ready for sending to network after 925 * adding appropriate IP header. 926 */ 927 928 if (!skb) 929 goto alloc_new_skb; 930 931 while (length > 0) { 932 /* Check if the remaining data fits into current packet. */ 933 copy = mtu - skb->len; 934 if (copy < length) 935 copy = maxfraglen - skb->len; 936 if (copy <= 0) { 937 char *data; 938 unsigned int datalen; 939 unsigned int fraglen; 940 unsigned int fraggap; 941 unsigned int alloclen; 942 unsigned int pagedlen; 943 struct sk_buff *skb_prev; 944 alloc_new_skb: 945 skb_prev = skb; 946 if (skb_prev) 947 fraggap = skb_prev->len - maxfraglen; 948 else 949 fraggap = 0; 950 951 /* 952 * If remaining data exceeds the mtu, 953 * we know we need more fragment(s). 954 */ 955 datalen = length + fraggap; 956 if (datalen > mtu - fragheaderlen) 957 datalen = maxfraglen - fragheaderlen; 958 fraglen = datalen + fragheaderlen; 959 pagedlen = 0; 960 961 if ((flags & MSG_MORE) && 962 !(rt->dst.dev->features&NETIF_F_SG)) 963 alloclen = mtu; 964 else if (!paged) 965 alloclen = fraglen; 966 else { 967 alloclen = min_t(int, fraglen, MAX_HEADER); 968 pagedlen = fraglen - alloclen; 969 } 970 971 alloclen += exthdrlen; 972 973 /* The last fragment gets additional space at tail. 974 * Note, with MSG_MORE we overallocate on fragments, 975 * because we have no idea what fragment will be 976 * the last. 977 */ 978 if (datalen == length + fraggap) 979 alloclen += rt->dst.trailer_len; 980 981 if (transhdrlen) { 982 skb = sock_alloc_send_skb(sk, 983 alloclen + hh_len + 15, 984 (flags & MSG_DONTWAIT), &err); 985 } else { 986 skb = NULL; 987 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= 988 2 * sk->sk_sndbuf) 989 skb = alloc_skb(alloclen + hh_len + 15, 990 sk->sk_allocation); 991 if (unlikely(!skb)) 992 err = -ENOBUFS; 993 } 994 if (!skb) 995 goto error; 996 997 /* 998 * Fill in the control structures 999 */ 1000 skb->ip_summed = csummode; 1001 skb->csum = 0; 1002 skb_reserve(skb, hh_len); 1003 1004 /* only the initial fragment is time stamped */ 1005 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1006 cork->tx_flags = 0; 1007 skb_shinfo(skb)->tskey = tskey; 1008 tskey = 0; 1009 1010 /* 1011 * Find where to start putting bytes. 1012 */ 1013 data = skb_put(skb, fraglen + exthdrlen - pagedlen); 1014 skb_set_network_header(skb, exthdrlen); 1015 skb->transport_header = (skb->network_header + 1016 fragheaderlen); 1017 data += fragheaderlen + exthdrlen; 1018 1019 if (fraggap) { 1020 skb->csum = skb_copy_and_csum_bits( 1021 skb_prev, maxfraglen, 1022 data + transhdrlen, fraggap, 0); 1023 skb_prev->csum = csum_sub(skb_prev->csum, 1024 skb->csum); 1025 data += fraggap; 1026 pskb_trim_unique(skb_prev, maxfraglen); 1027 } 1028 1029 copy = datalen - transhdrlen - fraggap - pagedlen; 1030 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1031 err = -EFAULT; 1032 kfree_skb(skb); 1033 goto error; 1034 } 1035 1036 offset += copy; 1037 length -= copy + transhdrlen; 1038 transhdrlen = 0; 1039 exthdrlen = 0; 1040 csummode = CHECKSUM_NONE; 1041 1042 if ((flags & MSG_CONFIRM) && !skb_prev) 1043 skb_set_dst_pending_confirm(skb, 1); 1044 1045 /* 1046 * Put the packet on the pending queue. 1047 */ 1048 if (!skb->destructor) { 1049 skb->destructor = sock_wfree; 1050 skb->sk = sk; 1051 wmem_alloc_delta += skb->truesize; 1052 } 1053 __skb_queue_tail(queue, skb); 1054 continue; 1055 } 1056 1057 if (copy > length) 1058 copy = length; 1059 1060 if (!(rt->dst.dev->features&NETIF_F_SG) && 1061 skb_tailroom(skb) >= copy) { 1062 unsigned int off; 1063 1064 off = skb->len; 1065 if (getfrag(from, skb_put(skb, copy), 1066 offset, copy, off, skb) < 0) { 1067 __skb_trim(skb, off); 1068 err = -EFAULT; 1069 goto error; 1070 } 1071 } else { 1072 int i = skb_shinfo(skb)->nr_frags; 1073 1074 err = -ENOMEM; 1075 if (!sk_page_frag_refill(sk, pfrag)) 1076 goto error; 1077 1078 if (!skb_can_coalesce(skb, i, pfrag->page, 1079 pfrag->offset)) { 1080 err = -EMSGSIZE; 1081 if (i == MAX_SKB_FRAGS) 1082 goto error; 1083 1084 __skb_fill_page_desc(skb, i, pfrag->page, 1085 pfrag->offset, 0); 1086 skb_shinfo(skb)->nr_frags = ++i; 1087 get_page(pfrag->page); 1088 } 1089 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1090 if (getfrag(from, 1091 page_address(pfrag->page) + pfrag->offset, 1092 offset, copy, skb->len, skb) < 0) 1093 goto error_efault; 1094 1095 pfrag->offset += copy; 1096 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1097 skb->len += copy; 1098 skb->data_len += copy; 1099 skb->truesize += copy; 1100 wmem_alloc_delta += copy; 1101 } 1102 offset += copy; 1103 length -= copy; 1104 } 1105 1106 if (wmem_alloc_delta) 1107 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1108 return 0; 1109 1110 error_efault: 1111 err = -EFAULT; 1112 error: 1113 cork->length -= length; 1114 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1115 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); 1116 return err; 1117 } 1118 1119 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1120 struct ipcm_cookie *ipc, struct rtable **rtp) 1121 { 1122 struct ip_options_rcu *opt; 1123 struct rtable *rt; 1124 1125 rt = *rtp; 1126 if (unlikely(!rt)) 1127 return -EFAULT; 1128 1129 /* 1130 * setup for corking. 1131 */ 1132 opt = ipc->opt; 1133 if (opt) { 1134 if (!cork->opt) { 1135 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1136 sk->sk_allocation); 1137 if (unlikely(!cork->opt)) 1138 return -ENOBUFS; 1139 } 1140 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1141 cork->flags |= IPCORK_OPT; 1142 cork->addr = ipc->addr; 1143 } 1144 1145 /* 1146 * We steal reference to this route, caller should not release it 1147 */ 1148 *rtp = NULL; 1149 cork->fragsize = ip_sk_use_pmtu(sk) ? 1150 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1151 1152 cork->gso_size = ipc->gso_size; 1153 cork->dst = &rt->dst; 1154 cork->length = 0; 1155 cork->ttl = ipc->ttl; 1156 cork->tos = ipc->tos; 1157 cork->priority = ipc->priority; 1158 cork->transmit_time = ipc->sockc.transmit_time; 1159 cork->tx_flags = 0; 1160 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); 1161 1162 return 0; 1163 } 1164 1165 /* 1166 * ip_append_data() and ip_append_page() can make one large IP datagram 1167 * from many pieces of data. Each pieces will be holded on the socket 1168 * until ip_push_pending_frames() is called. Each piece can be a page 1169 * or non-page data. 1170 * 1171 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1172 * this interface potentially. 1173 * 1174 * LATER: length must be adjusted by pad at tail, when it is required. 1175 */ 1176 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1177 int getfrag(void *from, char *to, int offset, int len, 1178 int odd, struct sk_buff *skb), 1179 void *from, int length, int transhdrlen, 1180 struct ipcm_cookie *ipc, struct rtable **rtp, 1181 unsigned int flags) 1182 { 1183 struct inet_sock *inet = inet_sk(sk); 1184 int err; 1185 1186 if (flags&MSG_PROBE) 1187 return 0; 1188 1189 if (skb_queue_empty(&sk->sk_write_queue)) { 1190 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1191 if (err) 1192 return err; 1193 } else { 1194 transhdrlen = 0; 1195 } 1196 1197 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1198 sk_page_frag(sk), getfrag, 1199 from, length, transhdrlen, flags); 1200 } 1201 1202 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1203 int offset, size_t size, int flags) 1204 { 1205 struct inet_sock *inet = inet_sk(sk); 1206 struct sk_buff *skb; 1207 struct rtable *rt; 1208 struct ip_options *opt = NULL; 1209 struct inet_cork *cork; 1210 int hh_len; 1211 int mtu; 1212 int len; 1213 int err; 1214 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1215 1216 if (inet->hdrincl) 1217 return -EPERM; 1218 1219 if (flags&MSG_PROBE) 1220 return 0; 1221 1222 if (skb_queue_empty(&sk->sk_write_queue)) 1223 return -EINVAL; 1224 1225 cork = &inet->cork.base; 1226 rt = (struct rtable *)cork->dst; 1227 if (cork->flags & IPCORK_OPT) 1228 opt = cork->opt; 1229 1230 if (!(rt->dst.dev->features&NETIF_F_SG)) 1231 return -EOPNOTSUPP; 1232 1233 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1234 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; 1235 1236 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1237 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1238 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1239 1240 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1241 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1242 mtu - (opt ? opt->optlen : 0)); 1243 return -EMSGSIZE; 1244 } 1245 1246 skb = skb_peek_tail(&sk->sk_write_queue); 1247 if (!skb) 1248 return -EINVAL; 1249 1250 cork->length += size; 1251 1252 while (size > 0) { 1253 /* Check if the remaining data fits into current packet. */ 1254 len = mtu - skb->len; 1255 if (len < size) 1256 len = maxfraglen - skb->len; 1257 1258 if (len <= 0) { 1259 struct sk_buff *skb_prev; 1260 int alloclen; 1261 1262 skb_prev = skb; 1263 fraggap = skb_prev->len - maxfraglen; 1264 1265 alloclen = fragheaderlen + hh_len + fraggap + 15; 1266 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1267 if (unlikely(!skb)) { 1268 err = -ENOBUFS; 1269 goto error; 1270 } 1271 1272 /* 1273 * Fill in the control structures 1274 */ 1275 skb->ip_summed = CHECKSUM_NONE; 1276 skb->csum = 0; 1277 skb_reserve(skb, hh_len); 1278 1279 /* 1280 * Find where to start putting bytes. 1281 */ 1282 skb_put(skb, fragheaderlen + fraggap); 1283 skb_reset_network_header(skb); 1284 skb->transport_header = (skb->network_header + 1285 fragheaderlen); 1286 if (fraggap) { 1287 skb->csum = skb_copy_and_csum_bits(skb_prev, 1288 maxfraglen, 1289 skb_transport_header(skb), 1290 fraggap, 0); 1291 skb_prev->csum = csum_sub(skb_prev->csum, 1292 skb->csum); 1293 pskb_trim_unique(skb_prev, maxfraglen); 1294 } 1295 1296 /* 1297 * Put the packet on the pending queue. 1298 */ 1299 __skb_queue_tail(&sk->sk_write_queue, skb); 1300 continue; 1301 } 1302 1303 if (len > size) 1304 len = size; 1305 1306 if (skb_append_pagefrags(skb, page, offset, len)) { 1307 err = -EMSGSIZE; 1308 goto error; 1309 } 1310 1311 if (skb->ip_summed == CHECKSUM_NONE) { 1312 __wsum csum; 1313 csum = csum_page(page, offset, len); 1314 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1315 } 1316 1317 skb->len += len; 1318 skb->data_len += len; 1319 skb->truesize += len; 1320 refcount_add(len, &sk->sk_wmem_alloc); 1321 offset += len; 1322 size -= len; 1323 } 1324 return 0; 1325 1326 error: 1327 cork->length -= size; 1328 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1329 return err; 1330 } 1331 1332 static void ip_cork_release(struct inet_cork *cork) 1333 { 1334 cork->flags &= ~IPCORK_OPT; 1335 kfree(cork->opt); 1336 cork->opt = NULL; 1337 dst_release(cork->dst); 1338 cork->dst = NULL; 1339 } 1340 1341 /* 1342 * Combined all pending IP fragments on the socket as one IP datagram 1343 * and push them out. 1344 */ 1345 struct sk_buff *__ip_make_skb(struct sock *sk, 1346 struct flowi4 *fl4, 1347 struct sk_buff_head *queue, 1348 struct inet_cork *cork) 1349 { 1350 struct sk_buff *skb, *tmp_skb; 1351 struct sk_buff **tail_skb; 1352 struct inet_sock *inet = inet_sk(sk); 1353 struct net *net = sock_net(sk); 1354 struct ip_options *opt = NULL; 1355 struct rtable *rt = (struct rtable *)cork->dst; 1356 struct iphdr *iph; 1357 __be16 df = 0; 1358 __u8 ttl; 1359 1360 skb = __skb_dequeue(queue); 1361 if (!skb) 1362 goto out; 1363 tail_skb = &(skb_shinfo(skb)->frag_list); 1364 1365 /* move skb->data to ip header from ext header */ 1366 if (skb->data < skb_network_header(skb)) 1367 __skb_pull(skb, skb_network_offset(skb)); 1368 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1369 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1370 *tail_skb = tmp_skb; 1371 tail_skb = &(tmp_skb->next); 1372 skb->len += tmp_skb->len; 1373 skb->data_len += tmp_skb->len; 1374 skb->truesize += tmp_skb->truesize; 1375 tmp_skb->destructor = NULL; 1376 tmp_skb->sk = NULL; 1377 } 1378 1379 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1380 * to fragment the frame generated here. No matter, what transforms 1381 * how transforms change size of the packet, it will come out. 1382 */ 1383 skb->ignore_df = ip_sk_ignore_df(sk); 1384 1385 /* DF bit is set when we want to see DF on outgoing frames. 1386 * If ignore_df is set too, we still allow to fragment this frame 1387 * locally. */ 1388 if (inet->pmtudisc == IP_PMTUDISC_DO || 1389 inet->pmtudisc == IP_PMTUDISC_PROBE || 1390 (skb->len <= dst_mtu(&rt->dst) && 1391 ip_dont_fragment(sk, &rt->dst))) 1392 df = htons(IP_DF); 1393 1394 if (cork->flags & IPCORK_OPT) 1395 opt = cork->opt; 1396 1397 if (cork->ttl != 0) 1398 ttl = cork->ttl; 1399 else if (rt->rt_type == RTN_MULTICAST) 1400 ttl = inet->mc_ttl; 1401 else 1402 ttl = ip_select_ttl(inet, &rt->dst); 1403 1404 iph = ip_hdr(skb); 1405 iph->version = 4; 1406 iph->ihl = 5; 1407 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1408 iph->frag_off = df; 1409 iph->ttl = ttl; 1410 iph->protocol = sk->sk_protocol; 1411 ip_copy_addrs(iph, fl4); 1412 ip_select_ident(net, skb, sk); 1413 1414 if (opt) { 1415 iph->ihl += opt->optlen>>2; 1416 ip_options_build(skb, opt, cork->addr, rt, 0); 1417 } 1418 1419 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1420 skb->mark = sk->sk_mark; 1421 skb->tstamp = cork->transmit_time; 1422 /* 1423 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1424 * on dst refcount 1425 */ 1426 cork->dst = NULL; 1427 skb_dst_set(skb, &rt->dst); 1428 1429 if (iph->protocol == IPPROTO_ICMP) 1430 icmp_out_count(net, ((struct icmphdr *) 1431 skb_transport_header(skb))->type); 1432 1433 ip_cork_release(cork); 1434 out: 1435 return skb; 1436 } 1437 1438 int ip_send_skb(struct net *net, struct sk_buff *skb) 1439 { 1440 int err; 1441 1442 err = ip_local_out(net, skb->sk, skb); 1443 if (err) { 1444 if (err > 0) 1445 err = net_xmit_errno(err); 1446 if (err) 1447 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1448 } 1449 1450 return err; 1451 } 1452 1453 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1454 { 1455 struct sk_buff *skb; 1456 1457 skb = ip_finish_skb(sk, fl4); 1458 if (!skb) 1459 return 0; 1460 1461 /* Netfilter gets whole the not fragmented skb. */ 1462 return ip_send_skb(sock_net(sk), skb); 1463 } 1464 1465 /* 1466 * Throw away all pending data on the socket. 1467 */ 1468 static void __ip_flush_pending_frames(struct sock *sk, 1469 struct sk_buff_head *queue, 1470 struct inet_cork *cork) 1471 { 1472 struct sk_buff *skb; 1473 1474 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1475 kfree_skb(skb); 1476 1477 ip_cork_release(cork); 1478 } 1479 1480 void ip_flush_pending_frames(struct sock *sk) 1481 { 1482 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1483 } 1484 1485 struct sk_buff *ip_make_skb(struct sock *sk, 1486 struct flowi4 *fl4, 1487 int getfrag(void *from, char *to, int offset, 1488 int len, int odd, struct sk_buff *skb), 1489 void *from, int length, int transhdrlen, 1490 struct ipcm_cookie *ipc, struct rtable **rtp, 1491 struct inet_cork *cork, unsigned int flags) 1492 { 1493 struct sk_buff_head queue; 1494 int err; 1495 1496 if (flags & MSG_PROBE) 1497 return NULL; 1498 1499 __skb_queue_head_init(&queue); 1500 1501 cork->flags = 0; 1502 cork->addr = 0; 1503 cork->opt = NULL; 1504 err = ip_setup_cork(sk, cork, ipc, rtp); 1505 if (err) 1506 return ERR_PTR(err); 1507 1508 err = __ip_append_data(sk, fl4, &queue, cork, 1509 ¤t->task_frag, getfrag, 1510 from, length, transhdrlen, flags); 1511 if (err) { 1512 __ip_flush_pending_frames(sk, &queue, cork); 1513 return ERR_PTR(err); 1514 } 1515 1516 return __ip_make_skb(sk, fl4, &queue, cork); 1517 } 1518 1519 /* 1520 * Fetch data from kernel space and fill in checksum if needed. 1521 */ 1522 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1523 int len, int odd, struct sk_buff *skb) 1524 { 1525 __wsum csum; 1526 1527 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1528 skb->csum = csum_block_add(skb->csum, csum, odd); 1529 return 0; 1530 } 1531 1532 /* 1533 * Generic function to send a packet as reply to another packet. 1534 * Used to send some TCP resets/acks so far. 1535 */ 1536 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1537 const struct ip_options *sopt, 1538 __be32 daddr, __be32 saddr, 1539 const struct ip_reply_arg *arg, 1540 unsigned int len) 1541 { 1542 struct ip_options_data replyopts; 1543 struct ipcm_cookie ipc; 1544 struct flowi4 fl4; 1545 struct rtable *rt = skb_rtable(skb); 1546 struct net *net = sock_net(sk); 1547 struct sk_buff *nskb; 1548 int err; 1549 int oif; 1550 1551 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) 1552 return; 1553 1554 ipcm_init(&ipc); 1555 ipc.addr = daddr; 1556 1557 if (replyopts.opt.opt.optlen) { 1558 ipc.opt = &replyopts.opt; 1559 1560 if (replyopts.opt.opt.srr) 1561 daddr = replyopts.opt.opt.faddr; 1562 } 1563 1564 oif = arg->bound_dev_if; 1565 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1566 oif = skb->skb_iif; 1567 1568 flowi4_init_output(&fl4, oif, 1569 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, 1570 RT_TOS(arg->tos), 1571 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1572 ip_reply_arg_flowi_flags(arg), 1573 daddr, saddr, 1574 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1575 arg->uid); 1576 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1577 rt = ip_route_output_key(net, &fl4); 1578 if (IS_ERR(rt)) 1579 return; 1580 1581 inet_sk(sk)->tos = arg->tos; 1582 1583 sk->sk_priority = skb->priority; 1584 sk->sk_protocol = ip_hdr(skb)->protocol; 1585 sk->sk_bound_dev_if = arg->bound_dev_if; 1586 sk->sk_sndbuf = sysctl_wmem_default; 1587 sk->sk_mark = fl4.flowi4_mark; 1588 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1589 len, 0, &ipc, &rt, MSG_DONTWAIT); 1590 if (unlikely(err)) { 1591 ip_flush_pending_frames(sk); 1592 goto out; 1593 } 1594 1595 nskb = skb_peek(&sk->sk_write_queue); 1596 if (nskb) { 1597 if (arg->csumoffset >= 0) 1598 *((__sum16 *)skb_transport_header(nskb) + 1599 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1600 arg->csum)); 1601 nskb->ip_summed = CHECKSUM_NONE; 1602 ip_push_pending_frames(sk, &fl4); 1603 } 1604 out: 1605 ip_rt_put(rt); 1606 } 1607 1608 void __init ip_init(void) 1609 { 1610 ip_rt_init(); 1611 inet_initpeers(); 1612 1613 #if defined(CONFIG_IP_MULTICAST) 1614 igmp_mc_init(); 1615 #endif 1616 } 1617