xref: /openbmc/linux/net/ipv4/ip_output.c (revision 05bcf503)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
82 
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl);
85 
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__ void ip_send_check(struct iphdr *iph)
88 {
89 	iph->check = 0;
90 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
91 }
92 EXPORT_SYMBOL(ip_send_check);
93 
94 int __ip_local_out(struct sk_buff *skb)
95 {
96 	struct iphdr *iph = ip_hdr(skb);
97 
98 	iph->tot_len = htons(skb->len);
99 	ip_send_check(iph);
100 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
101 		       skb_dst(skb)->dev, dst_output);
102 }
103 
104 int ip_local_out(struct sk_buff *skb)
105 {
106 	int err;
107 
108 	err = __ip_local_out(skb);
109 	if (likely(err == 1))
110 		err = dst_output(skb);
111 
112 	return err;
113 }
114 EXPORT_SYMBOL_GPL(ip_local_out);
115 
116 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
117 {
118 	int ttl = inet->uc_ttl;
119 
120 	if (ttl < 0)
121 		ttl = ip4_dst_hoplimit(dst);
122 	return ttl;
123 }
124 
125 /*
126  *		Add an ip header to a skbuff and send it out.
127  *
128  */
129 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
130 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
131 {
132 	struct inet_sock *inet = inet_sk(sk);
133 	struct rtable *rt = skb_rtable(skb);
134 	struct iphdr *iph;
135 
136 	/* Build the IP header. */
137 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
138 	skb_reset_network_header(skb);
139 	iph = ip_hdr(skb);
140 	iph->version  = 4;
141 	iph->ihl      = 5;
142 	iph->tos      = inet->tos;
143 	if (ip_dont_fragment(sk, &rt->dst))
144 		iph->frag_off = htons(IP_DF);
145 	else
146 		iph->frag_off = 0;
147 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
148 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
149 	iph->saddr    = saddr;
150 	iph->protocol = sk->sk_protocol;
151 	ip_select_ident(iph, &rt->dst, sk);
152 
153 	if (opt && opt->opt.optlen) {
154 		iph->ihl += opt->opt.optlen>>2;
155 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
156 	}
157 
158 	skb->priority = sk->sk_priority;
159 	skb->mark = sk->sk_mark;
160 
161 	/* Send it out. */
162 	return ip_local_out(skb);
163 }
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
165 
166 static inline int ip_finish_output2(struct sk_buff *skb)
167 {
168 	struct dst_entry *dst = skb_dst(skb);
169 	struct rtable *rt = (struct rtable *)dst;
170 	struct net_device *dev = dst->dev;
171 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
172 	struct neighbour *neigh;
173 	u32 nexthop;
174 
175 	if (rt->rt_type == RTN_MULTICAST) {
176 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
177 	} else if (rt->rt_type == RTN_BROADCAST)
178 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
179 
180 	/* Be paranoid, rather than too clever. */
181 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
182 		struct sk_buff *skb2;
183 
184 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
185 		if (skb2 == NULL) {
186 			kfree_skb(skb);
187 			return -ENOMEM;
188 		}
189 		if (skb->sk)
190 			skb_set_owner_w(skb2, skb->sk);
191 		consume_skb(skb);
192 		skb = skb2;
193 	}
194 
195 	rcu_read_lock_bh();
196 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
197 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
198 	if (unlikely(!neigh))
199 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
200 	if (!IS_ERR(neigh)) {
201 		int res = dst_neigh_output(dst, neigh, skb);
202 
203 		rcu_read_unlock_bh();
204 		return res;
205 	}
206 	rcu_read_unlock_bh();
207 
208 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
209 			    __func__);
210 	kfree_skb(skb);
211 	return -EINVAL;
212 }
213 
214 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
215 {
216 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
217 
218 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
219 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
220 }
221 
222 static int ip_finish_output(struct sk_buff *skb)
223 {
224 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
225 	/* Policy lookup after SNAT yielded a new policy */
226 	if (skb_dst(skb)->xfrm != NULL) {
227 		IPCB(skb)->flags |= IPSKB_REROUTED;
228 		return dst_output(skb);
229 	}
230 #endif
231 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
232 		return ip_fragment(skb, ip_finish_output2);
233 	else
234 		return ip_finish_output2(skb);
235 }
236 
237 int ip_mc_output(struct sk_buff *skb)
238 {
239 	struct sock *sk = skb->sk;
240 	struct rtable *rt = skb_rtable(skb);
241 	struct net_device *dev = rt->dst.dev;
242 
243 	/*
244 	 *	If the indicated interface is up and running, send the packet.
245 	 */
246 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
247 
248 	skb->dev = dev;
249 	skb->protocol = htons(ETH_P_IP);
250 
251 	/*
252 	 *	Multicasts are looped back for other local users
253 	 */
254 
255 	if (rt->rt_flags&RTCF_MULTICAST) {
256 		if (sk_mc_loop(sk)
257 #ifdef CONFIG_IP_MROUTE
258 		/* Small optimization: do not loopback not local frames,
259 		   which returned after forwarding; they will be  dropped
260 		   by ip_mr_input in any case.
261 		   Note, that local frames are looped back to be delivered
262 		   to local recipients.
263 
264 		   This check is duplicated in ip_mr_input at the moment.
265 		 */
266 		    &&
267 		    ((rt->rt_flags & RTCF_LOCAL) ||
268 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
269 #endif
270 		   ) {
271 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272 			if (newskb)
273 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
274 					newskb, NULL, newskb->dev,
275 					dev_loopback_xmit);
276 		}
277 
278 		/* Multicasts with ttl 0 must not go beyond the host */
279 
280 		if (ip_hdr(skb)->ttl == 0) {
281 			kfree_skb(skb);
282 			return 0;
283 		}
284 	}
285 
286 	if (rt->rt_flags&RTCF_BROADCAST) {
287 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288 		if (newskb)
289 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
290 				NULL, newskb->dev, dev_loopback_xmit);
291 	}
292 
293 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
294 			    skb->dev, ip_finish_output,
295 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
296 }
297 
298 int ip_output(struct sk_buff *skb)
299 {
300 	struct net_device *dev = skb_dst(skb)->dev;
301 
302 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
303 
304 	skb->dev = dev;
305 	skb->protocol = htons(ETH_P_IP);
306 
307 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
308 			    ip_finish_output,
309 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
310 }
311 
312 /*
313  * copy saddr and daddr, possibly using 64bit load/stores
314  * Equivalent to :
315  *   iph->saddr = fl4->saddr;
316  *   iph->daddr = fl4->daddr;
317  */
318 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
319 {
320 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
321 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
322 	memcpy(&iph->saddr, &fl4->saddr,
323 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
324 }
325 
326 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
327 {
328 	struct sock *sk = skb->sk;
329 	struct inet_sock *inet = inet_sk(sk);
330 	struct ip_options_rcu *inet_opt;
331 	struct flowi4 *fl4;
332 	struct rtable *rt;
333 	struct iphdr *iph;
334 	int res;
335 
336 	/* Skip all of this if the packet is already routed,
337 	 * f.e. by something like SCTP.
338 	 */
339 	rcu_read_lock();
340 	inet_opt = rcu_dereference(inet->inet_opt);
341 	fl4 = &fl->u.ip4;
342 	rt = skb_rtable(skb);
343 	if (rt != NULL)
344 		goto packet_routed;
345 
346 	/* Make sure we can route this packet. */
347 	rt = (struct rtable *)__sk_dst_check(sk, 0);
348 	if (rt == NULL) {
349 		__be32 daddr;
350 
351 		/* Use correct destination address if we have options. */
352 		daddr = inet->inet_daddr;
353 		if (inet_opt && inet_opt->opt.srr)
354 			daddr = inet_opt->opt.faddr;
355 
356 		/* If this fails, retransmit mechanism of transport layer will
357 		 * keep trying until route appears or the connection times
358 		 * itself out.
359 		 */
360 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
361 					   daddr, inet->inet_saddr,
362 					   inet->inet_dport,
363 					   inet->inet_sport,
364 					   sk->sk_protocol,
365 					   RT_CONN_FLAGS(sk),
366 					   sk->sk_bound_dev_if);
367 		if (IS_ERR(rt))
368 			goto no_route;
369 		sk_setup_caps(sk, &rt->dst);
370 	}
371 	skb_dst_set_noref(skb, &rt->dst);
372 
373 packet_routed:
374 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
375 		goto no_route;
376 
377 	/* OK, we know where to send it, allocate and build IP header. */
378 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
379 	skb_reset_network_header(skb);
380 	iph = ip_hdr(skb);
381 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
382 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
383 		iph->frag_off = htons(IP_DF);
384 	else
385 		iph->frag_off = 0;
386 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
387 	iph->protocol = sk->sk_protocol;
388 	ip_copy_addrs(iph, fl4);
389 
390 	/* Transport layer set skb->h.foo itself. */
391 
392 	if (inet_opt && inet_opt->opt.optlen) {
393 		iph->ihl += inet_opt->opt.optlen >> 2;
394 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
395 	}
396 
397 	ip_select_ident_more(iph, &rt->dst, sk,
398 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
399 
400 	skb->priority = sk->sk_priority;
401 	skb->mark = sk->sk_mark;
402 
403 	res = ip_local_out(skb);
404 	rcu_read_unlock();
405 	return res;
406 
407 no_route:
408 	rcu_read_unlock();
409 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
410 	kfree_skb(skb);
411 	return -EHOSTUNREACH;
412 }
413 EXPORT_SYMBOL(ip_queue_xmit);
414 
415 
416 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
417 {
418 	to->pkt_type = from->pkt_type;
419 	to->priority = from->priority;
420 	to->protocol = from->protocol;
421 	skb_dst_drop(to);
422 	skb_dst_copy(to, from);
423 	to->dev = from->dev;
424 	to->mark = from->mark;
425 
426 	/* Copy the flags to each fragment. */
427 	IPCB(to)->flags = IPCB(from)->flags;
428 
429 #ifdef CONFIG_NET_SCHED
430 	to->tc_index = from->tc_index;
431 #endif
432 	nf_copy(to, from);
433 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
434     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
435 	to->nf_trace = from->nf_trace;
436 #endif
437 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
438 	to->ipvs_property = from->ipvs_property;
439 #endif
440 	skb_copy_secmark(to, from);
441 }
442 
443 /*
444  *	This IP datagram is too large to be sent in one piece.  Break it up into
445  *	smaller pieces (each of size equal to IP header plus
446  *	a block of the data of the original IP data part) that will yet fit in a
447  *	single device frame, and queue such a frame for sending.
448  */
449 
450 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
451 {
452 	struct iphdr *iph;
453 	int ptr;
454 	struct net_device *dev;
455 	struct sk_buff *skb2;
456 	unsigned int mtu, hlen, left, len, ll_rs;
457 	int offset;
458 	__be16 not_last_frag;
459 	struct rtable *rt = skb_rtable(skb);
460 	int err = 0;
461 
462 	dev = rt->dst.dev;
463 
464 	/*
465 	 *	Point into the IP datagram header.
466 	 */
467 
468 	iph = ip_hdr(skb);
469 
470 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->local_df) ||
471 		     (IPCB(skb)->frag_max_size &&
472 		      IPCB(skb)->frag_max_size > dst_mtu(&rt->dst)))) {
473 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
474 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
475 			  htonl(ip_skb_dst_mtu(skb)));
476 		kfree_skb(skb);
477 		return -EMSGSIZE;
478 	}
479 
480 	/*
481 	 *	Setup starting values.
482 	 */
483 
484 	hlen = iph->ihl * 4;
485 	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
486 #ifdef CONFIG_BRIDGE_NETFILTER
487 	if (skb->nf_bridge)
488 		mtu -= nf_bridge_mtu_reduction(skb);
489 #endif
490 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
491 
492 	/* When frag_list is given, use it. First, check its validity:
493 	 * some transformers could create wrong frag_list or break existing
494 	 * one, it is not prohibited. In this case fall back to copying.
495 	 *
496 	 * LATER: this step can be merged to real generation of fragments,
497 	 * we can switch to copy when see the first bad fragment.
498 	 */
499 	if (skb_has_frag_list(skb)) {
500 		struct sk_buff *frag, *frag2;
501 		int first_len = skb_pagelen(skb);
502 
503 		if (first_len - hlen > mtu ||
504 		    ((first_len - hlen) & 7) ||
505 		    ip_is_fragment(iph) ||
506 		    skb_cloned(skb))
507 			goto slow_path;
508 
509 		skb_walk_frags(skb, frag) {
510 			/* Correct geometry. */
511 			if (frag->len > mtu ||
512 			    ((frag->len & 7) && frag->next) ||
513 			    skb_headroom(frag) < hlen)
514 				goto slow_path_clean;
515 
516 			/* Partially cloned skb? */
517 			if (skb_shared(frag))
518 				goto slow_path_clean;
519 
520 			BUG_ON(frag->sk);
521 			if (skb->sk) {
522 				frag->sk = skb->sk;
523 				frag->destructor = sock_wfree;
524 			}
525 			skb->truesize -= frag->truesize;
526 		}
527 
528 		/* Everything is OK. Generate! */
529 
530 		err = 0;
531 		offset = 0;
532 		frag = skb_shinfo(skb)->frag_list;
533 		skb_frag_list_init(skb);
534 		skb->data_len = first_len - skb_headlen(skb);
535 		skb->len = first_len;
536 		iph->tot_len = htons(first_len);
537 		iph->frag_off = htons(IP_MF);
538 		ip_send_check(iph);
539 
540 		for (;;) {
541 			/* Prepare header of the next frame,
542 			 * before previous one went down. */
543 			if (frag) {
544 				frag->ip_summed = CHECKSUM_NONE;
545 				skb_reset_transport_header(frag);
546 				__skb_push(frag, hlen);
547 				skb_reset_network_header(frag);
548 				memcpy(skb_network_header(frag), iph, hlen);
549 				iph = ip_hdr(frag);
550 				iph->tot_len = htons(frag->len);
551 				ip_copy_metadata(frag, skb);
552 				if (offset == 0)
553 					ip_options_fragment(frag);
554 				offset += skb->len - hlen;
555 				iph->frag_off = htons(offset>>3);
556 				if (frag->next != NULL)
557 					iph->frag_off |= htons(IP_MF);
558 				/* Ready, complete checksum */
559 				ip_send_check(iph);
560 			}
561 
562 			err = output(skb);
563 
564 			if (!err)
565 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
566 			if (err || !frag)
567 				break;
568 
569 			skb = frag;
570 			frag = skb->next;
571 			skb->next = NULL;
572 		}
573 
574 		if (err == 0) {
575 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
576 			return 0;
577 		}
578 
579 		while (frag) {
580 			skb = frag->next;
581 			kfree_skb(frag);
582 			frag = skb;
583 		}
584 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
585 		return err;
586 
587 slow_path_clean:
588 		skb_walk_frags(skb, frag2) {
589 			if (frag2 == frag)
590 				break;
591 			frag2->sk = NULL;
592 			frag2->destructor = NULL;
593 			skb->truesize += frag2->truesize;
594 		}
595 	}
596 
597 slow_path:
598 	left = skb->len - hlen;		/* Space per frame */
599 	ptr = hlen;		/* Where to start from */
600 
601 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
602 	 * we need to make room for the encapsulating header
603 	 */
604 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
605 
606 	/*
607 	 *	Fragment the datagram.
608 	 */
609 
610 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
611 	not_last_frag = iph->frag_off & htons(IP_MF);
612 
613 	/*
614 	 *	Keep copying data until we run out.
615 	 */
616 
617 	while (left > 0) {
618 		len = left;
619 		/* IF: it doesn't fit, use 'mtu' - the data space left */
620 		if (len > mtu)
621 			len = mtu;
622 		/* IF: we are not sending up to and including the packet end
623 		   then align the next start on an eight byte boundary */
624 		if (len < left)	{
625 			len &= ~7;
626 		}
627 		/*
628 		 *	Allocate buffer.
629 		 */
630 
631 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
632 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
633 			err = -ENOMEM;
634 			goto fail;
635 		}
636 
637 		/*
638 		 *	Set up data on packet
639 		 */
640 
641 		ip_copy_metadata(skb2, skb);
642 		skb_reserve(skb2, ll_rs);
643 		skb_put(skb2, len + hlen);
644 		skb_reset_network_header(skb2);
645 		skb2->transport_header = skb2->network_header + hlen;
646 
647 		/*
648 		 *	Charge the memory for the fragment to any owner
649 		 *	it might possess
650 		 */
651 
652 		if (skb->sk)
653 			skb_set_owner_w(skb2, skb->sk);
654 
655 		/*
656 		 *	Copy the packet header into the new buffer.
657 		 */
658 
659 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
660 
661 		/*
662 		 *	Copy a block of the IP datagram.
663 		 */
664 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
665 			BUG();
666 		left -= len;
667 
668 		/*
669 		 *	Fill in the new header fields.
670 		 */
671 		iph = ip_hdr(skb2);
672 		iph->frag_off = htons((offset >> 3));
673 
674 		/* ANK: dirty, but effective trick. Upgrade options only if
675 		 * the segment to be fragmented was THE FIRST (otherwise,
676 		 * options are already fixed) and make it ONCE
677 		 * on the initial skb, so that all the following fragments
678 		 * will inherit fixed options.
679 		 */
680 		if (offset == 0)
681 			ip_options_fragment(skb);
682 
683 		/*
684 		 *	Added AC : If we are fragmenting a fragment that's not the
685 		 *		   last fragment then keep MF on each bit
686 		 */
687 		if (left > 0 || not_last_frag)
688 			iph->frag_off |= htons(IP_MF);
689 		ptr += len;
690 		offset += len;
691 
692 		/*
693 		 *	Put this fragment into the sending queue.
694 		 */
695 		iph->tot_len = htons(len + hlen);
696 
697 		ip_send_check(iph);
698 
699 		err = output(skb2);
700 		if (err)
701 			goto fail;
702 
703 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
704 	}
705 	consume_skb(skb);
706 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
707 	return err;
708 
709 fail:
710 	kfree_skb(skb);
711 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
712 	return err;
713 }
714 EXPORT_SYMBOL(ip_fragment);
715 
716 int
717 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
718 {
719 	struct iovec *iov = from;
720 
721 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
722 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
723 			return -EFAULT;
724 	} else {
725 		__wsum csum = 0;
726 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
727 			return -EFAULT;
728 		skb->csum = csum_block_add(skb->csum, csum, odd);
729 	}
730 	return 0;
731 }
732 EXPORT_SYMBOL(ip_generic_getfrag);
733 
734 static inline __wsum
735 csum_page(struct page *page, int offset, int copy)
736 {
737 	char *kaddr;
738 	__wsum csum;
739 	kaddr = kmap(page);
740 	csum = csum_partial(kaddr + offset, copy, 0);
741 	kunmap(page);
742 	return csum;
743 }
744 
745 static inline int ip_ufo_append_data(struct sock *sk,
746 			struct sk_buff_head *queue,
747 			int getfrag(void *from, char *to, int offset, int len,
748 			       int odd, struct sk_buff *skb),
749 			void *from, int length, int hh_len, int fragheaderlen,
750 			int transhdrlen, int maxfraglen, unsigned int flags)
751 {
752 	struct sk_buff *skb;
753 	int err;
754 
755 	/* There is support for UDP fragmentation offload by network
756 	 * device, so create one single skb packet containing complete
757 	 * udp datagram
758 	 */
759 	if ((skb = skb_peek_tail(queue)) == NULL) {
760 		skb = sock_alloc_send_skb(sk,
761 			hh_len + fragheaderlen + transhdrlen + 20,
762 			(flags & MSG_DONTWAIT), &err);
763 
764 		if (skb == NULL)
765 			return err;
766 
767 		/* reserve space for Hardware header */
768 		skb_reserve(skb, hh_len);
769 
770 		/* create space for UDP/IP header */
771 		skb_put(skb, fragheaderlen + transhdrlen);
772 
773 		/* initialize network header pointer */
774 		skb_reset_network_header(skb);
775 
776 		/* initialize protocol header pointer */
777 		skb->transport_header = skb->network_header + fragheaderlen;
778 
779 		skb->ip_summed = CHECKSUM_PARTIAL;
780 		skb->csum = 0;
781 
782 		/* specify the length of each IP datagram fragment */
783 		skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
784 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
785 		__skb_queue_tail(queue, skb);
786 	}
787 
788 	return skb_append_datato_frags(sk, skb, getfrag, from,
789 				       (length - transhdrlen));
790 }
791 
792 static int __ip_append_data(struct sock *sk,
793 			    struct flowi4 *fl4,
794 			    struct sk_buff_head *queue,
795 			    struct inet_cork *cork,
796 			    struct page_frag *pfrag,
797 			    int getfrag(void *from, char *to, int offset,
798 					int len, int odd, struct sk_buff *skb),
799 			    void *from, int length, int transhdrlen,
800 			    unsigned int flags)
801 {
802 	struct inet_sock *inet = inet_sk(sk);
803 	struct sk_buff *skb;
804 
805 	struct ip_options *opt = cork->opt;
806 	int hh_len;
807 	int exthdrlen;
808 	int mtu;
809 	int copy;
810 	int err;
811 	int offset = 0;
812 	unsigned int maxfraglen, fragheaderlen;
813 	int csummode = CHECKSUM_NONE;
814 	struct rtable *rt = (struct rtable *)cork->dst;
815 
816 	skb = skb_peek_tail(queue);
817 
818 	exthdrlen = !skb ? rt->dst.header_len : 0;
819 	mtu = cork->fragsize;
820 
821 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
822 
823 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
824 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
825 
826 	if (cork->length + length > 0xFFFF - fragheaderlen) {
827 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
828 			       mtu-exthdrlen);
829 		return -EMSGSIZE;
830 	}
831 
832 	/*
833 	 * transhdrlen > 0 means that this is the first fragment and we wish
834 	 * it won't be fragmented in the future.
835 	 */
836 	if (transhdrlen &&
837 	    length + fragheaderlen <= mtu &&
838 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
839 	    !exthdrlen)
840 		csummode = CHECKSUM_PARTIAL;
841 
842 	cork->length += length;
843 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
844 	    (sk->sk_protocol == IPPROTO_UDP) &&
845 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
846 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
847 					 hh_len, fragheaderlen, transhdrlen,
848 					 maxfraglen, flags);
849 		if (err)
850 			goto error;
851 		return 0;
852 	}
853 
854 	/* So, what's going on in the loop below?
855 	 *
856 	 * We use calculated fragment length to generate chained skb,
857 	 * each of segments is IP fragment ready for sending to network after
858 	 * adding appropriate IP header.
859 	 */
860 
861 	if (!skb)
862 		goto alloc_new_skb;
863 
864 	while (length > 0) {
865 		/* Check if the remaining data fits into current packet. */
866 		copy = mtu - skb->len;
867 		if (copy < length)
868 			copy = maxfraglen - skb->len;
869 		if (copy <= 0) {
870 			char *data;
871 			unsigned int datalen;
872 			unsigned int fraglen;
873 			unsigned int fraggap;
874 			unsigned int alloclen;
875 			struct sk_buff *skb_prev;
876 alloc_new_skb:
877 			skb_prev = skb;
878 			if (skb_prev)
879 				fraggap = skb_prev->len - maxfraglen;
880 			else
881 				fraggap = 0;
882 
883 			/*
884 			 * If remaining data exceeds the mtu,
885 			 * we know we need more fragment(s).
886 			 */
887 			datalen = length + fraggap;
888 			if (datalen > mtu - fragheaderlen)
889 				datalen = maxfraglen - fragheaderlen;
890 			fraglen = datalen + fragheaderlen;
891 
892 			if ((flags & MSG_MORE) &&
893 			    !(rt->dst.dev->features&NETIF_F_SG))
894 				alloclen = mtu;
895 			else
896 				alloclen = fraglen;
897 
898 			alloclen += exthdrlen;
899 
900 			/* The last fragment gets additional space at tail.
901 			 * Note, with MSG_MORE we overallocate on fragments,
902 			 * because we have no idea what fragment will be
903 			 * the last.
904 			 */
905 			if (datalen == length + fraggap)
906 				alloclen += rt->dst.trailer_len;
907 
908 			if (transhdrlen) {
909 				skb = sock_alloc_send_skb(sk,
910 						alloclen + hh_len + 15,
911 						(flags & MSG_DONTWAIT), &err);
912 			} else {
913 				skb = NULL;
914 				if (atomic_read(&sk->sk_wmem_alloc) <=
915 				    2 * sk->sk_sndbuf)
916 					skb = sock_wmalloc(sk,
917 							   alloclen + hh_len + 15, 1,
918 							   sk->sk_allocation);
919 				if (unlikely(skb == NULL))
920 					err = -ENOBUFS;
921 				else
922 					/* only the initial fragment is
923 					   time stamped */
924 					cork->tx_flags = 0;
925 			}
926 			if (skb == NULL)
927 				goto error;
928 
929 			/*
930 			 *	Fill in the control structures
931 			 */
932 			skb->ip_summed = csummode;
933 			skb->csum = 0;
934 			skb_reserve(skb, hh_len);
935 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
936 
937 			/*
938 			 *	Find where to start putting bytes.
939 			 */
940 			data = skb_put(skb, fraglen + exthdrlen);
941 			skb_set_network_header(skb, exthdrlen);
942 			skb->transport_header = (skb->network_header +
943 						 fragheaderlen);
944 			data += fragheaderlen + exthdrlen;
945 
946 			if (fraggap) {
947 				skb->csum = skb_copy_and_csum_bits(
948 					skb_prev, maxfraglen,
949 					data + transhdrlen, fraggap, 0);
950 				skb_prev->csum = csum_sub(skb_prev->csum,
951 							  skb->csum);
952 				data += fraggap;
953 				pskb_trim_unique(skb_prev, maxfraglen);
954 			}
955 
956 			copy = datalen - transhdrlen - fraggap;
957 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
958 				err = -EFAULT;
959 				kfree_skb(skb);
960 				goto error;
961 			}
962 
963 			offset += copy;
964 			length -= datalen - fraggap;
965 			transhdrlen = 0;
966 			exthdrlen = 0;
967 			csummode = CHECKSUM_NONE;
968 
969 			/*
970 			 * Put the packet on the pending queue.
971 			 */
972 			__skb_queue_tail(queue, skb);
973 			continue;
974 		}
975 
976 		if (copy > length)
977 			copy = length;
978 
979 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
980 			unsigned int off;
981 
982 			off = skb->len;
983 			if (getfrag(from, skb_put(skb, copy),
984 					offset, copy, off, skb) < 0) {
985 				__skb_trim(skb, off);
986 				err = -EFAULT;
987 				goto error;
988 			}
989 		} else {
990 			int i = skb_shinfo(skb)->nr_frags;
991 
992 			err = -ENOMEM;
993 			if (!sk_page_frag_refill(sk, pfrag))
994 				goto error;
995 
996 			if (!skb_can_coalesce(skb, i, pfrag->page,
997 					      pfrag->offset)) {
998 				err = -EMSGSIZE;
999 				if (i == MAX_SKB_FRAGS)
1000 					goto error;
1001 
1002 				__skb_fill_page_desc(skb, i, pfrag->page,
1003 						     pfrag->offset, 0);
1004 				skb_shinfo(skb)->nr_frags = ++i;
1005 				get_page(pfrag->page);
1006 			}
1007 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1008 			if (getfrag(from,
1009 				    page_address(pfrag->page) + pfrag->offset,
1010 				    offset, copy, skb->len, skb) < 0)
1011 				goto error_efault;
1012 
1013 			pfrag->offset += copy;
1014 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1015 			skb->len += copy;
1016 			skb->data_len += copy;
1017 			skb->truesize += copy;
1018 			atomic_add(copy, &sk->sk_wmem_alloc);
1019 		}
1020 		offset += copy;
1021 		length -= copy;
1022 	}
1023 
1024 	return 0;
1025 
1026 error_efault:
1027 	err = -EFAULT;
1028 error:
1029 	cork->length -= length;
1030 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1031 	return err;
1032 }
1033 
1034 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1035 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1036 {
1037 	struct inet_sock *inet = inet_sk(sk);
1038 	struct ip_options_rcu *opt;
1039 	struct rtable *rt;
1040 
1041 	/*
1042 	 * setup for corking.
1043 	 */
1044 	opt = ipc->opt;
1045 	if (opt) {
1046 		if (cork->opt == NULL) {
1047 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1048 					    sk->sk_allocation);
1049 			if (unlikely(cork->opt == NULL))
1050 				return -ENOBUFS;
1051 		}
1052 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1053 		cork->flags |= IPCORK_OPT;
1054 		cork->addr = ipc->addr;
1055 	}
1056 	rt = *rtp;
1057 	if (unlikely(!rt))
1058 		return -EFAULT;
1059 	/*
1060 	 * We steal reference to this route, caller should not release it
1061 	 */
1062 	*rtp = NULL;
1063 	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1064 			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1065 	cork->dst = &rt->dst;
1066 	cork->length = 0;
1067 	cork->tx_flags = ipc->tx_flags;
1068 
1069 	return 0;
1070 }
1071 
1072 /*
1073  *	ip_append_data() and ip_append_page() can make one large IP datagram
1074  *	from many pieces of data. Each pieces will be holded on the socket
1075  *	until ip_push_pending_frames() is called. Each piece can be a page
1076  *	or non-page data.
1077  *
1078  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1079  *	this interface potentially.
1080  *
1081  *	LATER: length must be adjusted by pad at tail, when it is required.
1082  */
1083 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1084 		   int getfrag(void *from, char *to, int offset, int len,
1085 			       int odd, struct sk_buff *skb),
1086 		   void *from, int length, int transhdrlen,
1087 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1088 		   unsigned int flags)
1089 {
1090 	struct inet_sock *inet = inet_sk(sk);
1091 	int err;
1092 
1093 	if (flags&MSG_PROBE)
1094 		return 0;
1095 
1096 	if (skb_queue_empty(&sk->sk_write_queue)) {
1097 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1098 		if (err)
1099 			return err;
1100 	} else {
1101 		transhdrlen = 0;
1102 	}
1103 
1104 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1105 				sk_page_frag(sk), getfrag,
1106 				from, length, transhdrlen, flags);
1107 }
1108 
1109 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1110 		       int offset, size_t size, int flags)
1111 {
1112 	struct inet_sock *inet = inet_sk(sk);
1113 	struct sk_buff *skb;
1114 	struct rtable *rt;
1115 	struct ip_options *opt = NULL;
1116 	struct inet_cork *cork;
1117 	int hh_len;
1118 	int mtu;
1119 	int len;
1120 	int err;
1121 	unsigned int maxfraglen, fragheaderlen, fraggap;
1122 
1123 	if (inet->hdrincl)
1124 		return -EPERM;
1125 
1126 	if (flags&MSG_PROBE)
1127 		return 0;
1128 
1129 	if (skb_queue_empty(&sk->sk_write_queue))
1130 		return -EINVAL;
1131 
1132 	cork = &inet->cork.base;
1133 	rt = (struct rtable *)cork->dst;
1134 	if (cork->flags & IPCORK_OPT)
1135 		opt = cork->opt;
1136 
1137 	if (!(rt->dst.dev->features&NETIF_F_SG))
1138 		return -EOPNOTSUPP;
1139 
1140 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1141 	mtu = cork->fragsize;
1142 
1143 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1144 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1145 
1146 	if (cork->length + size > 0xFFFF - fragheaderlen) {
1147 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1148 		return -EMSGSIZE;
1149 	}
1150 
1151 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1152 		return -EINVAL;
1153 
1154 	cork->length += size;
1155 	if ((size + skb->len > mtu) &&
1156 	    (sk->sk_protocol == IPPROTO_UDP) &&
1157 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1158 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1159 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1160 	}
1161 
1162 
1163 	while (size > 0) {
1164 		int i;
1165 
1166 		if (skb_is_gso(skb))
1167 			len = size;
1168 		else {
1169 
1170 			/* Check if the remaining data fits into current packet. */
1171 			len = mtu - skb->len;
1172 			if (len < size)
1173 				len = maxfraglen - skb->len;
1174 		}
1175 		if (len <= 0) {
1176 			struct sk_buff *skb_prev;
1177 			int alloclen;
1178 
1179 			skb_prev = skb;
1180 			fraggap = skb_prev->len - maxfraglen;
1181 
1182 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1183 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1184 			if (unlikely(!skb)) {
1185 				err = -ENOBUFS;
1186 				goto error;
1187 			}
1188 
1189 			/*
1190 			 *	Fill in the control structures
1191 			 */
1192 			skb->ip_summed = CHECKSUM_NONE;
1193 			skb->csum = 0;
1194 			skb_reserve(skb, hh_len);
1195 
1196 			/*
1197 			 *	Find where to start putting bytes.
1198 			 */
1199 			skb_put(skb, fragheaderlen + fraggap);
1200 			skb_reset_network_header(skb);
1201 			skb->transport_header = (skb->network_header +
1202 						 fragheaderlen);
1203 			if (fraggap) {
1204 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1205 								   maxfraglen,
1206 						    skb_transport_header(skb),
1207 								   fraggap, 0);
1208 				skb_prev->csum = csum_sub(skb_prev->csum,
1209 							  skb->csum);
1210 				pskb_trim_unique(skb_prev, maxfraglen);
1211 			}
1212 
1213 			/*
1214 			 * Put the packet on the pending queue.
1215 			 */
1216 			__skb_queue_tail(&sk->sk_write_queue, skb);
1217 			continue;
1218 		}
1219 
1220 		i = skb_shinfo(skb)->nr_frags;
1221 		if (len > size)
1222 			len = size;
1223 		if (skb_can_coalesce(skb, i, page, offset)) {
1224 			skb_frag_size_add(&skb_shinfo(skb)->frags[i-1], len);
1225 		} else if (i < MAX_SKB_FRAGS) {
1226 			get_page(page);
1227 			skb_fill_page_desc(skb, i, page, offset, len);
1228 		} else {
1229 			err = -EMSGSIZE;
1230 			goto error;
1231 		}
1232 
1233 		if (skb->ip_summed == CHECKSUM_NONE) {
1234 			__wsum csum;
1235 			csum = csum_page(page, offset, len);
1236 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1237 		}
1238 
1239 		skb->len += len;
1240 		skb->data_len += len;
1241 		skb->truesize += len;
1242 		atomic_add(len, &sk->sk_wmem_alloc);
1243 		offset += len;
1244 		size -= len;
1245 	}
1246 	return 0;
1247 
1248 error:
1249 	cork->length -= size;
1250 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1251 	return err;
1252 }
1253 
1254 static void ip_cork_release(struct inet_cork *cork)
1255 {
1256 	cork->flags &= ~IPCORK_OPT;
1257 	kfree(cork->opt);
1258 	cork->opt = NULL;
1259 	dst_release(cork->dst);
1260 	cork->dst = NULL;
1261 }
1262 
1263 /*
1264  *	Combined all pending IP fragments on the socket as one IP datagram
1265  *	and push them out.
1266  */
1267 struct sk_buff *__ip_make_skb(struct sock *sk,
1268 			      struct flowi4 *fl4,
1269 			      struct sk_buff_head *queue,
1270 			      struct inet_cork *cork)
1271 {
1272 	struct sk_buff *skb, *tmp_skb;
1273 	struct sk_buff **tail_skb;
1274 	struct inet_sock *inet = inet_sk(sk);
1275 	struct net *net = sock_net(sk);
1276 	struct ip_options *opt = NULL;
1277 	struct rtable *rt = (struct rtable *)cork->dst;
1278 	struct iphdr *iph;
1279 	__be16 df = 0;
1280 	__u8 ttl;
1281 
1282 	if ((skb = __skb_dequeue(queue)) == NULL)
1283 		goto out;
1284 	tail_skb = &(skb_shinfo(skb)->frag_list);
1285 
1286 	/* move skb->data to ip header from ext header */
1287 	if (skb->data < skb_network_header(skb))
1288 		__skb_pull(skb, skb_network_offset(skb));
1289 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1290 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1291 		*tail_skb = tmp_skb;
1292 		tail_skb = &(tmp_skb->next);
1293 		skb->len += tmp_skb->len;
1294 		skb->data_len += tmp_skb->len;
1295 		skb->truesize += tmp_skb->truesize;
1296 		tmp_skb->destructor = NULL;
1297 		tmp_skb->sk = NULL;
1298 	}
1299 
1300 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1301 	 * to fragment the frame generated here. No matter, what transforms
1302 	 * how transforms change size of the packet, it will come out.
1303 	 */
1304 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1305 		skb->local_df = 1;
1306 
1307 	/* DF bit is set when we want to see DF on outgoing frames.
1308 	 * If local_df is set too, we still allow to fragment this frame
1309 	 * locally. */
1310 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1311 	    (skb->len <= dst_mtu(&rt->dst) &&
1312 	     ip_dont_fragment(sk, &rt->dst)))
1313 		df = htons(IP_DF);
1314 
1315 	if (cork->flags & IPCORK_OPT)
1316 		opt = cork->opt;
1317 
1318 	if (rt->rt_type == RTN_MULTICAST)
1319 		ttl = inet->mc_ttl;
1320 	else
1321 		ttl = ip_select_ttl(inet, &rt->dst);
1322 
1323 	iph = (struct iphdr *)skb->data;
1324 	iph->version = 4;
1325 	iph->ihl = 5;
1326 	iph->tos = inet->tos;
1327 	iph->frag_off = df;
1328 	iph->ttl = ttl;
1329 	iph->protocol = sk->sk_protocol;
1330 	ip_copy_addrs(iph, fl4);
1331 	ip_select_ident(iph, &rt->dst, sk);
1332 
1333 	if (opt) {
1334 		iph->ihl += opt->optlen>>2;
1335 		ip_options_build(skb, opt, cork->addr, rt, 0);
1336 	}
1337 
1338 	skb->priority = sk->sk_priority;
1339 	skb->mark = sk->sk_mark;
1340 	/*
1341 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1342 	 * on dst refcount
1343 	 */
1344 	cork->dst = NULL;
1345 	skb_dst_set(skb, &rt->dst);
1346 
1347 	if (iph->protocol == IPPROTO_ICMP)
1348 		icmp_out_count(net, ((struct icmphdr *)
1349 			skb_transport_header(skb))->type);
1350 
1351 	ip_cork_release(cork);
1352 out:
1353 	return skb;
1354 }
1355 
1356 int ip_send_skb(struct net *net, struct sk_buff *skb)
1357 {
1358 	int err;
1359 
1360 	err = ip_local_out(skb);
1361 	if (err) {
1362 		if (err > 0)
1363 			err = net_xmit_errno(err);
1364 		if (err)
1365 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1366 	}
1367 
1368 	return err;
1369 }
1370 
1371 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1372 {
1373 	struct sk_buff *skb;
1374 
1375 	skb = ip_finish_skb(sk, fl4);
1376 	if (!skb)
1377 		return 0;
1378 
1379 	/* Netfilter gets whole the not fragmented skb. */
1380 	return ip_send_skb(sock_net(sk), skb);
1381 }
1382 
1383 /*
1384  *	Throw away all pending data on the socket.
1385  */
1386 static void __ip_flush_pending_frames(struct sock *sk,
1387 				      struct sk_buff_head *queue,
1388 				      struct inet_cork *cork)
1389 {
1390 	struct sk_buff *skb;
1391 
1392 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1393 		kfree_skb(skb);
1394 
1395 	ip_cork_release(cork);
1396 }
1397 
1398 void ip_flush_pending_frames(struct sock *sk)
1399 {
1400 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1401 }
1402 
1403 struct sk_buff *ip_make_skb(struct sock *sk,
1404 			    struct flowi4 *fl4,
1405 			    int getfrag(void *from, char *to, int offset,
1406 					int len, int odd, struct sk_buff *skb),
1407 			    void *from, int length, int transhdrlen,
1408 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1409 			    unsigned int flags)
1410 {
1411 	struct inet_cork cork;
1412 	struct sk_buff_head queue;
1413 	int err;
1414 
1415 	if (flags & MSG_PROBE)
1416 		return NULL;
1417 
1418 	__skb_queue_head_init(&queue);
1419 
1420 	cork.flags = 0;
1421 	cork.addr = 0;
1422 	cork.opt = NULL;
1423 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1424 	if (err)
1425 		return ERR_PTR(err);
1426 
1427 	err = __ip_append_data(sk, fl4, &queue, &cork,
1428 			       &current->task_frag, getfrag,
1429 			       from, length, transhdrlen, flags);
1430 	if (err) {
1431 		__ip_flush_pending_frames(sk, &queue, &cork);
1432 		return ERR_PTR(err);
1433 	}
1434 
1435 	return __ip_make_skb(sk, fl4, &queue, &cork);
1436 }
1437 
1438 /*
1439  *	Fetch data from kernel space and fill in checksum if needed.
1440  */
1441 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1442 			      int len, int odd, struct sk_buff *skb)
1443 {
1444 	__wsum csum;
1445 
1446 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1447 	skb->csum = csum_block_add(skb->csum, csum, odd);
1448 	return 0;
1449 }
1450 
1451 /*
1452  *	Generic function to send a packet as reply to another packet.
1453  *	Used to send some TCP resets/acks so far.
1454  *
1455  *	Use a fake percpu inet socket to avoid false sharing and contention.
1456  */
1457 static DEFINE_PER_CPU(struct inet_sock, unicast_sock) = {
1458 	.sk = {
1459 		.__sk_common = {
1460 			.skc_refcnt = ATOMIC_INIT(1),
1461 		},
1462 		.sk_wmem_alloc	= ATOMIC_INIT(1),
1463 		.sk_allocation	= GFP_ATOMIC,
1464 		.sk_flags	= (1UL << SOCK_USE_WRITE_QUEUE),
1465 	},
1466 	.pmtudisc	= IP_PMTUDISC_WANT,
1467 	.uc_ttl		= -1,
1468 };
1469 
1470 void ip_send_unicast_reply(struct net *net, struct sk_buff *skb, __be32 daddr,
1471 			   __be32 saddr, const struct ip_reply_arg *arg,
1472 			   unsigned int len)
1473 {
1474 	struct ip_options_data replyopts;
1475 	struct ipcm_cookie ipc;
1476 	struct flowi4 fl4;
1477 	struct rtable *rt = skb_rtable(skb);
1478 	struct sk_buff *nskb;
1479 	struct sock *sk;
1480 	struct inet_sock *inet;
1481 
1482 	if (ip_options_echo(&replyopts.opt.opt, skb))
1483 		return;
1484 
1485 	ipc.addr = daddr;
1486 	ipc.opt = NULL;
1487 	ipc.tx_flags = 0;
1488 
1489 	if (replyopts.opt.opt.optlen) {
1490 		ipc.opt = &replyopts.opt;
1491 
1492 		if (replyopts.opt.opt.srr)
1493 			daddr = replyopts.opt.opt.faddr;
1494 	}
1495 
1496 	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1497 			   RT_TOS(arg->tos),
1498 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1499 			   ip_reply_arg_flowi_flags(arg),
1500 			   daddr, saddr,
1501 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1502 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1503 	rt = ip_route_output_key(net, &fl4);
1504 	if (IS_ERR(rt))
1505 		return;
1506 
1507 	inet = &get_cpu_var(unicast_sock);
1508 
1509 	inet->tos = arg->tos;
1510 	sk = &inet->sk;
1511 	sk->sk_priority = skb->priority;
1512 	sk->sk_protocol = ip_hdr(skb)->protocol;
1513 	sk->sk_bound_dev_if = arg->bound_dev_if;
1514 	sock_net_set(sk, net);
1515 	__skb_queue_head_init(&sk->sk_write_queue);
1516 	sk->sk_sndbuf = sysctl_wmem_default;
1517 	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1518 		       &ipc, &rt, MSG_DONTWAIT);
1519 	nskb = skb_peek(&sk->sk_write_queue);
1520 	if (nskb) {
1521 		if (arg->csumoffset >= 0)
1522 			*((__sum16 *)skb_transport_header(nskb) +
1523 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1524 								arg->csum));
1525 		nskb->ip_summed = CHECKSUM_NONE;
1526 		skb_orphan(nskb);
1527 		skb_set_queue_mapping(nskb, skb_get_queue_mapping(skb));
1528 		ip_push_pending_frames(sk, &fl4);
1529 	}
1530 
1531 	put_cpu_var(unicast_sock);
1532 
1533 	ip_rt_put(rt);
1534 }
1535 
1536 void __init ip_init(void)
1537 {
1538 	ip_rt_init();
1539 	inet_initpeers();
1540 
1541 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1542 	igmp_mc_proc_init();
1543 #endif
1544 }
1545