xref: /openbmc/linux/net/ipv4/ip_output.c (revision 036b9e7c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	skb->protocol = htons(ETH_P_IP);
112 
113 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 		       net, sk, skb, NULL, skb_dst(skb)->dev,
115 		       dst_output);
116 }
117 
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 	int err;
121 
122 	err = __ip_local_out(net, sk, skb);
123 	if (likely(err == 1))
124 		err = dst_output(net, sk, skb);
125 
126 	return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129 
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 	int ttl = inet->uc_ttl;
133 
134 	if (ttl < 0)
135 		ttl = ip4_dst_hoplimit(dst);
136 	return ttl;
137 }
138 
139 /*
140  *		Add an ip header to a skbuff and send it out.
141  *
142  */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct rtable *rt = skb_rtable(skb);
148 	struct net *net = sock_net(sk);
149 	struct iphdr *iph;
150 
151 	/* Build the IP header. */
152 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 	skb_reset_network_header(skb);
154 	iph = ip_hdr(skb);
155 	iph->version  = 4;
156 	iph->ihl      = 5;
157 	iph->tos      = inet->tos;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	if (ip_dont_fragment(sk, &rt->dst)) {
163 		iph->frag_off = htons(IP_DF);
164 		iph->id = 0;
165 	} else {
166 		iph->frag_off = 0;
167 		__ip_select_ident(net, iph, 1);
168 	}
169 
170 	if (opt && opt->opt.optlen) {
171 		iph->ihl += opt->opt.optlen>>2;
172 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 	}
174 
175 	skb->priority = sk->sk_priority;
176 	if (!skb->mark)
177 		skb->mark = sk->sk_mark;
178 
179 	/* Send it out. */
180 	return ip_local_out(net, skb->sk, skb);
181 }
182 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
183 
184 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
185 {
186 	struct dst_entry *dst = skb_dst(skb);
187 	struct rtable *rt = (struct rtable *)dst;
188 	struct net_device *dev = dst->dev;
189 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
190 	struct neighbour *neigh;
191 	u32 nexthop;
192 
193 	if (rt->rt_type == RTN_MULTICAST) {
194 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
195 	} else if (rt->rt_type == RTN_BROADCAST)
196 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
197 
198 	/* Be paranoid, rather than too clever. */
199 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
200 		struct sk_buff *skb2;
201 
202 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
203 		if (!skb2) {
204 			kfree_skb(skb);
205 			return -ENOMEM;
206 		}
207 		if (skb->sk)
208 			skb_set_owner_w(skb2, skb->sk);
209 		consume_skb(skb);
210 		skb = skb2;
211 	}
212 
213 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
214 		int res = lwtunnel_xmit(skb);
215 
216 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
217 			return res;
218 	}
219 
220 	rcu_read_lock_bh();
221 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
222 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
223 	if (unlikely(!neigh))
224 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
225 	if (!IS_ERR(neigh)) {
226 		int res;
227 
228 		sock_confirm_neigh(skb, neigh);
229 		res = neigh_output(neigh, skb);
230 
231 		rcu_read_unlock_bh();
232 		return res;
233 	}
234 	rcu_read_unlock_bh();
235 
236 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
237 			    __func__);
238 	kfree_skb(skb);
239 	return -EINVAL;
240 }
241 
242 static int ip_finish_output_gso(struct net *net, struct sock *sk,
243 				struct sk_buff *skb, unsigned int mtu)
244 {
245 	netdev_features_t features;
246 	struct sk_buff *segs;
247 	int ret = 0;
248 
249 	/* common case: seglen is <= mtu
250 	 */
251 	if (skb_gso_validate_network_len(skb, mtu))
252 		return ip_finish_output2(net, sk, skb);
253 
254 	/* Slowpath -  GSO segment length exceeds the egress MTU.
255 	 *
256 	 * This can happen in several cases:
257 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
258 	 *  - Forwarding of an skb that arrived on a virtualization interface
259 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 	 *    stack.
261 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
262 	 *    interface with a smaller MTU.
263 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
264 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 	 *    insufficent MTU.
266 	 */
267 	features = netif_skb_features(skb);
268 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
269 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
270 	if (IS_ERR_OR_NULL(segs)) {
271 		kfree_skb(skb);
272 		return -ENOMEM;
273 	}
274 
275 	consume_skb(skb);
276 
277 	do {
278 		struct sk_buff *nskb = segs->next;
279 		int err;
280 
281 		skb_mark_not_on_list(segs);
282 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
283 
284 		if (err && ret == 0)
285 			ret = err;
286 		segs = nskb;
287 	} while (segs);
288 
289 	return ret;
290 }
291 
292 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 {
294 	unsigned int mtu;
295 	int ret;
296 
297 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
298 	if (ret) {
299 		kfree_skb(skb);
300 		return ret;
301 	}
302 
303 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
304 	/* Policy lookup after SNAT yielded a new policy */
305 	if (skb_dst(skb)->xfrm) {
306 		IPCB(skb)->flags |= IPSKB_REROUTED;
307 		return dst_output(net, sk, skb);
308 	}
309 #endif
310 	mtu = ip_skb_dst_mtu(sk, skb);
311 	if (skb_is_gso(skb))
312 		return ip_finish_output_gso(net, sk, skb, mtu);
313 
314 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
315 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
316 
317 	return ip_finish_output2(net, sk, skb);
318 }
319 
320 static int ip_mc_finish_output(struct net *net, struct sock *sk,
321 			       struct sk_buff *skb)
322 {
323 	int ret;
324 
325 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
326 	if (ret) {
327 		kfree_skb(skb);
328 		return ret;
329 	}
330 
331 	return dev_loopback_xmit(net, sk, skb);
332 }
333 
334 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
335 {
336 	struct rtable *rt = skb_rtable(skb);
337 	struct net_device *dev = rt->dst.dev;
338 
339 	/*
340 	 *	If the indicated interface is up and running, send the packet.
341 	 */
342 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
343 
344 	skb->dev = dev;
345 	skb->protocol = htons(ETH_P_IP);
346 
347 	/*
348 	 *	Multicasts are looped back for other local users
349 	 */
350 
351 	if (rt->rt_flags&RTCF_MULTICAST) {
352 		if (sk_mc_loop(sk)
353 #ifdef CONFIG_IP_MROUTE
354 		/* Small optimization: do not loopback not local frames,
355 		   which returned after forwarding; they will be  dropped
356 		   by ip_mr_input in any case.
357 		   Note, that local frames are looped back to be delivered
358 		   to local recipients.
359 
360 		   This check is duplicated in ip_mr_input at the moment.
361 		 */
362 		    &&
363 		    ((rt->rt_flags & RTCF_LOCAL) ||
364 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
365 #endif
366 		   ) {
367 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
368 			if (newskb)
369 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
370 					net, sk, newskb, NULL, newskb->dev,
371 					ip_mc_finish_output);
372 		}
373 
374 		/* Multicasts with ttl 0 must not go beyond the host */
375 
376 		if (ip_hdr(skb)->ttl == 0) {
377 			kfree_skb(skb);
378 			return 0;
379 		}
380 	}
381 
382 	if (rt->rt_flags&RTCF_BROADCAST) {
383 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
384 		if (newskb)
385 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
386 				net, sk, newskb, NULL, newskb->dev,
387 				ip_mc_finish_output);
388 	}
389 
390 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
391 			    net, sk, skb, NULL, skb->dev,
392 			    ip_finish_output,
393 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
394 }
395 
396 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
397 {
398 	struct net_device *dev = skb_dst(skb)->dev;
399 
400 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
401 
402 	skb->dev = dev;
403 	skb->protocol = htons(ETH_P_IP);
404 
405 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
406 			    net, sk, skb, NULL, dev,
407 			    ip_finish_output,
408 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
409 }
410 
411 /*
412  * copy saddr and daddr, possibly using 64bit load/stores
413  * Equivalent to :
414  *   iph->saddr = fl4->saddr;
415  *   iph->daddr = fl4->daddr;
416  */
417 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
418 {
419 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
420 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
421 	memcpy(&iph->saddr, &fl4->saddr,
422 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
423 }
424 
425 /* Note: skb->sk can be different from sk, in case of tunnels */
426 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
427 		    __u8 tos)
428 {
429 	struct inet_sock *inet = inet_sk(sk);
430 	struct net *net = sock_net(sk);
431 	struct ip_options_rcu *inet_opt;
432 	struct flowi4 *fl4;
433 	struct rtable *rt;
434 	struct iphdr *iph;
435 	int res;
436 
437 	/* Skip all of this if the packet is already routed,
438 	 * f.e. by something like SCTP.
439 	 */
440 	rcu_read_lock();
441 	inet_opt = rcu_dereference(inet->inet_opt);
442 	fl4 = &fl->u.ip4;
443 	rt = skb_rtable(skb);
444 	if (rt)
445 		goto packet_routed;
446 
447 	/* Make sure we can route this packet. */
448 	rt = (struct rtable *)__sk_dst_check(sk, 0);
449 	if (!rt) {
450 		__be32 daddr;
451 
452 		/* Use correct destination address if we have options. */
453 		daddr = inet->inet_daddr;
454 		if (inet_opt && inet_opt->opt.srr)
455 			daddr = inet_opt->opt.faddr;
456 
457 		/* If this fails, retransmit mechanism of transport layer will
458 		 * keep trying until route appears or the connection times
459 		 * itself out.
460 		 */
461 		rt = ip_route_output_ports(net, fl4, sk,
462 					   daddr, inet->inet_saddr,
463 					   inet->inet_dport,
464 					   inet->inet_sport,
465 					   sk->sk_protocol,
466 					   RT_CONN_FLAGS_TOS(sk, tos),
467 					   sk->sk_bound_dev_if);
468 		if (IS_ERR(rt))
469 			goto no_route;
470 		sk_setup_caps(sk, &rt->dst);
471 	}
472 	skb_dst_set_noref(skb, &rt->dst);
473 
474 packet_routed:
475 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
476 		goto no_route;
477 
478 	/* OK, we know where to send it, allocate and build IP header. */
479 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
480 	skb_reset_network_header(skb);
481 	iph = ip_hdr(skb);
482 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
483 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
484 		iph->frag_off = htons(IP_DF);
485 	else
486 		iph->frag_off = 0;
487 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
488 	iph->protocol = sk->sk_protocol;
489 	ip_copy_addrs(iph, fl4);
490 
491 	/* Transport layer set skb->h.foo itself. */
492 
493 	if (inet_opt && inet_opt->opt.optlen) {
494 		iph->ihl += inet_opt->opt.optlen >> 2;
495 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
496 	}
497 
498 	ip_select_ident_segs(net, skb, sk,
499 			     skb_shinfo(skb)->gso_segs ?: 1);
500 
501 	/* TODO : should we use skb->sk here instead of sk ? */
502 	skb->priority = sk->sk_priority;
503 	skb->mark = sk->sk_mark;
504 
505 	res = ip_local_out(net, sk, skb);
506 	rcu_read_unlock();
507 	return res;
508 
509 no_route:
510 	rcu_read_unlock();
511 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
512 	kfree_skb(skb);
513 	return -EHOSTUNREACH;
514 }
515 EXPORT_SYMBOL(__ip_queue_xmit);
516 
517 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
518 {
519 	to->pkt_type = from->pkt_type;
520 	to->priority = from->priority;
521 	to->protocol = from->protocol;
522 	skb_dst_drop(to);
523 	skb_dst_copy(to, from);
524 	to->dev = from->dev;
525 	to->mark = from->mark;
526 
527 	skb_copy_hash(to, from);
528 
529 	/* Copy the flags to each fragment. */
530 	IPCB(to)->flags = IPCB(from)->flags;
531 
532 #ifdef CONFIG_NET_SCHED
533 	to->tc_index = from->tc_index;
534 #endif
535 	nf_copy(to, from);
536 #if IS_ENABLED(CONFIG_IP_VS)
537 	to->ipvs_property = from->ipvs_property;
538 #endif
539 	skb_copy_secmark(to, from);
540 }
541 
542 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
543 		       unsigned int mtu,
544 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
545 {
546 	struct iphdr *iph = ip_hdr(skb);
547 
548 	if ((iph->frag_off & htons(IP_DF)) == 0)
549 		return ip_do_fragment(net, sk, skb, output);
550 
551 	if (unlikely(!skb->ignore_df ||
552 		     (IPCB(skb)->frag_max_size &&
553 		      IPCB(skb)->frag_max_size > mtu))) {
554 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
555 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
556 			  htonl(mtu));
557 		kfree_skb(skb);
558 		return -EMSGSIZE;
559 	}
560 
561 	return ip_do_fragment(net, sk, skb, output);
562 }
563 
564 /*
565  *	This IP datagram is too large to be sent in one piece.  Break it up into
566  *	smaller pieces (each of size equal to IP header plus
567  *	a block of the data of the original IP data part) that will yet fit in a
568  *	single device frame, and queue such a frame for sending.
569  */
570 
571 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
572 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
573 {
574 	struct iphdr *iph;
575 	int ptr;
576 	struct sk_buff *skb2;
577 	unsigned int mtu, hlen, left, len, ll_rs;
578 	int offset;
579 	__be16 not_last_frag;
580 	struct rtable *rt = skb_rtable(skb);
581 	int err = 0;
582 
583 	/* for offloaded checksums cleanup checksum before fragmentation */
584 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
585 	    (err = skb_checksum_help(skb)))
586 		goto fail;
587 
588 	/*
589 	 *	Point into the IP datagram header.
590 	 */
591 
592 	iph = ip_hdr(skb);
593 
594 	mtu = ip_skb_dst_mtu(sk, skb);
595 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
596 		mtu = IPCB(skb)->frag_max_size;
597 
598 	/*
599 	 *	Setup starting values.
600 	 */
601 
602 	hlen = iph->ihl * 4;
603 	mtu = mtu - hlen;	/* Size of data space */
604 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
605 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
606 
607 	/* When frag_list is given, use it. First, check its validity:
608 	 * some transformers could create wrong frag_list or break existing
609 	 * one, it is not prohibited. In this case fall back to copying.
610 	 *
611 	 * LATER: this step can be merged to real generation of fragments,
612 	 * we can switch to copy when see the first bad fragment.
613 	 */
614 	if (skb_has_frag_list(skb)) {
615 		struct sk_buff *frag, *frag2;
616 		unsigned int first_len = skb_pagelen(skb);
617 
618 		if (first_len - hlen > mtu ||
619 		    ((first_len - hlen) & 7) ||
620 		    ip_is_fragment(iph) ||
621 		    skb_cloned(skb) ||
622 		    skb_headroom(skb) < ll_rs)
623 			goto slow_path;
624 
625 		skb_walk_frags(skb, frag) {
626 			/* Correct geometry. */
627 			if (frag->len > mtu ||
628 			    ((frag->len & 7) && frag->next) ||
629 			    skb_headroom(frag) < hlen + ll_rs)
630 				goto slow_path_clean;
631 
632 			/* Partially cloned skb? */
633 			if (skb_shared(frag))
634 				goto slow_path_clean;
635 
636 			BUG_ON(frag->sk);
637 			if (skb->sk) {
638 				frag->sk = skb->sk;
639 				frag->destructor = sock_wfree;
640 			}
641 			skb->truesize -= frag->truesize;
642 		}
643 
644 		/* Everything is OK. Generate! */
645 
646 		err = 0;
647 		offset = 0;
648 		frag = skb_shinfo(skb)->frag_list;
649 		skb_frag_list_init(skb);
650 		skb->data_len = first_len - skb_headlen(skb);
651 		skb->len = first_len;
652 		iph->tot_len = htons(first_len);
653 		iph->frag_off = htons(IP_MF);
654 		ip_send_check(iph);
655 
656 		for (;;) {
657 			/* Prepare header of the next frame,
658 			 * before previous one went down. */
659 			if (frag) {
660 				frag->ip_summed = CHECKSUM_NONE;
661 				skb_reset_transport_header(frag);
662 				__skb_push(frag, hlen);
663 				skb_reset_network_header(frag);
664 				memcpy(skb_network_header(frag), iph, hlen);
665 				iph = ip_hdr(frag);
666 				iph->tot_len = htons(frag->len);
667 				ip_copy_metadata(frag, skb);
668 				if (offset == 0)
669 					ip_options_fragment(frag);
670 				offset += skb->len - hlen;
671 				iph->frag_off = htons(offset>>3);
672 				if (frag->next)
673 					iph->frag_off |= htons(IP_MF);
674 				/* Ready, complete checksum */
675 				ip_send_check(iph);
676 			}
677 
678 			err = output(net, sk, skb);
679 
680 			if (!err)
681 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
682 			if (err || !frag)
683 				break;
684 
685 			skb = frag;
686 			frag = skb->next;
687 			skb_mark_not_on_list(skb);
688 		}
689 
690 		if (err == 0) {
691 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
692 			return 0;
693 		}
694 
695 		while (frag) {
696 			skb = frag->next;
697 			kfree_skb(frag);
698 			frag = skb;
699 		}
700 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
701 		return err;
702 
703 slow_path_clean:
704 		skb_walk_frags(skb, frag2) {
705 			if (frag2 == frag)
706 				break;
707 			frag2->sk = NULL;
708 			frag2->destructor = NULL;
709 			skb->truesize += frag2->truesize;
710 		}
711 	}
712 
713 slow_path:
714 	iph = ip_hdr(skb);
715 
716 	left = skb->len - hlen;		/* Space per frame */
717 	ptr = hlen;		/* Where to start from */
718 
719 	/*
720 	 *	Fragment the datagram.
721 	 */
722 
723 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
724 	not_last_frag = iph->frag_off & htons(IP_MF);
725 
726 	/*
727 	 *	Keep copying data until we run out.
728 	 */
729 
730 	while (left > 0) {
731 		len = left;
732 		/* IF: it doesn't fit, use 'mtu' - the data space left */
733 		if (len > mtu)
734 			len = mtu;
735 		/* IF: we are not sending up to and including the packet end
736 		   then align the next start on an eight byte boundary */
737 		if (len < left)	{
738 			len &= ~7;
739 		}
740 
741 		/* Allocate buffer */
742 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
743 		if (!skb2) {
744 			err = -ENOMEM;
745 			goto fail;
746 		}
747 
748 		/*
749 		 *	Set up data on packet
750 		 */
751 
752 		ip_copy_metadata(skb2, skb);
753 		skb_reserve(skb2, ll_rs);
754 		skb_put(skb2, len + hlen);
755 		skb_reset_network_header(skb2);
756 		skb2->transport_header = skb2->network_header + hlen;
757 
758 		/*
759 		 *	Charge the memory for the fragment to any owner
760 		 *	it might possess
761 		 */
762 
763 		if (skb->sk)
764 			skb_set_owner_w(skb2, skb->sk);
765 
766 		/*
767 		 *	Copy the packet header into the new buffer.
768 		 */
769 
770 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
771 
772 		/*
773 		 *	Copy a block of the IP datagram.
774 		 */
775 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
776 			BUG();
777 		left -= len;
778 
779 		/*
780 		 *	Fill in the new header fields.
781 		 */
782 		iph = ip_hdr(skb2);
783 		iph->frag_off = htons((offset >> 3));
784 
785 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
786 			iph->frag_off |= htons(IP_DF);
787 
788 		/* ANK: dirty, but effective trick. Upgrade options only if
789 		 * the segment to be fragmented was THE FIRST (otherwise,
790 		 * options are already fixed) and make it ONCE
791 		 * on the initial skb, so that all the following fragments
792 		 * will inherit fixed options.
793 		 */
794 		if (offset == 0)
795 			ip_options_fragment(skb);
796 
797 		/*
798 		 *	Added AC : If we are fragmenting a fragment that's not the
799 		 *		   last fragment then keep MF on each bit
800 		 */
801 		if (left > 0 || not_last_frag)
802 			iph->frag_off |= htons(IP_MF);
803 		ptr += len;
804 		offset += len;
805 
806 		/*
807 		 *	Put this fragment into the sending queue.
808 		 */
809 		iph->tot_len = htons(len + hlen);
810 
811 		ip_send_check(iph);
812 
813 		err = output(net, sk, skb2);
814 		if (err)
815 			goto fail;
816 
817 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
818 	}
819 	consume_skb(skb);
820 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
821 	return err;
822 
823 fail:
824 	kfree_skb(skb);
825 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
826 	return err;
827 }
828 EXPORT_SYMBOL(ip_do_fragment);
829 
830 int
831 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
832 {
833 	struct msghdr *msg = from;
834 
835 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
836 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
837 			return -EFAULT;
838 	} else {
839 		__wsum csum = 0;
840 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
841 			return -EFAULT;
842 		skb->csum = csum_block_add(skb->csum, csum, odd);
843 	}
844 	return 0;
845 }
846 EXPORT_SYMBOL(ip_generic_getfrag);
847 
848 static inline __wsum
849 csum_page(struct page *page, int offset, int copy)
850 {
851 	char *kaddr;
852 	__wsum csum;
853 	kaddr = kmap(page);
854 	csum = csum_partial(kaddr + offset, copy, 0);
855 	kunmap(page);
856 	return csum;
857 }
858 
859 static int __ip_append_data(struct sock *sk,
860 			    struct flowi4 *fl4,
861 			    struct sk_buff_head *queue,
862 			    struct inet_cork *cork,
863 			    struct page_frag *pfrag,
864 			    int getfrag(void *from, char *to, int offset,
865 					int len, int odd, struct sk_buff *skb),
866 			    void *from, int length, int transhdrlen,
867 			    unsigned int flags)
868 {
869 	struct inet_sock *inet = inet_sk(sk);
870 	struct ubuf_info *uarg = NULL;
871 	struct sk_buff *skb;
872 
873 	struct ip_options *opt = cork->opt;
874 	int hh_len;
875 	int exthdrlen;
876 	int mtu;
877 	int copy;
878 	int err;
879 	int offset = 0;
880 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
881 	int csummode = CHECKSUM_NONE;
882 	struct rtable *rt = (struct rtable *)cork->dst;
883 	unsigned int wmem_alloc_delta = 0;
884 	bool paged, extra_uref;
885 	u32 tskey = 0;
886 
887 	skb = skb_peek_tail(queue);
888 
889 	exthdrlen = !skb ? rt->dst.header_len : 0;
890 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
891 	paged = !!cork->gso_size;
892 
893 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
894 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
895 		tskey = sk->sk_tskey++;
896 
897 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
898 
899 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
900 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
901 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
902 
903 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
904 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
905 			       mtu - (opt ? opt->optlen : 0));
906 		return -EMSGSIZE;
907 	}
908 
909 	/*
910 	 * transhdrlen > 0 means that this is the first fragment and we wish
911 	 * it won't be fragmented in the future.
912 	 */
913 	if (transhdrlen &&
914 	    length + fragheaderlen <= mtu &&
915 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
916 	    (!(flags & MSG_MORE) || cork->gso_size) &&
917 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
918 		csummode = CHECKSUM_PARTIAL;
919 
920 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
921 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
922 		if (!uarg)
923 			return -ENOBUFS;
924 		extra_uref = true;
925 		if (rt->dst.dev->features & NETIF_F_SG &&
926 		    csummode == CHECKSUM_PARTIAL) {
927 			paged = true;
928 		} else {
929 			uarg->zerocopy = 0;
930 			skb_zcopy_set(skb, uarg, &extra_uref);
931 		}
932 	}
933 
934 	cork->length += length;
935 
936 	/* So, what's going on in the loop below?
937 	 *
938 	 * We use calculated fragment length to generate chained skb,
939 	 * each of segments is IP fragment ready for sending to network after
940 	 * adding appropriate IP header.
941 	 */
942 
943 	if (!skb)
944 		goto alloc_new_skb;
945 
946 	while (length > 0) {
947 		/* Check if the remaining data fits into current packet. */
948 		copy = mtu - skb->len;
949 		if (copy < length)
950 			copy = maxfraglen - skb->len;
951 		if (copy <= 0) {
952 			char *data;
953 			unsigned int datalen;
954 			unsigned int fraglen;
955 			unsigned int fraggap;
956 			unsigned int alloclen;
957 			unsigned int pagedlen;
958 			struct sk_buff *skb_prev;
959 alloc_new_skb:
960 			skb_prev = skb;
961 			if (skb_prev)
962 				fraggap = skb_prev->len - maxfraglen;
963 			else
964 				fraggap = 0;
965 
966 			/*
967 			 * If remaining data exceeds the mtu,
968 			 * we know we need more fragment(s).
969 			 */
970 			datalen = length + fraggap;
971 			if (datalen > mtu - fragheaderlen)
972 				datalen = maxfraglen - fragheaderlen;
973 			fraglen = datalen + fragheaderlen;
974 			pagedlen = 0;
975 
976 			if ((flags & MSG_MORE) &&
977 			    !(rt->dst.dev->features&NETIF_F_SG))
978 				alloclen = mtu;
979 			else if (!paged)
980 				alloclen = fraglen;
981 			else {
982 				alloclen = min_t(int, fraglen, MAX_HEADER);
983 				pagedlen = fraglen - alloclen;
984 			}
985 
986 			alloclen += exthdrlen;
987 
988 			/* The last fragment gets additional space at tail.
989 			 * Note, with MSG_MORE we overallocate on fragments,
990 			 * because we have no idea what fragment will be
991 			 * the last.
992 			 */
993 			if (datalen == length + fraggap)
994 				alloclen += rt->dst.trailer_len;
995 
996 			if (transhdrlen) {
997 				skb = sock_alloc_send_skb(sk,
998 						alloclen + hh_len + 15,
999 						(flags & MSG_DONTWAIT), &err);
1000 			} else {
1001 				skb = NULL;
1002 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1003 				    2 * sk->sk_sndbuf)
1004 					skb = alloc_skb(alloclen + hh_len + 15,
1005 							sk->sk_allocation);
1006 				if (unlikely(!skb))
1007 					err = -ENOBUFS;
1008 			}
1009 			if (!skb)
1010 				goto error;
1011 
1012 			/*
1013 			 *	Fill in the control structures
1014 			 */
1015 			skb->ip_summed = csummode;
1016 			skb->csum = 0;
1017 			skb_reserve(skb, hh_len);
1018 
1019 			/*
1020 			 *	Find where to start putting bytes.
1021 			 */
1022 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1023 			skb_set_network_header(skb, exthdrlen);
1024 			skb->transport_header = (skb->network_header +
1025 						 fragheaderlen);
1026 			data += fragheaderlen + exthdrlen;
1027 
1028 			if (fraggap) {
1029 				skb->csum = skb_copy_and_csum_bits(
1030 					skb_prev, maxfraglen,
1031 					data + transhdrlen, fraggap, 0);
1032 				skb_prev->csum = csum_sub(skb_prev->csum,
1033 							  skb->csum);
1034 				data += fraggap;
1035 				pskb_trim_unique(skb_prev, maxfraglen);
1036 			}
1037 
1038 			copy = datalen - transhdrlen - fraggap - pagedlen;
1039 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1040 				err = -EFAULT;
1041 				kfree_skb(skb);
1042 				goto error;
1043 			}
1044 
1045 			offset += copy;
1046 			length -= copy + transhdrlen;
1047 			transhdrlen = 0;
1048 			exthdrlen = 0;
1049 			csummode = CHECKSUM_NONE;
1050 
1051 			/* only the initial fragment is time stamped */
1052 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1053 			cork->tx_flags = 0;
1054 			skb_shinfo(skb)->tskey = tskey;
1055 			tskey = 0;
1056 			skb_zcopy_set(skb, uarg, &extra_uref);
1057 
1058 			if ((flags & MSG_CONFIRM) && !skb_prev)
1059 				skb_set_dst_pending_confirm(skb, 1);
1060 
1061 			/*
1062 			 * Put the packet on the pending queue.
1063 			 */
1064 			if (!skb->destructor) {
1065 				skb->destructor = sock_wfree;
1066 				skb->sk = sk;
1067 				wmem_alloc_delta += skb->truesize;
1068 			}
1069 			__skb_queue_tail(queue, skb);
1070 			continue;
1071 		}
1072 
1073 		if (copy > length)
1074 			copy = length;
1075 
1076 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1077 		    skb_tailroom(skb) >= copy) {
1078 			unsigned int off;
1079 
1080 			off = skb->len;
1081 			if (getfrag(from, skb_put(skb, copy),
1082 					offset, copy, off, skb) < 0) {
1083 				__skb_trim(skb, off);
1084 				err = -EFAULT;
1085 				goto error;
1086 			}
1087 		} else if (!uarg || !uarg->zerocopy) {
1088 			int i = skb_shinfo(skb)->nr_frags;
1089 
1090 			err = -ENOMEM;
1091 			if (!sk_page_frag_refill(sk, pfrag))
1092 				goto error;
1093 
1094 			if (!skb_can_coalesce(skb, i, pfrag->page,
1095 					      pfrag->offset)) {
1096 				err = -EMSGSIZE;
1097 				if (i == MAX_SKB_FRAGS)
1098 					goto error;
1099 
1100 				__skb_fill_page_desc(skb, i, pfrag->page,
1101 						     pfrag->offset, 0);
1102 				skb_shinfo(skb)->nr_frags = ++i;
1103 				get_page(pfrag->page);
1104 			}
1105 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1106 			if (getfrag(from,
1107 				    page_address(pfrag->page) + pfrag->offset,
1108 				    offset, copy, skb->len, skb) < 0)
1109 				goto error_efault;
1110 
1111 			pfrag->offset += copy;
1112 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1113 			skb->len += copy;
1114 			skb->data_len += copy;
1115 			skb->truesize += copy;
1116 			wmem_alloc_delta += copy;
1117 		} else {
1118 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1119 			if (err < 0)
1120 				goto error;
1121 		}
1122 		offset += copy;
1123 		length -= copy;
1124 	}
1125 
1126 	if (wmem_alloc_delta)
1127 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1128 	return 0;
1129 
1130 error_efault:
1131 	err = -EFAULT;
1132 error:
1133 	if (uarg)
1134 		sock_zerocopy_put_abort(uarg, extra_uref);
1135 	cork->length -= length;
1136 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1137 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1138 	return err;
1139 }
1140 
1141 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1142 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1143 {
1144 	struct ip_options_rcu *opt;
1145 	struct rtable *rt;
1146 
1147 	rt = *rtp;
1148 	if (unlikely(!rt))
1149 		return -EFAULT;
1150 
1151 	/*
1152 	 * setup for corking.
1153 	 */
1154 	opt = ipc->opt;
1155 	if (opt) {
1156 		if (!cork->opt) {
1157 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1158 					    sk->sk_allocation);
1159 			if (unlikely(!cork->opt))
1160 				return -ENOBUFS;
1161 		}
1162 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1163 		cork->flags |= IPCORK_OPT;
1164 		cork->addr = ipc->addr;
1165 	}
1166 
1167 	/*
1168 	 * We steal reference to this route, caller should not release it
1169 	 */
1170 	*rtp = NULL;
1171 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1172 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1173 
1174 	cork->gso_size = ipc->gso_size;
1175 	cork->dst = &rt->dst;
1176 	cork->length = 0;
1177 	cork->ttl = ipc->ttl;
1178 	cork->tos = ipc->tos;
1179 	cork->priority = ipc->priority;
1180 	cork->transmit_time = ipc->sockc.transmit_time;
1181 	cork->tx_flags = 0;
1182 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  *	ip_append_data() and ip_append_page() can make one large IP datagram
1189  *	from many pieces of data. Each pieces will be holded on the socket
1190  *	until ip_push_pending_frames() is called. Each piece can be a page
1191  *	or non-page data.
1192  *
1193  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1194  *	this interface potentially.
1195  *
1196  *	LATER: length must be adjusted by pad at tail, when it is required.
1197  */
1198 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1199 		   int getfrag(void *from, char *to, int offset, int len,
1200 			       int odd, struct sk_buff *skb),
1201 		   void *from, int length, int transhdrlen,
1202 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1203 		   unsigned int flags)
1204 {
1205 	struct inet_sock *inet = inet_sk(sk);
1206 	int err;
1207 
1208 	if (flags&MSG_PROBE)
1209 		return 0;
1210 
1211 	if (skb_queue_empty(&sk->sk_write_queue)) {
1212 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1213 		if (err)
1214 			return err;
1215 	} else {
1216 		transhdrlen = 0;
1217 	}
1218 
1219 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1220 				sk_page_frag(sk), getfrag,
1221 				from, length, transhdrlen, flags);
1222 }
1223 
1224 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1225 		       int offset, size_t size, int flags)
1226 {
1227 	struct inet_sock *inet = inet_sk(sk);
1228 	struct sk_buff *skb;
1229 	struct rtable *rt;
1230 	struct ip_options *opt = NULL;
1231 	struct inet_cork *cork;
1232 	int hh_len;
1233 	int mtu;
1234 	int len;
1235 	int err;
1236 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1237 
1238 	if (inet->hdrincl)
1239 		return -EPERM;
1240 
1241 	if (flags&MSG_PROBE)
1242 		return 0;
1243 
1244 	if (skb_queue_empty(&sk->sk_write_queue))
1245 		return -EINVAL;
1246 
1247 	cork = &inet->cork.base;
1248 	rt = (struct rtable *)cork->dst;
1249 	if (cork->flags & IPCORK_OPT)
1250 		opt = cork->opt;
1251 
1252 	if (!(rt->dst.dev->features&NETIF_F_SG))
1253 		return -EOPNOTSUPP;
1254 
1255 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1256 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1257 
1258 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1259 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1260 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1261 
1262 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1263 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1264 			       mtu - (opt ? opt->optlen : 0));
1265 		return -EMSGSIZE;
1266 	}
1267 
1268 	skb = skb_peek_tail(&sk->sk_write_queue);
1269 	if (!skb)
1270 		return -EINVAL;
1271 
1272 	cork->length += size;
1273 
1274 	while (size > 0) {
1275 		/* Check if the remaining data fits into current packet. */
1276 		len = mtu - skb->len;
1277 		if (len < size)
1278 			len = maxfraglen - skb->len;
1279 
1280 		if (len <= 0) {
1281 			struct sk_buff *skb_prev;
1282 			int alloclen;
1283 
1284 			skb_prev = skb;
1285 			fraggap = skb_prev->len - maxfraglen;
1286 
1287 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1288 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1289 			if (unlikely(!skb)) {
1290 				err = -ENOBUFS;
1291 				goto error;
1292 			}
1293 
1294 			/*
1295 			 *	Fill in the control structures
1296 			 */
1297 			skb->ip_summed = CHECKSUM_NONE;
1298 			skb->csum = 0;
1299 			skb_reserve(skb, hh_len);
1300 
1301 			/*
1302 			 *	Find where to start putting bytes.
1303 			 */
1304 			skb_put(skb, fragheaderlen + fraggap);
1305 			skb_reset_network_header(skb);
1306 			skb->transport_header = (skb->network_header +
1307 						 fragheaderlen);
1308 			if (fraggap) {
1309 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1310 								   maxfraglen,
1311 						    skb_transport_header(skb),
1312 								   fraggap, 0);
1313 				skb_prev->csum = csum_sub(skb_prev->csum,
1314 							  skb->csum);
1315 				pskb_trim_unique(skb_prev, maxfraglen);
1316 			}
1317 
1318 			/*
1319 			 * Put the packet on the pending queue.
1320 			 */
1321 			__skb_queue_tail(&sk->sk_write_queue, skb);
1322 			continue;
1323 		}
1324 
1325 		if (len > size)
1326 			len = size;
1327 
1328 		if (skb_append_pagefrags(skb, page, offset, len)) {
1329 			err = -EMSGSIZE;
1330 			goto error;
1331 		}
1332 
1333 		if (skb->ip_summed == CHECKSUM_NONE) {
1334 			__wsum csum;
1335 			csum = csum_page(page, offset, len);
1336 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1337 		}
1338 
1339 		skb->len += len;
1340 		skb->data_len += len;
1341 		skb->truesize += len;
1342 		refcount_add(len, &sk->sk_wmem_alloc);
1343 		offset += len;
1344 		size -= len;
1345 	}
1346 	return 0;
1347 
1348 error:
1349 	cork->length -= size;
1350 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1351 	return err;
1352 }
1353 
1354 static void ip_cork_release(struct inet_cork *cork)
1355 {
1356 	cork->flags &= ~IPCORK_OPT;
1357 	kfree(cork->opt);
1358 	cork->opt = NULL;
1359 	dst_release(cork->dst);
1360 	cork->dst = NULL;
1361 }
1362 
1363 /*
1364  *	Combined all pending IP fragments on the socket as one IP datagram
1365  *	and push them out.
1366  */
1367 struct sk_buff *__ip_make_skb(struct sock *sk,
1368 			      struct flowi4 *fl4,
1369 			      struct sk_buff_head *queue,
1370 			      struct inet_cork *cork)
1371 {
1372 	struct sk_buff *skb, *tmp_skb;
1373 	struct sk_buff **tail_skb;
1374 	struct inet_sock *inet = inet_sk(sk);
1375 	struct net *net = sock_net(sk);
1376 	struct ip_options *opt = NULL;
1377 	struct rtable *rt = (struct rtable *)cork->dst;
1378 	struct iphdr *iph;
1379 	__be16 df = 0;
1380 	__u8 ttl;
1381 
1382 	skb = __skb_dequeue(queue);
1383 	if (!skb)
1384 		goto out;
1385 	tail_skb = &(skb_shinfo(skb)->frag_list);
1386 
1387 	/* move skb->data to ip header from ext header */
1388 	if (skb->data < skb_network_header(skb))
1389 		__skb_pull(skb, skb_network_offset(skb));
1390 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1391 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1392 		*tail_skb = tmp_skb;
1393 		tail_skb = &(tmp_skb->next);
1394 		skb->len += tmp_skb->len;
1395 		skb->data_len += tmp_skb->len;
1396 		skb->truesize += tmp_skb->truesize;
1397 		tmp_skb->destructor = NULL;
1398 		tmp_skb->sk = NULL;
1399 	}
1400 
1401 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1402 	 * to fragment the frame generated here. No matter, what transforms
1403 	 * how transforms change size of the packet, it will come out.
1404 	 */
1405 	skb->ignore_df = ip_sk_ignore_df(sk);
1406 
1407 	/* DF bit is set when we want to see DF on outgoing frames.
1408 	 * If ignore_df is set too, we still allow to fragment this frame
1409 	 * locally. */
1410 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1411 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1412 	    (skb->len <= dst_mtu(&rt->dst) &&
1413 	     ip_dont_fragment(sk, &rt->dst)))
1414 		df = htons(IP_DF);
1415 
1416 	if (cork->flags & IPCORK_OPT)
1417 		opt = cork->opt;
1418 
1419 	if (cork->ttl != 0)
1420 		ttl = cork->ttl;
1421 	else if (rt->rt_type == RTN_MULTICAST)
1422 		ttl = inet->mc_ttl;
1423 	else
1424 		ttl = ip_select_ttl(inet, &rt->dst);
1425 
1426 	iph = ip_hdr(skb);
1427 	iph->version = 4;
1428 	iph->ihl = 5;
1429 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1430 	iph->frag_off = df;
1431 	iph->ttl = ttl;
1432 	iph->protocol = sk->sk_protocol;
1433 	ip_copy_addrs(iph, fl4);
1434 	ip_select_ident(net, skb, sk);
1435 
1436 	if (opt) {
1437 		iph->ihl += opt->optlen>>2;
1438 		ip_options_build(skb, opt, cork->addr, rt, 0);
1439 	}
1440 
1441 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1442 	skb->mark = sk->sk_mark;
1443 	skb->tstamp = cork->transmit_time;
1444 	/*
1445 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1446 	 * on dst refcount
1447 	 */
1448 	cork->dst = NULL;
1449 	skb_dst_set(skb, &rt->dst);
1450 
1451 	if (iph->protocol == IPPROTO_ICMP)
1452 		icmp_out_count(net, ((struct icmphdr *)
1453 			skb_transport_header(skb))->type);
1454 
1455 	ip_cork_release(cork);
1456 out:
1457 	return skb;
1458 }
1459 
1460 int ip_send_skb(struct net *net, struct sk_buff *skb)
1461 {
1462 	int err;
1463 
1464 	err = ip_local_out(net, skb->sk, skb);
1465 	if (err) {
1466 		if (err > 0)
1467 			err = net_xmit_errno(err);
1468 		if (err)
1469 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1470 	}
1471 
1472 	return err;
1473 }
1474 
1475 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1476 {
1477 	struct sk_buff *skb;
1478 
1479 	skb = ip_finish_skb(sk, fl4);
1480 	if (!skb)
1481 		return 0;
1482 
1483 	/* Netfilter gets whole the not fragmented skb. */
1484 	return ip_send_skb(sock_net(sk), skb);
1485 }
1486 
1487 /*
1488  *	Throw away all pending data on the socket.
1489  */
1490 static void __ip_flush_pending_frames(struct sock *sk,
1491 				      struct sk_buff_head *queue,
1492 				      struct inet_cork *cork)
1493 {
1494 	struct sk_buff *skb;
1495 
1496 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1497 		kfree_skb(skb);
1498 
1499 	ip_cork_release(cork);
1500 }
1501 
1502 void ip_flush_pending_frames(struct sock *sk)
1503 {
1504 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1505 }
1506 
1507 struct sk_buff *ip_make_skb(struct sock *sk,
1508 			    struct flowi4 *fl4,
1509 			    int getfrag(void *from, char *to, int offset,
1510 					int len, int odd, struct sk_buff *skb),
1511 			    void *from, int length, int transhdrlen,
1512 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1513 			    struct inet_cork *cork, unsigned int flags)
1514 {
1515 	struct sk_buff_head queue;
1516 	int err;
1517 
1518 	if (flags & MSG_PROBE)
1519 		return NULL;
1520 
1521 	__skb_queue_head_init(&queue);
1522 
1523 	cork->flags = 0;
1524 	cork->addr = 0;
1525 	cork->opt = NULL;
1526 	err = ip_setup_cork(sk, cork, ipc, rtp);
1527 	if (err)
1528 		return ERR_PTR(err);
1529 
1530 	err = __ip_append_data(sk, fl4, &queue, cork,
1531 			       &current->task_frag, getfrag,
1532 			       from, length, transhdrlen, flags);
1533 	if (err) {
1534 		__ip_flush_pending_frames(sk, &queue, cork);
1535 		return ERR_PTR(err);
1536 	}
1537 
1538 	return __ip_make_skb(sk, fl4, &queue, cork);
1539 }
1540 
1541 /*
1542  *	Fetch data from kernel space and fill in checksum if needed.
1543  */
1544 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1545 			      int len, int odd, struct sk_buff *skb)
1546 {
1547 	__wsum csum;
1548 
1549 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1550 	skb->csum = csum_block_add(skb->csum, csum, odd);
1551 	return 0;
1552 }
1553 
1554 /*
1555  *	Generic function to send a packet as reply to another packet.
1556  *	Used to send some TCP resets/acks so far.
1557  */
1558 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1559 			   const struct ip_options *sopt,
1560 			   __be32 daddr, __be32 saddr,
1561 			   const struct ip_reply_arg *arg,
1562 			   unsigned int len)
1563 {
1564 	struct ip_options_data replyopts;
1565 	struct ipcm_cookie ipc;
1566 	struct flowi4 fl4;
1567 	struct rtable *rt = skb_rtable(skb);
1568 	struct net *net = sock_net(sk);
1569 	struct sk_buff *nskb;
1570 	int err;
1571 	int oif;
1572 
1573 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1574 		return;
1575 
1576 	ipcm_init(&ipc);
1577 	ipc.addr = daddr;
1578 
1579 	if (replyopts.opt.opt.optlen) {
1580 		ipc.opt = &replyopts.opt;
1581 
1582 		if (replyopts.opt.opt.srr)
1583 			daddr = replyopts.opt.opt.faddr;
1584 	}
1585 
1586 	oif = arg->bound_dev_if;
1587 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1588 		oif = skb->skb_iif;
1589 
1590 	flowi4_init_output(&fl4, oif,
1591 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1592 			   RT_TOS(arg->tos),
1593 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1594 			   ip_reply_arg_flowi_flags(arg),
1595 			   daddr, saddr,
1596 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1597 			   arg->uid);
1598 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1599 	rt = ip_route_output_key(net, &fl4);
1600 	if (IS_ERR(rt))
1601 		return;
1602 
1603 	inet_sk(sk)->tos = arg->tos;
1604 
1605 	sk->sk_priority = skb->priority;
1606 	sk->sk_protocol = ip_hdr(skb)->protocol;
1607 	sk->sk_bound_dev_if = arg->bound_dev_if;
1608 	sk->sk_sndbuf = sysctl_wmem_default;
1609 	sk->sk_mark = fl4.flowi4_mark;
1610 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1611 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1612 	if (unlikely(err)) {
1613 		ip_flush_pending_frames(sk);
1614 		goto out;
1615 	}
1616 
1617 	nskb = skb_peek(&sk->sk_write_queue);
1618 	if (nskb) {
1619 		if (arg->csumoffset >= 0)
1620 			*((__sum16 *)skb_transport_header(nskb) +
1621 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1622 								arg->csum));
1623 		nskb->ip_summed = CHECKSUM_NONE;
1624 		ip_push_pending_frames(sk, &fl4);
1625 	}
1626 out:
1627 	ip_rt_put(rt);
1628 }
1629 
1630 void __init ip_init(void)
1631 {
1632 	ip_rt_init();
1633 	inet_initpeers();
1634 
1635 #if defined(CONFIG_IP_MULTICAST)
1636 	igmp_mc_init();
1637 #endif
1638 }
1639