1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The Internet Protocol (IP) output module. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Donald Becker, <becker@super.org> 11 * Alan Cox, <Alan.Cox@linux.org> 12 * Richard Underwood 13 * Stefan Becker, <stefanb@yello.ping.de> 14 * Jorge Cwik, <jorge@laser.satlink.net> 15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 16 * Hirokazu Takahashi, <taka@valinux.co.jp> 17 * 18 * See ip_input.c for original log 19 * 20 * Fixes: 21 * Alan Cox : Missing nonblock feature in ip_build_xmit. 22 * Mike Kilburn : htons() missing in ip_build_xmit. 23 * Bradford Johnson: Fix faulty handling of some frames when 24 * no route is found. 25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit 26 * (in case if packet not accepted by 27 * output firewall rules) 28 * Mike McLagan : Routing by source 29 * Alexey Kuznetsov: use new route cache 30 * Andi Kleen: Fix broken PMTU recovery and remove 31 * some redundant tests. 32 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 33 * Andi Kleen : Replace ip_reply with ip_send_reply. 34 * Andi Kleen : Split fast and slow ip_build_xmit path 35 * for decreased register pressure on x86 36 * and more readibility. 37 * Marc Boucher : When call_out_firewall returns FW_QUEUE, 38 * silently drop skb instead of failing with -EPERM. 39 * Detlev Wengorz : Copy protocol for fragments. 40 * Hirokazu Takahashi: HW checksumming for outgoing UDP 41 * datagrams. 42 * Hirokazu Takahashi: sendfile() on UDP works now. 43 */ 44 45 #include <linux/uaccess.h> 46 #include <linux/module.h> 47 #include <linux/types.h> 48 #include <linux/kernel.h> 49 #include <linux/mm.h> 50 #include <linux/string.h> 51 #include <linux/errno.h> 52 #include <linux/highmem.h> 53 #include <linux/slab.h> 54 55 #include <linux/socket.h> 56 #include <linux/sockios.h> 57 #include <linux/in.h> 58 #include <linux/inet.h> 59 #include <linux/netdevice.h> 60 #include <linux/etherdevice.h> 61 #include <linux/proc_fs.h> 62 #include <linux/stat.h> 63 #include <linux/init.h> 64 65 #include <net/snmp.h> 66 #include <net/ip.h> 67 #include <net/protocol.h> 68 #include <net/route.h> 69 #include <net/xfrm.h> 70 #include <linux/skbuff.h> 71 #include <net/sock.h> 72 #include <net/arp.h> 73 #include <net/icmp.h> 74 #include <net/checksum.h> 75 #include <net/inetpeer.h> 76 #include <net/lwtunnel.h> 77 #include <linux/bpf-cgroup.h> 78 #include <linux/igmp.h> 79 #include <linux/netfilter_ipv4.h> 80 #include <linux/netfilter_bridge.h> 81 #include <linux/netlink.h> 82 #include <linux/tcp.h> 83 84 static int 85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 86 unsigned int mtu, 87 int (*output)(struct net *, struct sock *, struct sk_buff *)); 88 89 /* Generate a checksum for an outgoing IP datagram. */ 90 void ip_send_check(struct iphdr *iph) 91 { 92 iph->check = 0; 93 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); 94 } 95 EXPORT_SYMBOL(ip_send_check); 96 97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 98 { 99 struct iphdr *iph = ip_hdr(skb); 100 101 iph->tot_len = htons(skb->len); 102 ip_send_check(iph); 103 104 /* if egress device is enslaved to an L3 master device pass the 105 * skb to its handler for processing 106 */ 107 skb = l3mdev_ip_out(sk, skb); 108 if (unlikely(!skb)) 109 return 0; 110 111 skb->protocol = htons(ETH_P_IP); 112 113 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, 114 net, sk, skb, NULL, skb_dst(skb)->dev, 115 dst_output); 116 } 117 118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) 119 { 120 int err; 121 122 err = __ip_local_out(net, sk, skb); 123 if (likely(err == 1)) 124 err = dst_output(net, sk, skb); 125 126 return err; 127 } 128 EXPORT_SYMBOL_GPL(ip_local_out); 129 130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) 131 { 132 int ttl = inet->uc_ttl; 133 134 if (ttl < 0) 135 ttl = ip4_dst_hoplimit(dst); 136 return ttl; 137 } 138 139 /* 140 * Add an ip header to a skbuff and send it out. 141 * 142 */ 143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, 144 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) 145 { 146 struct inet_sock *inet = inet_sk(sk); 147 struct rtable *rt = skb_rtable(skb); 148 struct net *net = sock_net(sk); 149 struct iphdr *iph; 150 151 /* Build the IP header. */ 152 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); 153 skb_reset_network_header(skb); 154 iph = ip_hdr(skb); 155 iph->version = 4; 156 iph->ihl = 5; 157 iph->tos = inet->tos; 158 iph->ttl = ip_select_ttl(inet, &rt->dst); 159 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); 160 iph->saddr = saddr; 161 iph->protocol = sk->sk_protocol; 162 if (ip_dont_fragment(sk, &rt->dst)) { 163 iph->frag_off = htons(IP_DF); 164 iph->id = 0; 165 } else { 166 iph->frag_off = 0; 167 __ip_select_ident(net, iph, 1); 168 } 169 170 if (opt && opt->opt.optlen) { 171 iph->ihl += opt->opt.optlen>>2; 172 ip_options_build(skb, &opt->opt, daddr, rt, 0); 173 } 174 175 skb->priority = sk->sk_priority; 176 skb->mark = sk->sk_mark; 177 178 /* Send it out. */ 179 return ip_local_out(net, skb->sk, skb); 180 } 181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); 182 183 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) 184 { 185 struct dst_entry *dst = skb_dst(skb); 186 struct rtable *rt = (struct rtable *)dst; 187 struct net_device *dev = dst->dev; 188 unsigned int hh_len = LL_RESERVED_SPACE(dev); 189 struct neighbour *neigh; 190 u32 nexthop; 191 192 if (rt->rt_type == RTN_MULTICAST) { 193 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); 194 } else if (rt->rt_type == RTN_BROADCAST) 195 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); 196 197 /* Be paranoid, rather than too clever. */ 198 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 199 struct sk_buff *skb2; 200 201 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); 202 if (!skb2) { 203 kfree_skb(skb); 204 return -ENOMEM; 205 } 206 if (skb->sk) 207 skb_set_owner_w(skb2, skb->sk); 208 consume_skb(skb); 209 skb = skb2; 210 } 211 212 if (lwtunnel_xmit_redirect(dst->lwtstate)) { 213 int res = lwtunnel_xmit(skb); 214 215 if (res < 0 || res == LWTUNNEL_XMIT_DONE) 216 return res; 217 } 218 219 rcu_read_lock_bh(); 220 nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); 221 neigh = __ipv4_neigh_lookup_noref(dev, nexthop); 222 if (unlikely(!neigh)) 223 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); 224 if (!IS_ERR(neigh)) { 225 int res; 226 227 sock_confirm_neigh(skb, neigh); 228 res = neigh_output(neigh, skb); 229 230 rcu_read_unlock_bh(); 231 return res; 232 } 233 rcu_read_unlock_bh(); 234 235 net_dbg_ratelimited("%s: No header cache and no neighbour!\n", 236 __func__); 237 kfree_skb(skb); 238 return -EINVAL; 239 } 240 241 static int ip_finish_output_gso(struct net *net, struct sock *sk, 242 struct sk_buff *skb, unsigned int mtu) 243 { 244 netdev_features_t features; 245 struct sk_buff *segs; 246 int ret = 0; 247 248 /* common case: seglen is <= mtu 249 */ 250 if (skb_gso_validate_mtu(skb, mtu)) 251 return ip_finish_output2(net, sk, skb); 252 253 /* Slowpath - GSO segment length exceeds the egress MTU. 254 * 255 * This can happen in several cases: 256 * - Forwarding of a TCP GRO skb, when DF flag is not set. 257 * - Forwarding of an skb that arrived on a virtualization interface 258 * (virtio-net/vhost/tap) with TSO/GSO size set by other network 259 * stack. 260 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an 261 * interface with a smaller MTU. 262 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is 263 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an 264 * insufficent MTU. 265 */ 266 features = netif_skb_features(skb); 267 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); 268 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 269 if (IS_ERR_OR_NULL(segs)) { 270 kfree_skb(skb); 271 return -ENOMEM; 272 } 273 274 consume_skb(skb); 275 276 do { 277 struct sk_buff *nskb = segs->next; 278 int err; 279 280 segs->next = NULL; 281 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); 282 283 if (err && ret == 0) 284 ret = err; 285 segs = nskb; 286 } while (segs); 287 288 return ret; 289 } 290 291 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 292 { 293 unsigned int mtu; 294 int ret; 295 296 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 297 if (ret) { 298 kfree_skb(skb); 299 return ret; 300 } 301 302 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) 303 /* Policy lookup after SNAT yielded a new policy */ 304 if (skb_dst(skb)->xfrm) { 305 IPCB(skb)->flags |= IPSKB_REROUTED; 306 return dst_output(net, sk, skb); 307 } 308 #endif 309 mtu = ip_skb_dst_mtu(sk, skb); 310 if (skb_is_gso(skb)) 311 return ip_finish_output_gso(net, sk, skb, mtu); 312 313 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) 314 return ip_fragment(net, sk, skb, mtu, ip_finish_output2); 315 316 return ip_finish_output2(net, sk, skb); 317 } 318 319 static int ip_mc_finish_output(struct net *net, struct sock *sk, 320 struct sk_buff *skb) 321 { 322 int ret; 323 324 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); 325 if (ret) { 326 kfree_skb(skb); 327 return ret; 328 } 329 330 return dev_loopback_xmit(net, sk, skb); 331 } 332 333 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) 334 { 335 struct rtable *rt = skb_rtable(skb); 336 struct net_device *dev = rt->dst.dev; 337 338 /* 339 * If the indicated interface is up and running, send the packet. 340 */ 341 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 342 343 skb->dev = dev; 344 skb->protocol = htons(ETH_P_IP); 345 346 /* 347 * Multicasts are looped back for other local users 348 */ 349 350 if (rt->rt_flags&RTCF_MULTICAST) { 351 if (sk_mc_loop(sk) 352 #ifdef CONFIG_IP_MROUTE 353 /* Small optimization: do not loopback not local frames, 354 which returned after forwarding; they will be dropped 355 by ip_mr_input in any case. 356 Note, that local frames are looped back to be delivered 357 to local recipients. 358 359 This check is duplicated in ip_mr_input at the moment. 360 */ 361 && 362 ((rt->rt_flags & RTCF_LOCAL) || 363 !(IPCB(skb)->flags & IPSKB_FORWARDED)) 364 #endif 365 ) { 366 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 367 if (newskb) 368 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 369 net, sk, newskb, NULL, newskb->dev, 370 ip_mc_finish_output); 371 } 372 373 /* Multicasts with ttl 0 must not go beyond the host */ 374 375 if (ip_hdr(skb)->ttl == 0) { 376 kfree_skb(skb); 377 return 0; 378 } 379 } 380 381 if (rt->rt_flags&RTCF_BROADCAST) { 382 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); 383 if (newskb) 384 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, 385 net, sk, newskb, NULL, newskb->dev, 386 ip_mc_finish_output); 387 } 388 389 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 390 net, sk, skb, NULL, skb->dev, 391 ip_finish_output, 392 !(IPCB(skb)->flags & IPSKB_REROUTED)); 393 } 394 395 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) 396 { 397 struct net_device *dev = skb_dst(skb)->dev; 398 399 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 400 401 skb->dev = dev; 402 skb->protocol = htons(ETH_P_IP); 403 404 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 405 net, sk, skb, NULL, dev, 406 ip_finish_output, 407 !(IPCB(skb)->flags & IPSKB_REROUTED)); 408 } 409 410 /* 411 * copy saddr and daddr, possibly using 64bit load/stores 412 * Equivalent to : 413 * iph->saddr = fl4->saddr; 414 * iph->daddr = fl4->daddr; 415 */ 416 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) 417 { 418 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != 419 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); 420 memcpy(&iph->saddr, &fl4->saddr, 421 sizeof(fl4->saddr) + sizeof(fl4->daddr)); 422 } 423 424 /* Note: skb->sk can be different from sk, in case of tunnels */ 425 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl) 426 { 427 struct inet_sock *inet = inet_sk(sk); 428 struct net *net = sock_net(sk); 429 struct ip_options_rcu *inet_opt; 430 struct flowi4 *fl4; 431 struct rtable *rt; 432 struct iphdr *iph; 433 int res; 434 435 /* Skip all of this if the packet is already routed, 436 * f.e. by something like SCTP. 437 */ 438 rcu_read_lock(); 439 inet_opt = rcu_dereference(inet->inet_opt); 440 fl4 = &fl->u.ip4; 441 rt = skb_rtable(skb); 442 if (rt) 443 goto packet_routed; 444 445 /* Make sure we can route this packet. */ 446 rt = (struct rtable *)__sk_dst_check(sk, 0); 447 if (!rt) { 448 __be32 daddr; 449 450 /* Use correct destination address if we have options. */ 451 daddr = inet->inet_daddr; 452 if (inet_opt && inet_opt->opt.srr) 453 daddr = inet_opt->opt.faddr; 454 455 /* If this fails, retransmit mechanism of transport layer will 456 * keep trying until route appears or the connection times 457 * itself out. 458 */ 459 rt = ip_route_output_ports(net, fl4, sk, 460 daddr, inet->inet_saddr, 461 inet->inet_dport, 462 inet->inet_sport, 463 sk->sk_protocol, 464 RT_CONN_FLAGS(sk), 465 sk->sk_bound_dev_if); 466 if (IS_ERR(rt)) 467 goto no_route; 468 sk_setup_caps(sk, &rt->dst); 469 } 470 skb_dst_set_noref(skb, &rt->dst); 471 472 packet_routed: 473 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) 474 goto no_route; 475 476 /* OK, we know where to send it, allocate and build IP header. */ 477 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); 478 skb_reset_network_header(skb); 479 iph = ip_hdr(skb); 480 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff)); 481 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) 482 iph->frag_off = htons(IP_DF); 483 else 484 iph->frag_off = 0; 485 iph->ttl = ip_select_ttl(inet, &rt->dst); 486 iph->protocol = sk->sk_protocol; 487 ip_copy_addrs(iph, fl4); 488 489 /* Transport layer set skb->h.foo itself. */ 490 491 if (inet_opt && inet_opt->opt.optlen) { 492 iph->ihl += inet_opt->opt.optlen >> 2; 493 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); 494 } 495 496 ip_select_ident_segs(net, skb, sk, 497 skb_shinfo(skb)->gso_segs ?: 1); 498 499 /* TODO : should we use skb->sk here instead of sk ? */ 500 skb->priority = sk->sk_priority; 501 skb->mark = sk->sk_mark; 502 503 res = ip_local_out(net, sk, skb); 504 rcu_read_unlock(); 505 return res; 506 507 no_route: 508 rcu_read_unlock(); 509 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 510 kfree_skb(skb); 511 return -EHOSTUNREACH; 512 } 513 EXPORT_SYMBOL(ip_queue_xmit); 514 515 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) 516 { 517 to->pkt_type = from->pkt_type; 518 to->priority = from->priority; 519 to->protocol = from->protocol; 520 skb_dst_drop(to); 521 skb_dst_copy(to, from); 522 to->dev = from->dev; 523 to->mark = from->mark; 524 525 /* Copy the flags to each fragment. */ 526 IPCB(to)->flags = IPCB(from)->flags; 527 528 #ifdef CONFIG_NET_SCHED 529 to->tc_index = from->tc_index; 530 #endif 531 nf_copy(to, from); 532 #if IS_ENABLED(CONFIG_IP_VS) 533 to->ipvs_property = from->ipvs_property; 534 #endif 535 skb_copy_secmark(to, from); 536 } 537 538 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 539 unsigned int mtu, 540 int (*output)(struct net *, struct sock *, struct sk_buff *)) 541 { 542 struct iphdr *iph = ip_hdr(skb); 543 544 if ((iph->frag_off & htons(IP_DF)) == 0) 545 return ip_do_fragment(net, sk, skb, output); 546 547 if (unlikely(!skb->ignore_df || 548 (IPCB(skb)->frag_max_size && 549 IPCB(skb)->frag_max_size > mtu))) { 550 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 551 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, 552 htonl(mtu)); 553 kfree_skb(skb); 554 return -EMSGSIZE; 555 } 556 557 return ip_do_fragment(net, sk, skb, output); 558 } 559 560 /* 561 * This IP datagram is too large to be sent in one piece. Break it up into 562 * smaller pieces (each of size equal to IP header plus 563 * a block of the data of the original IP data part) that will yet fit in a 564 * single device frame, and queue such a frame for sending. 565 */ 566 567 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, 568 int (*output)(struct net *, struct sock *, struct sk_buff *)) 569 { 570 struct iphdr *iph; 571 int ptr; 572 struct sk_buff *skb2; 573 unsigned int mtu, hlen, left, len, ll_rs; 574 int offset; 575 __be16 not_last_frag; 576 struct rtable *rt = skb_rtable(skb); 577 int err = 0; 578 579 /* for offloaded checksums cleanup checksum before fragmentation */ 580 if (skb->ip_summed == CHECKSUM_PARTIAL && 581 (err = skb_checksum_help(skb))) 582 goto fail; 583 584 /* 585 * Point into the IP datagram header. 586 */ 587 588 iph = ip_hdr(skb); 589 590 mtu = ip_skb_dst_mtu(sk, skb); 591 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) 592 mtu = IPCB(skb)->frag_max_size; 593 594 /* 595 * Setup starting values. 596 */ 597 598 hlen = iph->ihl * 4; 599 mtu = mtu - hlen; /* Size of data space */ 600 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; 601 602 /* When frag_list is given, use it. First, check its validity: 603 * some transformers could create wrong frag_list or break existing 604 * one, it is not prohibited. In this case fall back to copying. 605 * 606 * LATER: this step can be merged to real generation of fragments, 607 * we can switch to copy when see the first bad fragment. 608 */ 609 if (skb_has_frag_list(skb)) { 610 struct sk_buff *frag, *frag2; 611 unsigned int first_len = skb_pagelen(skb); 612 613 if (first_len - hlen > mtu || 614 ((first_len - hlen) & 7) || 615 ip_is_fragment(iph) || 616 skb_cloned(skb)) 617 goto slow_path; 618 619 skb_walk_frags(skb, frag) { 620 /* Correct geometry. */ 621 if (frag->len > mtu || 622 ((frag->len & 7) && frag->next) || 623 skb_headroom(frag) < hlen) 624 goto slow_path_clean; 625 626 /* Partially cloned skb? */ 627 if (skb_shared(frag)) 628 goto slow_path_clean; 629 630 BUG_ON(frag->sk); 631 if (skb->sk) { 632 frag->sk = skb->sk; 633 frag->destructor = sock_wfree; 634 } 635 skb->truesize -= frag->truesize; 636 } 637 638 /* Everything is OK. Generate! */ 639 640 err = 0; 641 offset = 0; 642 frag = skb_shinfo(skb)->frag_list; 643 skb_frag_list_init(skb); 644 skb->data_len = first_len - skb_headlen(skb); 645 skb->len = first_len; 646 iph->tot_len = htons(first_len); 647 iph->frag_off = htons(IP_MF); 648 ip_send_check(iph); 649 650 for (;;) { 651 /* Prepare header of the next frame, 652 * before previous one went down. */ 653 if (frag) { 654 frag->ip_summed = CHECKSUM_NONE; 655 skb_reset_transport_header(frag); 656 __skb_push(frag, hlen); 657 skb_reset_network_header(frag); 658 memcpy(skb_network_header(frag), iph, hlen); 659 iph = ip_hdr(frag); 660 iph->tot_len = htons(frag->len); 661 ip_copy_metadata(frag, skb); 662 if (offset == 0) 663 ip_options_fragment(frag); 664 offset += skb->len - hlen; 665 iph->frag_off = htons(offset>>3); 666 if (frag->next) 667 iph->frag_off |= htons(IP_MF); 668 /* Ready, complete checksum */ 669 ip_send_check(iph); 670 } 671 672 err = output(net, sk, skb); 673 674 if (!err) 675 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 676 if (err || !frag) 677 break; 678 679 skb = frag; 680 frag = skb->next; 681 skb->next = NULL; 682 } 683 684 if (err == 0) { 685 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 686 return 0; 687 } 688 689 while (frag) { 690 skb = frag->next; 691 kfree_skb(frag); 692 frag = skb; 693 } 694 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 695 return err; 696 697 slow_path_clean: 698 skb_walk_frags(skb, frag2) { 699 if (frag2 == frag) 700 break; 701 frag2->sk = NULL; 702 frag2->destructor = NULL; 703 skb->truesize += frag2->truesize; 704 } 705 } 706 707 slow_path: 708 iph = ip_hdr(skb); 709 710 left = skb->len - hlen; /* Space per frame */ 711 ptr = hlen; /* Where to start from */ 712 713 ll_rs = LL_RESERVED_SPACE(rt->dst.dev); 714 715 /* 716 * Fragment the datagram. 717 */ 718 719 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; 720 not_last_frag = iph->frag_off & htons(IP_MF); 721 722 /* 723 * Keep copying data until we run out. 724 */ 725 726 while (left > 0) { 727 len = left; 728 /* IF: it doesn't fit, use 'mtu' - the data space left */ 729 if (len > mtu) 730 len = mtu; 731 /* IF: we are not sending up to and including the packet end 732 then align the next start on an eight byte boundary */ 733 if (len < left) { 734 len &= ~7; 735 } 736 737 /* Allocate buffer */ 738 skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); 739 if (!skb2) { 740 err = -ENOMEM; 741 goto fail; 742 } 743 744 /* 745 * Set up data on packet 746 */ 747 748 ip_copy_metadata(skb2, skb); 749 skb_reserve(skb2, ll_rs); 750 skb_put(skb2, len + hlen); 751 skb_reset_network_header(skb2); 752 skb2->transport_header = skb2->network_header + hlen; 753 754 /* 755 * Charge the memory for the fragment to any owner 756 * it might possess 757 */ 758 759 if (skb->sk) 760 skb_set_owner_w(skb2, skb->sk); 761 762 /* 763 * Copy the packet header into the new buffer. 764 */ 765 766 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); 767 768 /* 769 * Copy a block of the IP datagram. 770 */ 771 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) 772 BUG(); 773 left -= len; 774 775 /* 776 * Fill in the new header fields. 777 */ 778 iph = ip_hdr(skb2); 779 iph->frag_off = htons((offset >> 3)); 780 781 if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) 782 iph->frag_off |= htons(IP_DF); 783 784 /* ANK: dirty, but effective trick. Upgrade options only if 785 * the segment to be fragmented was THE FIRST (otherwise, 786 * options are already fixed) and make it ONCE 787 * on the initial skb, so that all the following fragments 788 * will inherit fixed options. 789 */ 790 if (offset == 0) 791 ip_options_fragment(skb); 792 793 /* 794 * Added AC : If we are fragmenting a fragment that's not the 795 * last fragment then keep MF on each bit 796 */ 797 if (left > 0 || not_last_frag) 798 iph->frag_off |= htons(IP_MF); 799 ptr += len; 800 offset += len; 801 802 /* 803 * Put this fragment into the sending queue. 804 */ 805 iph->tot_len = htons(len + hlen); 806 807 ip_send_check(iph); 808 809 err = output(net, sk, skb2); 810 if (err) 811 goto fail; 812 813 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); 814 } 815 consume_skb(skb); 816 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); 817 return err; 818 819 fail: 820 kfree_skb(skb); 821 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); 822 return err; 823 } 824 EXPORT_SYMBOL(ip_do_fragment); 825 826 int 827 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) 828 { 829 struct msghdr *msg = from; 830 831 if (skb->ip_summed == CHECKSUM_PARTIAL) { 832 if (!copy_from_iter_full(to, len, &msg->msg_iter)) 833 return -EFAULT; 834 } else { 835 __wsum csum = 0; 836 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) 837 return -EFAULT; 838 skb->csum = csum_block_add(skb->csum, csum, odd); 839 } 840 return 0; 841 } 842 EXPORT_SYMBOL(ip_generic_getfrag); 843 844 static inline __wsum 845 csum_page(struct page *page, int offset, int copy) 846 { 847 char *kaddr; 848 __wsum csum; 849 kaddr = kmap(page); 850 csum = csum_partial(kaddr + offset, copy, 0); 851 kunmap(page); 852 return csum; 853 } 854 855 static inline int ip_ufo_append_data(struct sock *sk, 856 struct sk_buff_head *queue, 857 int getfrag(void *from, char *to, int offset, int len, 858 int odd, struct sk_buff *skb), 859 void *from, int length, int hh_len, int fragheaderlen, 860 int transhdrlen, int maxfraglen, unsigned int flags) 861 { 862 struct sk_buff *skb; 863 int err; 864 865 /* There is support for UDP fragmentation offload by network 866 * device, so create one single skb packet containing complete 867 * udp datagram 868 */ 869 skb = skb_peek_tail(queue); 870 if (!skb) { 871 skb = sock_alloc_send_skb(sk, 872 hh_len + fragheaderlen + transhdrlen + 20, 873 (flags & MSG_DONTWAIT), &err); 874 875 if (!skb) 876 return err; 877 878 /* reserve space for Hardware header */ 879 skb_reserve(skb, hh_len); 880 881 /* create space for UDP/IP header */ 882 skb_put(skb, fragheaderlen + transhdrlen); 883 884 /* initialize network header pointer */ 885 skb_reset_network_header(skb); 886 887 /* initialize protocol header pointer */ 888 skb->transport_header = skb->network_header + fragheaderlen; 889 890 skb->csum = 0; 891 892 if (flags & MSG_CONFIRM) 893 skb_set_dst_pending_confirm(skb, 1); 894 895 __skb_queue_tail(queue, skb); 896 } else if (skb_is_gso(skb)) { 897 goto append; 898 } 899 900 skb->ip_summed = CHECKSUM_PARTIAL; 901 /* specify the length of each IP datagram fragment */ 902 skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen; 903 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 904 905 append: 906 return skb_append_datato_frags(sk, skb, getfrag, from, 907 (length - transhdrlen)); 908 } 909 910 static int __ip_append_data(struct sock *sk, 911 struct flowi4 *fl4, 912 struct sk_buff_head *queue, 913 struct inet_cork *cork, 914 struct page_frag *pfrag, 915 int getfrag(void *from, char *to, int offset, 916 int len, int odd, struct sk_buff *skb), 917 void *from, int length, int transhdrlen, 918 unsigned int flags) 919 { 920 struct inet_sock *inet = inet_sk(sk); 921 struct sk_buff *skb; 922 923 struct ip_options *opt = cork->opt; 924 int hh_len; 925 int exthdrlen; 926 int mtu; 927 int copy; 928 int err; 929 int offset = 0; 930 unsigned int maxfraglen, fragheaderlen, maxnonfragsize; 931 int csummode = CHECKSUM_NONE; 932 struct rtable *rt = (struct rtable *)cork->dst; 933 u32 tskey = 0; 934 935 skb = skb_peek_tail(queue); 936 937 exthdrlen = !skb ? rt->dst.header_len : 0; 938 mtu = cork->fragsize; 939 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && 940 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) 941 tskey = sk->sk_tskey++; 942 943 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 944 945 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 946 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 947 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 948 949 if (cork->length + length > maxnonfragsize - fragheaderlen) { 950 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 951 mtu - (opt ? opt->optlen : 0)); 952 return -EMSGSIZE; 953 } 954 955 /* 956 * transhdrlen > 0 means that this is the first fragment and we wish 957 * it won't be fragmented in the future. 958 */ 959 if (transhdrlen && 960 length + fragheaderlen <= mtu && 961 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && 962 !(flags & MSG_MORE) && 963 !exthdrlen) 964 csummode = CHECKSUM_PARTIAL; 965 966 cork->length += length; 967 if ((((length + fragheaderlen) > mtu) || (skb && skb_is_gso(skb))) && 968 (sk->sk_protocol == IPPROTO_UDP) && 969 (rt->dst.dev->features & NETIF_F_UFO) && !dst_xfrm(&rt->dst) && 970 (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) { 971 err = ip_ufo_append_data(sk, queue, getfrag, from, length, 972 hh_len, fragheaderlen, transhdrlen, 973 maxfraglen, flags); 974 if (err) 975 goto error; 976 return 0; 977 } 978 979 /* So, what's going on in the loop below? 980 * 981 * We use calculated fragment length to generate chained skb, 982 * each of segments is IP fragment ready for sending to network after 983 * adding appropriate IP header. 984 */ 985 986 if (!skb) 987 goto alloc_new_skb; 988 989 while (length > 0) { 990 /* Check if the remaining data fits into current packet. */ 991 copy = mtu - skb->len; 992 if (copy < length) 993 copy = maxfraglen - skb->len; 994 if (copy <= 0) { 995 char *data; 996 unsigned int datalen; 997 unsigned int fraglen; 998 unsigned int fraggap; 999 unsigned int alloclen; 1000 struct sk_buff *skb_prev; 1001 alloc_new_skb: 1002 skb_prev = skb; 1003 if (skb_prev) 1004 fraggap = skb_prev->len - maxfraglen; 1005 else 1006 fraggap = 0; 1007 1008 /* 1009 * If remaining data exceeds the mtu, 1010 * we know we need more fragment(s). 1011 */ 1012 datalen = length + fraggap; 1013 if (datalen > mtu - fragheaderlen) 1014 datalen = maxfraglen - fragheaderlen; 1015 fraglen = datalen + fragheaderlen; 1016 1017 if ((flags & MSG_MORE) && 1018 !(rt->dst.dev->features&NETIF_F_SG)) 1019 alloclen = mtu; 1020 else 1021 alloclen = fraglen; 1022 1023 alloclen += exthdrlen; 1024 1025 /* The last fragment gets additional space at tail. 1026 * Note, with MSG_MORE we overallocate on fragments, 1027 * because we have no idea what fragment will be 1028 * the last. 1029 */ 1030 if (datalen == length + fraggap) 1031 alloclen += rt->dst.trailer_len; 1032 1033 if (transhdrlen) { 1034 skb = sock_alloc_send_skb(sk, 1035 alloclen + hh_len + 15, 1036 (flags & MSG_DONTWAIT), &err); 1037 } else { 1038 skb = NULL; 1039 if (atomic_read(&sk->sk_wmem_alloc) <= 1040 2 * sk->sk_sndbuf) 1041 skb = sock_wmalloc(sk, 1042 alloclen + hh_len + 15, 1, 1043 sk->sk_allocation); 1044 if (unlikely(!skb)) 1045 err = -ENOBUFS; 1046 } 1047 if (!skb) 1048 goto error; 1049 1050 /* 1051 * Fill in the control structures 1052 */ 1053 skb->ip_summed = csummode; 1054 skb->csum = 0; 1055 skb_reserve(skb, hh_len); 1056 1057 /* only the initial fragment is time stamped */ 1058 skb_shinfo(skb)->tx_flags = cork->tx_flags; 1059 cork->tx_flags = 0; 1060 skb_shinfo(skb)->tskey = tskey; 1061 tskey = 0; 1062 1063 /* 1064 * Find where to start putting bytes. 1065 */ 1066 data = skb_put(skb, fraglen + exthdrlen); 1067 skb_set_network_header(skb, exthdrlen); 1068 skb->transport_header = (skb->network_header + 1069 fragheaderlen); 1070 data += fragheaderlen + exthdrlen; 1071 1072 if (fraggap) { 1073 skb->csum = skb_copy_and_csum_bits( 1074 skb_prev, maxfraglen, 1075 data + transhdrlen, fraggap, 0); 1076 skb_prev->csum = csum_sub(skb_prev->csum, 1077 skb->csum); 1078 data += fraggap; 1079 pskb_trim_unique(skb_prev, maxfraglen); 1080 } 1081 1082 copy = datalen - transhdrlen - fraggap; 1083 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { 1084 err = -EFAULT; 1085 kfree_skb(skb); 1086 goto error; 1087 } 1088 1089 offset += copy; 1090 length -= datalen - fraggap; 1091 transhdrlen = 0; 1092 exthdrlen = 0; 1093 csummode = CHECKSUM_NONE; 1094 1095 if ((flags & MSG_CONFIRM) && !skb_prev) 1096 skb_set_dst_pending_confirm(skb, 1); 1097 1098 /* 1099 * Put the packet on the pending queue. 1100 */ 1101 __skb_queue_tail(queue, skb); 1102 continue; 1103 } 1104 1105 if (copy > length) 1106 copy = length; 1107 1108 if (!(rt->dst.dev->features&NETIF_F_SG)) { 1109 unsigned int off; 1110 1111 off = skb->len; 1112 if (getfrag(from, skb_put(skb, copy), 1113 offset, copy, off, skb) < 0) { 1114 __skb_trim(skb, off); 1115 err = -EFAULT; 1116 goto error; 1117 } 1118 } else { 1119 int i = skb_shinfo(skb)->nr_frags; 1120 1121 err = -ENOMEM; 1122 if (!sk_page_frag_refill(sk, pfrag)) 1123 goto error; 1124 1125 if (!skb_can_coalesce(skb, i, pfrag->page, 1126 pfrag->offset)) { 1127 err = -EMSGSIZE; 1128 if (i == MAX_SKB_FRAGS) 1129 goto error; 1130 1131 __skb_fill_page_desc(skb, i, pfrag->page, 1132 pfrag->offset, 0); 1133 skb_shinfo(skb)->nr_frags = ++i; 1134 get_page(pfrag->page); 1135 } 1136 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1137 if (getfrag(from, 1138 page_address(pfrag->page) + pfrag->offset, 1139 offset, copy, skb->len, skb) < 0) 1140 goto error_efault; 1141 1142 pfrag->offset += copy; 1143 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1144 skb->len += copy; 1145 skb->data_len += copy; 1146 skb->truesize += copy; 1147 atomic_add(copy, &sk->sk_wmem_alloc); 1148 } 1149 offset += copy; 1150 length -= copy; 1151 } 1152 1153 return 0; 1154 1155 error_efault: 1156 err = -EFAULT; 1157 error: 1158 cork->length -= length; 1159 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1160 return err; 1161 } 1162 1163 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, 1164 struct ipcm_cookie *ipc, struct rtable **rtp) 1165 { 1166 struct ip_options_rcu *opt; 1167 struct rtable *rt; 1168 1169 /* 1170 * setup for corking. 1171 */ 1172 opt = ipc->opt; 1173 if (opt) { 1174 if (!cork->opt) { 1175 cork->opt = kmalloc(sizeof(struct ip_options) + 40, 1176 sk->sk_allocation); 1177 if (unlikely(!cork->opt)) 1178 return -ENOBUFS; 1179 } 1180 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); 1181 cork->flags |= IPCORK_OPT; 1182 cork->addr = ipc->addr; 1183 } 1184 rt = *rtp; 1185 if (unlikely(!rt)) 1186 return -EFAULT; 1187 /* 1188 * We steal reference to this route, caller should not release it 1189 */ 1190 *rtp = NULL; 1191 cork->fragsize = ip_sk_use_pmtu(sk) ? 1192 dst_mtu(&rt->dst) : rt->dst.dev->mtu; 1193 cork->dst = &rt->dst; 1194 cork->length = 0; 1195 cork->ttl = ipc->ttl; 1196 cork->tos = ipc->tos; 1197 cork->priority = ipc->priority; 1198 cork->tx_flags = ipc->tx_flags; 1199 1200 return 0; 1201 } 1202 1203 /* 1204 * ip_append_data() and ip_append_page() can make one large IP datagram 1205 * from many pieces of data. Each pieces will be holded on the socket 1206 * until ip_push_pending_frames() is called. Each piece can be a page 1207 * or non-page data. 1208 * 1209 * Not only UDP, other transport protocols - e.g. raw sockets - can use 1210 * this interface potentially. 1211 * 1212 * LATER: length must be adjusted by pad at tail, when it is required. 1213 */ 1214 int ip_append_data(struct sock *sk, struct flowi4 *fl4, 1215 int getfrag(void *from, char *to, int offset, int len, 1216 int odd, struct sk_buff *skb), 1217 void *from, int length, int transhdrlen, 1218 struct ipcm_cookie *ipc, struct rtable **rtp, 1219 unsigned int flags) 1220 { 1221 struct inet_sock *inet = inet_sk(sk); 1222 int err; 1223 1224 if (flags&MSG_PROBE) 1225 return 0; 1226 1227 if (skb_queue_empty(&sk->sk_write_queue)) { 1228 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); 1229 if (err) 1230 return err; 1231 } else { 1232 transhdrlen = 0; 1233 } 1234 1235 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, 1236 sk_page_frag(sk), getfrag, 1237 from, length, transhdrlen, flags); 1238 } 1239 1240 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, 1241 int offset, size_t size, int flags) 1242 { 1243 struct inet_sock *inet = inet_sk(sk); 1244 struct sk_buff *skb; 1245 struct rtable *rt; 1246 struct ip_options *opt = NULL; 1247 struct inet_cork *cork; 1248 int hh_len; 1249 int mtu; 1250 int len; 1251 int err; 1252 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; 1253 1254 if (inet->hdrincl) 1255 return -EPERM; 1256 1257 if (flags&MSG_PROBE) 1258 return 0; 1259 1260 if (skb_queue_empty(&sk->sk_write_queue)) 1261 return -EINVAL; 1262 1263 cork = &inet->cork.base; 1264 rt = (struct rtable *)cork->dst; 1265 if (cork->flags & IPCORK_OPT) 1266 opt = cork->opt; 1267 1268 if (!(rt->dst.dev->features&NETIF_F_SG)) 1269 return -EOPNOTSUPP; 1270 1271 hh_len = LL_RESERVED_SPACE(rt->dst.dev); 1272 mtu = cork->fragsize; 1273 1274 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); 1275 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; 1276 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; 1277 1278 if (cork->length + size > maxnonfragsize - fragheaderlen) { 1279 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, 1280 mtu - (opt ? opt->optlen : 0)); 1281 return -EMSGSIZE; 1282 } 1283 1284 skb = skb_peek_tail(&sk->sk_write_queue); 1285 if (!skb) 1286 return -EINVAL; 1287 1288 if ((size + skb->len > mtu) && 1289 (sk->sk_protocol == IPPROTO_UDP) && 1290 (rt->dst.dev->features & NETIF_F_UFO)) { 1291 if (skb->ip_summed != CHECKSUM_PARTIAL) 1292 return -EOPNOTSUPP; 1293 1294 skb_shinfo(skb)->gso_size = mtu - fragheaderlen; 1295 skb_shinfo(skb)->gso_type = SKB_GSO_UDP; 1296 } 1297 cork->length += size; 1298 1299 while (size > 0) { 1300 if (skb_is_gso(skb)) { 1301 len = size; 1302 } else { 1303 1304 /* Check if the remaining data fits into current packet. */ 1305 len = mtu - skb->len; 1306 if (len < size) 1307 len = maxfraglen - skb->len; 1308 } 1309 if (len <= 0) { 1310 struct sk_buff *skb_prev; 1311 int alloclen; 1312 1313 skb_prev = skb; 1314 fraggap = skb_prev->len - maxfraglen; 1315 1316 alloclen = fragheaderlen + hh_len + fraggap + 15; 1317 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); 1318 if (unlikely(!skb)) { 1319 err = -ENOBUFS; 1320 goto error; 1321 } 1322 1323 /* 1324 * Fill in the control structures 1325 */ 1326 skb->ip_summed = CHECKSUM_NONE; 1327 skb->csum = 0; 1328 skb_reserve(skb, hh_len); 1329 1330 /* 1331 * Find where to start putting bytes. 1332 */ 1333 skb_put(skb, fragheaderlen + fraggap); 1334 skb_reset_network_header(skb); 1335 skb->transport_header = (skb->network_header + 1336 fragheaderlen); 1337 if (fraggap) { 1338 skb->csum = skb_copy_and_csum_bits(skb_prev, 1339 maxfraglen, 1340 skb_transport_header(skb), 1341 fraggap, 0); 1342 skb_prev->csum = csum_sub(skb_prev->csum, 1343 skb->csum); 1344 pskb_trim_unique(skb_prev, maxfraglen); 1345 } 1346 1347 /* 1348 * Put the packet on the pending queue. 1349 */ 1350 __skb_queue_tail(&sk->sk_write_queue, skb); 1351 continue; 1352 } 1353 1354 if (len > size) 1355 len = size; 1356 1357 if (skb_append_pagefrags(skb, page, offset, len)) { 1358 err = -EMSGSIZE; 1359 goto error; 1360 } 1361 1362 if (skb->ip_summed == CHECKSUM_NONE) { 1363 __wsum csum; 1364 csum = csum_page(page, offset, len); 1365 skb->csum = csum_block_add(skb->csum, csum, skb->len); 1366 } 1367 1368 skb->len += len; 1369 skb->data_len += len; 1370 skb->truesize += len; 1371 atomic_add(len, &sk->sk_wmem_alloc); 1372 offset += len; 1373 size -= len; 1374 } 1375 return 0; 1376 1377 error: 1378 cork->length -= size; 1379 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); 1380 return err; 1381 } 1382 1383 static void ip_cork_release(struct inet_cork *cork) 1384 { 1385 cork->flags &= ~IPCORK_OPT; 1386 kfree(cork->opt); 1387 cork->opt = NULL; 1388 dst_release(cork->dst); 1389 cork->dst = NULL; 1390 } 1391 1392 /* 1393 * Combined all pending IP fragments on the socket as one IP datagram 1394 * and push them out. 1395 */ 1396 struct sk_buff *__ip_make_skb(struct sock *sk, 1397 struct flowi4 *fl4, 1398 struct sk_buff_head *queue, 1399 struct inet_cork *cork) 1400 { 1401 struct sk_buff *skb, *tmp_skb; 1402 struct sk_buff **tail_skb; 1403 struct inet_sock *inet = inet_sk(sk); 1404 struct net *net = sock_net(sk); 1405 struct ip_options *opt = NULL; 1406 struct rtable *rt = (struct rtable *)cork->dst; 1407 struct iphdr *iph; 1408 __be16 df = 0; 1409 __u8 ttl; 1410 1411 skb = __skb_dequeue(queue); 1412 if (!skb) 1413 goto out; 1414 tail_skb = &(skb_shinfo(skb)->frag_list); 1415 1416 /* move skb->data to ip header from ext header */ 1417 if (skb->data < skb_network_header(skb)) 1418 __skb_pull(skb, skb_network_offset(skb)); 1419 while ((tmp_skb = __skb_dequeue(queue)) != NULL) { 1420 __skb_pull(tmp_skb, skb_network_header_len(skb)); 1421 *tail_skb = tmp_skb; 1422 tail_skb = &(tmp_skb->next); 1423 skb->len += tmp_skb->len; 1424 skb->data_len += tmp_skb->len; 1425 skb->truesize += tmp_skb->truesize; 1426 tmp_skb->destructor = NULL; 1427 tmp_skb->sk = NULL; 1428 } 1429 1430 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow 1431 * to fragment the frame generated here. No matter, what transforms 1432 * how transforms change size of the packet, it will come out. 1433 */ 1434 skb->ignore_df = ip_sk_ignore_df(sk); 1435 1436 /* DF bit is set when we want to see DF on outgoing frames. 1437 * If ignore_df is set too, we still allow to fragment this frame 1438 * locally. */ 1439 if (inet->pmtudisc == IP_PMTUDISC_DO || 1440 inet->pmtudisc == IP_PMTUDISC_PROBE || 1441 (skb->len <= dst_mtu(&rt->dst) && 1442 ip_dont_fragment(sk, &rt->dst))) 1443 df = htons(IP_DF); 1444 1445 if (cork->flags & IPCORK_OPT) 1446 opt = cork->opt; 1447 1448 if (cork->ttl != 0) 1449 ttl = cork->ttl; 1450 else if (rt->rt_type == RTN_MULTICAST) 1451 ttl = inet->mc_ttl; 1452 else 1453 ttl = ip_select_ttl(inet, &rt->dst); 1454 1455 iph = ip_hdr(skb); 1456 iph->version = 4; 1457 iph->ihl = 5; 1458 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; 1459 iph->frag_off = df; 1460 iph->ttl = ttl; 1461 iph->protocol = sk->sk_protocol; 1462 ip_copy_addrs(iph, fl4); 1463 ip_select_ident(net, skb, sk); 1464 1465 if (opt) { 1466 iph->ihl += opt->optlen>>2; 1467 ip_options_build(skb, opt, cork->addr, rt, 0); 1468 } 1469 1470 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; 1471 skb->mark = sk->sk_mark; 1472 /* 1473 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec 1474 * on dst refcount 1475 */ 1476 cork->dst = NULL; 1477 skb_dst_set(skb, &rt->dst); 1478 1479 if (iph->protocol == IPPROTO_ICMP) 1480 icmp_out_count(net, ((struct icmphdr *) 1481 skb_transport_header(skb))->type); 1482 1483 ip_cork_release(cork); 1484 out: 1485 return skb; 1486 } 1487 1488 int ip_send_skb(struct net *net, struct sk_buff *skb) 1489 { 1490 int err; 1491 1492 err = ip_local_out(net, skb->sk, skb); 1493 if (err) { 1494 if (err > 0) 1495 err = net_xmit_errno(err); 1496 if (err) 1497 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); 1498 } 1499 1500 return err; 1501 } 1502 1503 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) 1504 { 1505 struct sk_buff *skb; 1506 1507 skb = ip_finish_skb(sk, fl4); 1508 if (!skb) 1509 return 0; 1510 1511 /* Netfilter gets whole the not fragmented skb. */ 1512 return ip_send_skb(sock_net(sk), skb); 1513 } 1514 1515 /* 1516 * Throw away all pending data on the socket. 1517 */ 1518 static void __ip_flush_pending_frames(struct sock *sk, 1519 struct sk_buff_head *queue, 1520 struct inet_cork *cork) 1521 { 1522 struct sk_buff *skb; 1523 1524 while ((skb = __skb_dequeue_tail(queue)) != NULL) 1525 kfree_skb(skb); 1526 1527 ip_cork_release(cork); 1528 } 1529 1530 void ip_flush_pending_frames(struct sock *sk) 1531 { 1532 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); 1533 } 1534 1535 struct sk_buff *ip_make_skb(struct sock *sk, 1536 struct flowi4 *fl4, 1537 int getfrag(void *from, char *to, int offset, 1538 int len, int odd, struct sk_buff *skb), 1539 void *from, int length, int transhdrlen, 1540 struct ipcm_cookie *ipc, struct rtable **rtp, 1541 unsigned int flags) 1542 { 1543 struct inet_cork cork; 1544 struct sk_buff_head queue; 1545 int err; 1546 1547 if (flags & MSG_PROBE) 1548 return NULL; 1549 1550 __skb_queue_head_init(&queue); 1551 1552 cork.flags = 0; 1553 cork.addr = 0; 1554 cork.opt = NULL; 1555 err = ip_setup_cork(sk, &cork, ipc, rtp); 1556 if (err) 1557 return ERR_PTR(err); 1558 1559 err = __ip_append_data(sk, fl4, &queue, &cork, 1560 ¤t->task_frag, getfrag, 1561 from, length, transhdrlen, flags); 1562 if (err) { 1563 __ip_flush_pending_frames(sk, &queue, &cork); 1564 return ERR_PTR(err); 1565 } 1566 1567 return __ip_make_skb(sk, fl4, &queue, &cork); 1568 } 1569 1570 /* 1571 * Fetch data from kernel space and fill in checksum if needed. 1572 */ 1573 static int ip_reply_glue_bits(void *dptr, char *to, int offset, 1574 int len, int odd, struct sk_buff *skb) 1575 { 1576 __wsum csum; 1577 1578 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); 1579 skb->csum = csum_block_add(skb->csum, csum, odd); 1580 return 0; 1581 } 1582 1583 /* 1584 * Generic function to send a packet as reply to another packet. 1585 * Used to send some TCP resets/acks so far. 1586 */ 1587 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, 1588 const struct ip_options *sopt, 1589 __be32 daddr, __be32 saddr, 1590 const struct ip_reply_arg *arg, 1591 unsigned int len) 1592 { 1593 struct ip_options_data replyopts; 1594 struct ipcm_cookie ipc; 1595 struct flowi4 fl4; 1596 struct rtable *rt = skb_rtable(skb); 1597 struct net *net = sock_net(sk); 1598 struct sk_buff *nskb; 1599 int err; 1600 int oif; 1601 1602 if (__ip_options_echo(&replyopts.opt.opt, skb, sopt)) 1603 return; 1604 1605 ipc.addr = daddr; 1606 ipc.opt = NULL; 1607 ipc.tx_flags = 0; 1608 ipc.ttl = 0; 1609 ipc.tos = -1; 1610 1611 if (replyopts.opt.opt.optlen) { 1612 ipc.opt = &replyopts.opt; 1613 1614 if (replyopts.opt.opt.srr) 1615 daddr = replyopts.opt.opt.faddr; 1616 } 1617 1618 oif = arg->bound_dev_if; 1619 if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) 1620 oif = skb->skb_iif; 1621 1622 flowi4_init_output(&fl4, oif, 1623 IP4_REPLY_MARK(net, skb->mark), 1624 RT_TOS(arg->tos), 1625 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, 1626 ip_reply_arg_flowi_flags(arg), 1627 daddr, saddr, 1628 tcp_hdr(skb)->source, tcp_hdr(skb)->dest, 1629 arg->uid); 1630 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); 1631 rt = ip_route_output_key(net, &fl4); 1632 if (IS_ERR(rt)) 1633 return; 1634 1635 inet_sk(sk)->tos = arg->tos; 1636 1637 sk->sk_priority = skb->priority; 1638 sk->sk_protocol = ip_hdr(skb)->protocol; 1639 sk->sk_bound_dev_if = arg->bound_dev_if; 1640 sk->sk_sndbuf = sysctl_wmem_default; 1641 sk->sk_mark = fl4.flowi4_mark; 1642 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, 1643 len, 0, &ipc, &rt, MSG_DONTWAIT); 1644 if (unlikely(err)) { 1645 ip_flush_pending_frames(sk); 1646 goto out; 1647 } 1648 1649 nskb = skb_peek(&sk->sk_write_queue); 1650 if (nskb) { 1651 if (arg->csumoffset >= 0) 1652 *((__sum16 *)skb_transport_header(nskb) + 1653 arg->csumoffset) = csum_fold(csum_add(nskb->csum, 1654 arg->csum)); 1655 nskb->ip_summed = CHECKSUM_NONE; 1656 ip_push_pending_frames(sk, &fl4); 1657 } 1658 out: 1659 ip_rt_put(rt); 1660 } 1661 1662 void __init ip_init(void) 1663 { 1664 ip_rt_init(); 1665 inet_initpeers(); 1666 1667 #if defined(CONFIG_IP_MULTICAST) 1668 igmp_mc_init(); 1669 #endif 1670 } 1671