xref: /openbmc/linux/net/ipv4/ip_output.c (revision 020c5260)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <linux/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
49 #include <linux/mm.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
54 
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
57 #include <linux/in.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
64 
65 #include <net/snmp.h>
66 #include <net/ip.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
69 #include <net/xfrm.h>
70 #include <linux/skbuff.h>
71 #include <net/sock.h>
72 #include <net/arp.h>
73 #include <net/icmp.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <net/lwtunnel.h>
77 #include <linux/bpf-cgroup.h>
78 #include <linux/igmp.h>
79 #include <linux/netfilter_ipv4.h>
80 #include <linux/netfilter_bridge.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 static int
85 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
86 	    unsigned int mtu,
87 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
88 
89 /* Generate a checksum for an outgoing IP datagram. */
90 void ip_send_check(struct iphdr *iph)
91 {
92 	iph->check = 0;
93 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
94 }
95 EXPORT_SYMBOL(ip_send_check);
96 
97 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
98 {
99 	struct iphdr *iph = ip_hdr(skb);
100 
101 	iph->tot_len = htons(skb->len);
102 	ip_send_check(iph);
103 
104 	/* if egress device is enslaved to an L3 master device pass the
105 	 * skb to its handler for processing
106 	 */
107 	skb = l3mdev_ip_out(sk, skb);
108 	if (unlikely(!skb))
109 		return 0;
110 
111 	skb->protocol = htons(ETH_P_IP);
112 
113 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
114 		       net, sk, skb, NULL, skb_dst(skb)->dev,
115 		       dst_output);
116 }
117 
118 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
119 {
120 	int err;
121 
122 	err = __ip_local_out(net, sk, skb);
123 	if (likely(err == 1))
124 		err = dst_output(net, sk, skb);
125 
126 	return err;
127 }
128 EXPORT_SYMBOL_GPL(ip_local_out);
129 
130 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 {
132 	int ttl = inet->uc_ttl;
133 
134 	if (ttl < 0)
135 		ttl = ip4_dst_hoplimit(dst);
136 	return ttl;
137 }
138 
139 /*
140  *		Add an ip header to a skbuff and send it out.
141  *
142  */
143 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
144 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
145 {
146 	struct inet_sock *inet = inet_sk(sk);
147 	struct rtable *rt = skb_rtable(skb);
148 	struct net *net = sock_net(sk);
149 	struct iphdr *iph;
150 
151 	/* Build the IP header. */
152 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
153 	skb_reset_network_header(skb);
154 	iph = ip_hdr(skb);
155 	iph->version  = 4;
156 	iph->ihl      = 5;
157 	iph->tos      = inet->tos;
158 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
159 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
160 	iph->saddr    = saddr;
161 	iph->protocol = sk->sk_protocol;
162 	if (ip_dont_fragment(sk, &rt->dst)) {
163 		iph->frag_off = htons(IP_DF);
164 		iph->id = 0;
165 	} else {
166 		iph->frag_off = 0;
167 		__ip_select_ident(net, iph, 1);
168 	}
169 
170 	if (opt && opt->opt.optlen) {
171 		iph->ihl += opt->opt.optlen>>2;
172 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
173 	}
174 
175 	skb->priority = sk->sk_priority;
176 	skb->mark = sk->sk_mark;
177 
178 	/* Send it out. */
179 	return ip_local_out(net, skb->sk, skb);
180 }
181 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
182 
183 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
184 {
185 	struct dst_entry *dst = skb_dst(skb);
186 	struct rtable *rt = (struct rtable *)dst;
187 	struct net_device *dev = dst->dev;
188 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
189 	struct neighbour *neigh;
190 	u32 nexthop;
191 
192 	if (rt->rt_type == RTN_MULTICAST) {
193 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
194 	} else if (rt->rt_type == RTN_BROADCAST)
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
196 
197 	/* Be paranoid, rather than too clever. */
198 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
199 		struct sk_buff *skb2;
200 
201 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
202 		if (!skb2) {
203 			kfree_skb(skb);
204 			return -ENOMEM;
205 		}
206 		if (skb->sk)
207 			skb_set_owner_w(skb2, skb->sk);
208 		consume_skb(skb);
209 		skb = skb2;
210 	}
211 
212 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
213 		int res = lwtunnel_xmit(skb);
214 
215 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
216 			return res;
217 	}
218 
219 	rcu_read_lock_bh();
220 	nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr);
221 	neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
222 	if (unlikely(!neigh))
223 		neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
224 	if (!IS_ERR(neigh)) {
225 		int res;
226 
227 		sock_confirm_neigh(skb, neigh);
228 		res = neigh_output(neigh, skb);
229 
230 		rcu_read_unlock_bh();
231 		return res;
232 	}
233 	rcu_read_unlock_bh();
234 
235 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
236 			    __func__);
237 	kfree_skb(skb);
238 	return -EINVAL;
239 }
240 
241 static int ip_finish_output_gso(struct net *net, struct sock *sk,
242 				struct sk_buff *skb, unsigned int mtu)
243 {
244 	netdev_features_t features;
245 	struct sk_buff *segs;
246 	int ret = 0;
247 
248 	/* common case: seglen is <= mtu
249 	 */
250 	if (skb_gso_validate_mtu(skb, mtu))
251 		return ip_finish_output2(net, sk, skb);
252 
253 	/* Slowpath -  GSO segment length exceeds the egress MTU.
254 	 *
255 	 * This can happen in several cases:
256 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
257 	 *  - Forwarding of an skb that arrived on a virtualization interface
258 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
259 	 *    stack.
260 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
261 	 *    interface with a smaller MTU.
262 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
263 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
264 	 *    insufficent MTU.
265 	 */
266 	features = netif_skb_features(skb);
267 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
268 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
269 	if (IS_ERR_OR_NULL(segs)) {
270 		kfree_skb(skb);
271 		return -ENOMEM;
272 	}
273 
274 	consume_skb(skb);
275 
276 	do {
277 		struct sk_buff *nskb = segs->next;
278 		int err;
279 
280 		segs->next = NULL;
281 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
282 
283 		if (err && ret == 0)
284 			ret = err;
285 		segs = nskb;
286 	} while (segs);
287 
288 	return ret;
289 }
290 
291 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
292 {
293 	unsigned int mtu;
294 	int ret;
295 
296 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
297 	if (ret) {
298 		kfree_skb(skb);
299 		return ret;
300 	}
301 
302 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
303 	/* Policy lookup after SNAT yielded a new policy */
304 	if (skb_dst(skb)->xfrm) {
305 		IPCB(skb)->flags |= IPSKB_REROUTED;
306 		return dst_output(net, sk, skb);
307 	}
308 #endif
309 	mtu = ip_skb_dst_mtu(sk, skb);
310 	if (skb_is_gso(skb))
311 		return ip_finish_output_gso(net, sk, skb, mtu);
312 
313 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
314 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
315 
316 	return ip_finish_output2(net, sk, skb);
317 }
318 
319 static int ip_mc_finish_output(struct net *net, struct sock *sk,
320 			       struct sk_buff *skb)
321 {
322 	int ret;
323 
324 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
325 	if (ret) {
326 		kfree_skb(skb);
327 		return ret;
328 	}
329 
330 	return dev_loopback_xmit(net, sk, skb);
331 }
332 
333 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
334 {
335 	struct rtable *rt = skb_rtable(skb);
336 	struct net_device *dev = rt->dst.dev;
337 
338 	/*
339 	 *	If the indicated interface is up and running, send the packet.
340 	 */
341 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
342 
343 	skb->dev = dev;
344 	skb->protocol = htons(ETH_P_IP);
345 
346 	/*
347 	 *	Multicasts are looped back for other local users
348 	 */
349 
350 	if (rt->rt_flags&RTCF_MULTICAST) {
351 		if (sk_mc_loop(sk)
352 #ifdef CONFIG_IP_MROUTE
353 		/* Small optimization: do not loopback not local frames,
354 		   which returned after forwarding; they will be  dropped
355 		   by ip_mr_input in any case.
356 		   Note, that local frames are looped back to be delivered
357 		   to local recipients.
358 
359 		   This check is duplicated in ip_mr_input at the moment.
360 		 */
361 		    &&
362 		    ((rt->rt_flags & RTCF_LOCAL) ||
363 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
364 #endif
365 		   ) {
366 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
367 			if (newskb)
368 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
369 					net, sk, newskb, NULL, newskb->dev,
370 					ip_mc_finish_output);
371 		}
372 
373 		/* Multicasts with ttl 0 must not go beyond the host */
374 
375 		if (ip_hdr(skb)->ttl == 0) {
376 			kfree_skb(skb);
377 			return 0;
378 		}
379 	}
380 
381 	if (rt->rt_flags&RTCF_BROADCAST) {
382 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
383 		if (newskb)
384 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
385 				net, sk, newskb, NULL, newskb->dev,
386 				ip_mc_finish_output);
387 	}
388 
389 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
390 			    net, sk, skb, NULL, skb->dev,
391 			    ip_finish_output,
392 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
393 }
394 
395 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
396 {
397 	struct net_device *dev = skb_dst(skb)->dev;
398 
399 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
400 
401 	skb->dev = dev;
402 	skb->protocol = htons(ETH_P_IP);
403 
404 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
405 			    net, sk, skb, NULL, dev,
406 			    ip_finish_output,
407 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
408 }
409 
410 /*
411  * copy saddr and daddr, possibly using 64bit load/stores
412  * Equivalent to :
413  *   iph->saddr = fl4->saddr;
414  *   iph->daddr = fl4->daddr;
415  */
416 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
417 {
418 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
419 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
420 	memcpy(&iph->saddr, &fl4->saddr,
421 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
422 }
423 
424 /* Note: skb->sk can be different from sk, in case of tunnels */
425 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
426 {
427 	struct inet_sock *inet = inet_sk(sk);
428 	struct net *net = sock_net(sk);
429 	struct ip_options_rcu *inet_opt;
430 	struct flowi4 *fl4;
431 	struct rtable *rt;
432 	struct iphdr *iph;
433 	int res;
434 
435 	/* Skip all of this if the packet is already routed,
436 	 * f.e. by something like SCTP.
437 	 */
438 	rcu_read_lock();
439 	inet_opt = rcu_dereference(inet->inet_opt);
440 	fl4 = &fl->u.ip4;
441 	rt = skb_rtable(skb);
442 	if (rt)
443 		goto packet_routed;
444 
445 	/* Make sure we can route this packet. */
446 	rt = (struct rtable *)__sk_dst_check(sk, 0);
447 	if (!rt) {
448 		__be32 daddr;
449 
450 		/* Use correct destination address if we have options. */
451 		daddr = inet->inet_daddr;
452 		if (inet_opt && inet_opt->opt.srr)
453 			daddr = inet_opt->opt.faddr;
454 
455 		/* If this fails, retransmit mechanism of transport layer will
456 		 * keep trying until route appears or the connection times
457 		 * itself out.
458 		 */
459 		rt = ip_route_output_ports(net, fl4, sk,
460 					   daddr, inet->inet_saddr,
461 					   inet->inet_dport,
462 					   inet->inet_sport,
463 					   sk->sk_protocol,
464 					   RT_CONN_FLAGS(sk),
465 					   sk->sk_bound_dev_if);
466 		if (IS_ERR(rt))
467 			goto no_route;
468 		sk_setup_caps(sk, &rt->dst);
469 	}
470 	skb_dst_set_noref(skb, &rt->dst);
471 
472 packet_routed:
473 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
474 		goto no_route;
475 
476 	/* OK, we know where to send it, allocate and build IP header. */
477 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
478 	skb_reset_network_header(skb);
479 	iph = ip_hdr(skb);
480 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
481 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
482 		iph->frag_off = htons(IP_DF);
483 	else
484 		iph->frag_off = 0;
485 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
486 	iph->protocol = sk->sk_protocol;
487 	ip_copy_addrs(iph, fl4);
488 
489 	/* Transport layer set skb->h.foo itself. */
490 
491 	if (inet_opt && inet_opt->opt.optlen) {
492 		iph->ihl += inet_opt->opt.optlen >> 2;
493 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
494 	}
495 
496 	ip_select_ident_segs(net, skb, sk,
497 			     skb_shinfo(skb)->gso_segs ?: 1);
498 
499 	/* TODO : should we use skb->sk here instead of sk ? */
500 	skb->priority = sk->sk_priority;
501 	skb->mark = sk->sk_mark;
502 
503 	res = ip_local_out(net, sk, skb);
504 	rcu_read_unlock();
505 	return res;
506 
507 no_route:
508 	rcu_read_unlock();
509 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
510 	kfree_skb(skb);
511 	return -EHOSTUNREACH;
512 }
513 EXPORT_SYMBOL(ip_queue_xmit);
514 
515 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
516 {
517 	to->pkt_type = from->pkt_type;
518 	to->priority = from->priority;
519 	to->protocol = from->protocol;
520 	skb_dst_drop(to);
521 	skb_dst_copy(to, from);
522 	to->dev = from->dev;
523 	to->mark = from->mark;
524 
525 	/* Copy the flags to each fragment. */
526 	IPCB(to)->flags = IPCB(from)->flags;
527 
528 #ifdef CONFIG_NET_SCHED
529 	to->tc_index = from->tc_index;
530 #endif
531 	nf_copy(to, from);
532 #if IS_ENABLED(CONFIG_IP_VS)
533 	to->ipvs_property = from->ipvs_property;
534 #endif
535 	skb_copy_secmark(to, from);
536 }
537 
538 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
539 		       unsigned int mtu,
540 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
541 {
542 	struct iphdr *iph = ip_hdr(skb);
543 
544 	if ((iph->frag_off & htons(IP_DF)) == 0)
545 		return ip_do_fragment(net, sk, skb, output);
546 
547 	if (unlikely(!skb->ignore_df ||
548 		     (IPCB(skb)->frag_max_size &&
549 		      IPCB(skb)->frag_max_size > mtu))) {
550 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
551 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
552 			  htonl(mtu));
553 		kfree_skb(skb);
554 		return -EMSGSIZE;
555 	}
556 
557 	return ip_do_fragment(net, sk, skb, output);
558 }
559 
560 /*
561  *	This IP datagram is too large to be sent in one piece.  Break it up into
562  *	smaller pieces (each of size equal to IP header plus
563  *	a block of the data of the original IP data part) that will yet fit in a
564  *	single device frame, and queue such a frame for sending.
565  */
566 
567 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
568 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
569 {
570 	struct iphdr *iph;
571 	int ptr;
572 	struct sk_buff *skb2;
573 	unsigned int mtu, hlen, left, len, ll_rs;
574 	int offset;
575 	__be16 not_last_frag;
576 	struct rtable *rt = skb_rtable(skb);
577 	int err = 0;
578 
579 	/* for offloaded checksums cleanup checksum before fragmentation */
580 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
581 	    (err = skb_checksum_help(skb)))
582 		goto fail;
583 
584 	/*
585 	 *	Point into the IP datagram header.
586 	 */
587 
588 	iph = ip_hdr(skb);
589 
590 	mtu = ip_skb_dst_mtu(sk, skb);
591 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
592 		mtu = IPCB(skb)->frag_max_size;
593 
594 	/*
595 	 *	Setup starting values.
596 	 */
597 
598 	hlen = iph->ihl * 4;
599 	mtu = mtu - hlen;	/* Size of data space */
600 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
601 
602 	/* When frag_list is given, use it. First, check its validity:
603 	 * some transformers could create wrong frag_list or break existing
604 	 * one, it is not prohibited. In this case fall back to copying.
605 	 *
606 	 * LATER: this step can be merged to real generation of fragments,
607 	 * we can switch to copy when see the first bad fragment.
608 	 */
609 	if (skb_has_frag_list(skb)) {
610 		struct sk_buff *frag, *frag2;
611 		unsigned int first_len = skb_pagelen(skb);
612 
613 		if (first_len - hlen > mtu ||
614 		    ((first_len - hlen) & 7) ||
615 		    ip_is_fragment(iph) ||
616 		    skb_cloned(skb))
617 			goto slow_path;
618 
619 		skb_walk_frags(skb, frag) {
620 			/* Correct geometry. */
621 			if (frag->len > mtu ||
622 			    ((frag->len & 7) && frag->next) ||
623 			    skb_headroom(frag) < hlen)
624 				goto slow_path_clean;
625 
626 			/* Partially cloned skb? */
627 			if (skb_shared(frag))
628 				goto slow_path_clean;
629 
630 			BUG_ON(frag->sk);
631 			if (skb->sk) {
632 				frag->sk = skb->sk;
633 				frag->destructor = sock_wfree;
634 			}
635 			skb->truesize -= frag->truesize;
636 		}
637 
638 		/* Everything is OK. Generate! */
639 
640 		err = 0;
641 		offset = 0;
642 		frag = skb_shinfo(skb)->frag_list;
643 		skb_frag_list_init(skb);
644 		skb->data_len = first_len - skb_headlen(skb);
645 		skb->len = first_len;
646 		iph->tot_len = htons(first_len);
647 		iph->frag_off = htons(IP_MF);
648 		ip_send_check(iph);
649 
650 		for (;;) {
651 			/* Prepare header of the next frame,
652 			 * before previous one went down. */
653 			if (frag) {
654 				frag->ip_summed = CHECKSUM_NONE;
655 				skb_reset_transport_header(frag);
656 				__skb_push(frag, hlen);
657 				skb_reset_network_header(frag);
658 				memcpy(skb_network_header(frag), iph, hlen);
659 				iph = ip_hdr(frag);
660 				iph->tot_len = htons(frag->len);
661 				ip_copy_metadata(frag, skb);
662 				if (offset == 0)
663 					ip_options_fragment(frag);
664 				offset += skb->len - hlen;
665 				iph->frag_off = htons(offset>>3);
666 				if (frag->next)
667 					iph->frag_off |= htons(IP_MF);
668 				/* Ready, complete checksum */
669 				ip_send_check(iph);
670 			}
671 
672 			err = output(net, sk, skb);
673 
674 			if (!err)
675 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
676 			if (err || !frag)
677 				break;
678 
679 			skb = frag;
680 			frag = skb->next;
681 			skb->next = NULL;
682 		}
683 
684 		if (err == 0) {
685 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
686 			return 0;
687 		}
688 
689 		while (frag) {
690 			skb = frag->next;
691 			kfree_skb(frag);
692 			frag = skb;
693 		}
694 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
695 		return err;
696 
697 slow_path_clean:
698 		skb_walk_frags(skb, frag2) {
699 			if (frag2 == frag)
700 				break;
701 			frag2->sk = NULL;
702 			frag2->destructor = NULL;
703 			skb->truesize += frag2->truesize;
704 		}
705 	}
706 
707 slow_path:
708 	iph = ip_hdr(skb);
709 
710 	left = skb->len - hlen;		/* Space per frame */
711 	ptr = hlen;		/* Where to start from */
712 
713 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
714 
715 	/*
716 	 *	Fragment the datagram.
717 	 */
718 
719 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
720 	not_last_frag = iph->frag_off & htons(IP_MF);
721 
722 	/*
723 	 *	Keep copying data until we run out.
724 	 */
725 
726 	while (left > 0) {
727 		len = left;
728 		/* IF: it doesn't fit, use 'mtu' - the data space left */
729 		if (len > mtu)
730 			len = mtu;
731 		/* IF: we are not sending up to and including the packet end
732 		   then align the next start on an eight byte boundary */
733 		if (len < left)	{
734 			len &= ~7;
735 		}
736 
737 		/* Allocate buffer */
738 		skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC);
739 		if (!skb2) {
740 			err = -ENOMEM;
741 			goto fail;
742 		}
743 
744 		/*
745 		 *	Set up data on packet
746 		 */
747 
748 		ip_copy_metadata(skb2, skb);
749 		skb_reserve(skb2, ll_rs);
750 		skb_put(skb2, len + hlen);
751 		skb_reset_network_header(skb2);
752 		skb2->transport_header = skb2->network_header + hlen;
753 
754 		/*
755 		 *	Charge the memory for the fragment to any owner
756 		 *	it might possess
757 		 */
758 
759 		if (skb->sk)
760 			skb_set_owner_w(skb2, skb->sk);
761 
762 		/*
763 		 *	Copy the packet header into the new buffer.
764 		 */
765 
766 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
767 
768 		/*
769 		 *	Copy a block of the IP datagram.
770 		 */
771 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
772 			BUG();
773 		left -= len;
774 
775 		/*
776 		 *	Fill in the new header fields.
777 		 */
778 		iph = ip_hdr(skb2);
779 		iph->frag_off = htons((offset >> 3));
780 
781 		if (IPCB(skb)->flags & IPSKB_FRAG_PMTU)
782 			iph->frag_off |= htons(IP_DF);
783 
784 		/* ANK: dirty, but effective trick. Upgrade options only if
785 		 * the segment to be fragmented was THE FIRST (otherwise,
786 		 * options are already fixed) and make it ONCE
787 		 * on the initial skb, so that all the following fragments
788 		 * will inherit fixed options.
789 		 */
790 		if (offset == 0)
791 			ip_options_fragment(skb);
792 
793 		/*
794 		 *	Added AC : If we are fragmenting a fragment that's not the
795 		 *		   last fragment then keep MF on each bit
796 		 */
797 		if (left > 0 || not_last_frag)
798 			iph->frag_off |= htons(IP_MF);
799 		ptr += len;
800 		offset += len;
801 
802 		/*
803 		 *	Put this fragment into the sending queue.
804 		 */
805 		iph->tot_len = htons(len + hlen);
806 
807 		ip_send_check(iph);
808 
809 		err = output(net, sk, skb2);
810 		if (err)
811 			goto fail;
812 
813 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
814 	}
815 	consume_skb(skb);
816 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
817 	return err;
818 
819 fail:
820 	kfree_skb(skb);
821 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
822 	return err;
823 }
824 EXPORT_SYMBOL(ip_do_fragment);
825 
826 int
827 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
828 {
829 	struct msghdr *msg = from;
830 
831 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
832 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
833 			return -EFAULT;
834 	} else {
835 		__wsum csum = 0;
836 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
837 			return -EFAULT;
838 		skb->csum = csum_block_add(skb->csum, csum, odd);
839 	}
840 	return 0;
841 }
842 EXPORT_SYMBOL(ip_generic_getfrag);
843 
844 static inline __wsum
845 csum_page(struct page *page, int offset, int copy)
846 {
847 	char *kaddr;
848 	__wsum csum;
849 	kaddr = kmap(page);
850 	csum = csum_partial(kaddr + offset, copy, 0);
851 	kunmap(page);
852 	return csum;
853 }
854 
855 static inline int ip_ufo_append_data(struct sock *sk,
856 			struct sk_buff_head *queue,
857 			int getfrag(void *from, char *to, int offset, int len,
858 			       int odd, struct sk_buff *skb),
859 			void *from, int length, int hh_len, int fragheaderlen,
860 			int transhdrlen, int maxfraglen, unsigned int flags)
861 {
862 	struct sk_buff *skb;
863 	int err;
864 
865 	/* There is support for UDP fragmentation offload by network
866 	 * device, so create one single skb packet containing complete
867 	 * udp datagram
868 	 */
869 	skb = skb_peek_tail(queue);
870 	if (!skb) {
871 		skb = sock_alloc_send_skb(sk,
872 			hh_len + fragheaderlen + transhdrlen + 20,
873 			(flags & MSG_DONTWAIT), &err);
874 
875 		if (!skb)
876 			return err;
877 
878 		/* reserve space for Hardware header */
879 		skb_reserve(skb, hh_len);
880 
881 		/* create space for UDP/IP header */
882 		skb_put(skb, fragheaderlen + transhdrlen);
883 
884 		/* initialize network header pointer */
885 		skb_reset_network_header(skb);
886 
887 		/* initialize protocol header pointer */
888 		skb->transport_header = skb->network_header + fragheaderlen;
889 
890 		skb->csum = 0;
891 
892 		if (flags & MSG_CONFIRM)
893 			skb_set_dst_pending_confirm(skb, 1);
894 
895 		__skb_queue_tail(queue, skb);
896 	} else if (skb_is_gso(skb)) {
897 		goto append;
898 	}
899 
900 	skb->ip_summed = CHECKSUM_PARTIAL;
901 	/* specify the length of each IP datagram fragment */
902 	skb_shinfo(skb)->gso_size = maxfraglen - fragheaderlen;
903 	skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
904 
905 append:
906 	return skb_append_datato_frags(sk, skb, getfrag, from,
907 				       (length - transhdrlen));
908 }
909 
910 static int __ip_append_data(struct sock *sk,
911 			    struct flowi4 *fl4,
912 			    struct sk_buff_head *queue,
913 			    struct inet_cork *cork,
914 			    struct page_frag *pfrag,
915 			    int getfrag(void *from, char *to, int offset,
916 					int len, int odd, struct sk_buff *skb),
917 			    void *from, int length, int transhdrlen,
918 			    unsigned int flags)
919 {
920 	struct inet_sock *inet = inet_sk(sk);
921 	struct sk_buff *skb;
922 
923 	struct ip_options *opt = cork->opt;
924 	int hh_len;
925 	int exthdrlen;
926 	int mtu;
927 	int copy;
928 	int err;
929 	int offset = 0;
930 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
931 	int csummode = CHECKSUM_NONE;
932 	struct rtable *rt = (struct rtable *)cork->dst;
933 	u32 tskey = 0;
934 
935 	skb = skb_peek_tail(queue);
936 
937 	exthdrlen = !skb ? rt->dst.header_len : 0;
938 	mtu = cork->fragsize;
939 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
940 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
941 		tskey = sk->sk_tskey++;
942 
943 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
944 
945 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
946 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
947 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
948 
949 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
950 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
951 			       mtu - (opt ? opt->optlen : 0));
952 		return -EMSGSIZE;
953 	}
954 
955 	/*
956 	 * transhdrlen > 0 means that this is the first fragment and we wish
957 	 * it won't be fragmented in the future.
958 	 */
959 	if (transhdrlen &&
960 	    length + fragheaderlen <= mtu &&
961 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
962 	    !(flags & MSG_MORE) &&
963 	    !exthdrlen)
964 		csummode = CHECKSUM_PARTIAL;
965 
966 	cork->length += length;
967 	if ((((length + fragheaderlen) > mtu) || (skb && skb_is_gso(skb))) &&
968 	    (sk->sk_protocol == IPPROTO_UDP) &&
969 	    (rt->dst.dev->features & NETIF_F_UFO) && !dst_xfrm(&rt->dst) &&
970 	    (sk->sk_type == SOCK_DGRAM) && !sk->sk_no_check_tx) {
971 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
972 					 hh_len, fragheaderlen, transhdrlen,
973 					 maxfraglen, flags);
974 		if (err)
975 			goto error;
976 		return 0;
977 	}
978 
979 	/* So, what's going on in the loop below?
980 	 *
981 	 * We use calculated fragment length to generate chained skb,
982 	 * each of segments is IP fragment ready for sending to network after
983 	 * adding appropriate IP header.
984 	 */
985 
986 	if (!skb)
987 		goto alloc_new_skb;
988 
989 	while (length > 0) {
990 		/* Check if the remaining data fits into current packet. */
991 		copy = mtu - skb->len;
992 		if (copy < length)
993 			copy = maxfraglen - skb->len;
994 		if (copy <= 0) {
995 			char *data;
996 			unsigned int datalen;
997 			unsigned int fraglen;
998 			unsigned int fraggap;
999 			unsigned int alloclen;
1000 			struct sk_buff *skb_prev;
1001 alloc_new_skb:
1002 			skb_prev = skb;
1003 			if (skb_prev)
1004 				fraggap = skb_prev->len - maxfraglen;
1005 			else
1006 				fraggap = 0;
1007 
1008 			/*
1009 			 * If remaining data exceeds the mtu,
1010 			 * we know we need more fragment(s).
1011 			 */
1012 			datalen = length + fraggap;
1013 			if (datalen > mtu - fragheaderlen)
1014 				datalen = maxfraglen - fragheaderlen;
1015 			fraglen = datalen + fragheaderlen;
1016 
1017 			if ((flags & MSG_MORE) &&
1018 			    !(rt->dst.dev->features&NETIF_F_SG))
1019 				alloclen = mtu;
1020 			else
1021 				alloclen = fraglen;
1022 
1023 			alloclen += exthdrlen;
1024 
1025 			/* The last fragment gets additional space at tail.
1026 			 * Note, with MSG_MORE we overallocate on fragments,
1027 			 * because we have no idea what fragment will be
1028 			 * the last.
1029 			 */
1030 			if (datalen == length + fraggap)
1031 				alloclen += rt->dst.trailer_len;
1032 
1033 			if (transhdrlen) {
1034 				skb = sock_alloc_send_skb(sk,
1035 						alloclen + hh_len + 15,
1036 						(flags & MSG_DONTWAIT), &err);
1037 			} else {
1038 				skb = NULL;
1039 				if (atomic_read(&sk->sk_wmem_alloc) <=
1040 				    2 * sk->sk_sndbuf)
1041 					skb = sock_wmalloc(sk,
1042 							   alloclen + hh_len + 15, 1,
1043 							   sk->sk_allocation);
1044 				if (unlikely(!skb))
1045 					err = -ENOBUFS;
1046 			}
1047 			if (!skb)
1048 				goto error;
1049 
1050 			/*
1051 			 *	Fill in the control structures
1052 			 */
1053 			skb->ip_summed = csummode;
1054 			skb->csum = 0;
1055 			skb_reserve(skb, hh_len);
1056 
1057 			/* only the initial fragment is time stamped */
1058 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1059 			cork->tx_flags = 0;
1060 			skb_shinfo(skb)->tskey = tskey;
1061 			tskey = 0;
1062 
1063 			/*
1064 			 *	Find where to start putting bytes.
1065 			 */
1066 			data = skb_put(skb, fraglen + exthdrlen);
1067 			skb_set_network_header(skb, exthdrlen);
1068 			skb->transport_header = (skb->network_header +
1069 						 fragheaderlen);
1070 			data += fragheaderlen + exthdrlen;
1071 
1072 			if (fraggap) {
1073 				skb->csum = skb_copy_and_csum_bits(
1074 					skb_prev, maxfraglen,
1075 					data + transhdrlen, fraggap, 0);
1076 				skb_prev->csum = csum_sub(skb_prev->csum,
1077 							  skb->csum);
1078 				data += fraggap;
1079 				pskb_trim_unique(skb_prev, maxfraglen);
1080 			}
1081 
1082 			copy = datalen - transhdrlen - fraggap;
1083 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1084 				err = -EFAULT;
1085 				kfree_skb(skb);
1086 				goto error;
1087 			}
1088 
1089 			offset += copy;
1090 			length -= datalen - fraggap;
1091 			transhdrlen = 0;
1092 			exthdrlen = 0;
1093 			csummode = CHECKSUM_NONE;
1094 
1095 			if ((flags & MSG_CONFIRM) && !skb_prev)
1096 				skb_set_dst_pending_confirm(skb, 1);
1097 
1098 			/*
1099 			 * Put the packet on the pending queue.
1100 			 */
1101 			__skb_queue_tail(queue, skb);
1102 			continue;
1103 		}
1104 
1105 		if (copy > length)
1106 			copy = length;
1107 
1108 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
1109 			unsigned int off;
1110 
1111 			off = skb->len;
1112 			if (getfrag(from, skb_put(skb, copy),
1113 					offset, copy, off, skb) < 0) {
1114 				__skb_trim(skb, off);
1115 				err = -EFAULT;
1116 				goto error;
1117 			}
1118 		} else {
1119 			int i = skb_shinfo(skb)->nr_frags;
1120 
1121 			err = -ENOMEM;
1122 			if (!sk_page_frag_refill(sk, pfrag))
1123 				goto error;
1124 
1125 			if (!skb_can_coalesce(skb, i, pfrag->page,
1126 					      pfrag->offset)) {
1127 				err = -EMSGSIZE;
1128 				if (i == MAX_SKB_FRAGS)
1129 					goto error;
1130 
1131 				__skb_fill_page_desc(skb, i, pfrag->page,
1132 						     pfrag->offset, 0);
1133 				skb_shinfo(skb)->nr_frags = ++i;
1134 				get_page(pfrag->page);
1135 			}
1136 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1137 			if (getfrag(from,
1138 				    page_address(pfrag->page) + pfrag->offset,
1139 				    offset, copy, skb->len, skb) < 0)
1140 				goto error_efault;
1141 
1142 			pfrag->offset += copy;
1143 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1144 			skb->len += copy;
1145 			skb->data_len += copy;
1146 			skb->truesize += copy;
1147 			atomic_add(copy, &sk->sk_wmem_alloc);
1148 		}
1149 		offset += copy;
1150 		length -= copy;
1151 	}
1152 
1153 	return 0;
1154 
1155 error_efault:
1156 	err = -EFAULT;
1157 error:
1158 	cork->length -= length;
1159 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1160 	return err;
1161 }
1162 
1163 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1164 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1165 {
1166 	struct ip_options_rcu *opt;
1167 	struct rtable *rt;
1168 
1169 	/*
1170 	 * setup for corking.
1171 	 */
1172 	opt = ipc->opt;
1173 	if (opt) {
1174 		if (!cork->opt) {
1175 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1176 					    sk->sk_allocation);
1177 			if (unlikely(!cork->opt))
1178 				return -ENOBUFS;
1179 		}
1180 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1181 		cork->flags |= IPCORK_OPT;
1182 		cork->addr = ipc->addr;
1183 	}
1184 	rt = *rtp;
1185 	if (unlikely(!rt))
1186 		return -EFAULT;
1187 	/*
1188 	 * We steal reference to this route, caller should not release it
1189 	 */
1190 	*rtp = NULL;
1191 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1192 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1193 	cork->dst = &rt->dst;
1194 	cork->length = 0;
1195 	cork->ttl = ipc->ttl;
1196 	cork->tos = ipc->tos;
1197 	cork->priority = ipc->priority;
1198 	cork->tx_flags = ipc->tx_flags;
1199 
1200 	return 0;
1201 }
1202 
1203 /*
1204  *	ip_append_data() and ip_append_page() can make one large IP datagram
1205  *	from many pieces of data. Each pieces will be holded on the socket
1206  *	until ip_push_pending_frames() is called. Each piece can be a page
1207  *	or non-page data.
1208  *
1209  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1210  *	this interface potentially.
1211  *
1212  *	LATER: length must be adjusted by pad at tail, when it is required.
1213  */
1214 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1215 		   int getfrag(void *from, char *to, int offset, int len,
1216 			       int odd, struct sk_buff *skb),
1217 		   void *from, int length, int transhdrlen,
1218 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1219 		   unsigned int flags)
1220 {
1221 	struct inet_sock *inet = inet_sk(sk);
1222 	int err;
1223 
1224 	if (flags&MSG_PROBE)
1225 		return 0;
1226 
1227 	if (skb_queue_empty(&sk->sk_write_queue)) {
1228 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1229 		if (err)
1230 			return err;
1231 	} else {
1232 		transhdrlen = 0;
1233 	}
1234 
1235 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1236 				sk_page_frag(sk), getfrag,
1237 				from, length, transhdrlen, flags);
1238 }
1239 
1240 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1241 		       int offset, size_t size, int flags)
1242 {
1243 	struct inet_sock *inet = inet_sk(sk);
1244 	struct sk_buff *skb;
1245 	struct rtable *rt;
1246 	struct ip_options *opt = NULL;
1247 	struct inet_cork *cork;
1248 	int hh_len;
1249 	int mtu;
1250 	int len;
1251 	int err;
1252 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1253 
1254 	if (inet->hdrincl)
1255 		return -EPERM;
1256 
1257 	if (flags&MSG_PROBE)
1258 		return 0;
1259 
1260 	if (skb_queue_empty(&sk->sk_write_queue))
1261 		return -EINVAL;
1262 
1263 	cork = &inet->cork.base;
1264 	rt = (struct rtable *)cork->dst;
1265 	if (cork->flags & IPCORK_OPT)
1266 		opt = cork->opt;
1267 
1268 	if (!(rt->dst.dev->features&NETIF_F_SG))
1269 		return -EOPNOTSUPP;
1270 
1271 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1272 	mtu = cork->fragsize;
1273 
1274 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1275 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1276 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1277 
1278 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1279 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1280 			       mtu - (opt ? opt->optlen : 0));
1281 		return -EMSGSIZE;
1282 	}
1283 
1284 	skb = skb_peek_tail(&sk->sk_write_queue);
1285 	if (!skb)
1286 		return -EINVAL;
1287 
1288 	if ((size + skb->len > mtu) &&
1289 	    (sk->sk_protocol == IPPROTO_UDP) &&
1290 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1291 		if (skb->ip_summed != CHECKSUM_PARTIAL)
1292 			return -EOPNOTSUPP;
1293 
1294 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1295 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1296 	}
1297 	cork->length += size;
1298 
1299 	while (size > 0) {
1300 		if (skb_is_gso(skb)) {
1301 			len = size;
1302 		} else {
1303 
1304 			/* Check if the remaining data fits into current packet. */
1305 			len = mtu - skb->len;
1306 			if (len < size)
1307 				len = maxfraglen - skb->len;
1308 		}
1309 		if (len <= 0) {
1310 			struct sk_buff *skb_prev;
1311 			int alloclen;
1312 
1313 			skb_prev = skb;
1314 			fraggap = skb_prev->len - maxfraglen;
1315 
1316 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1317 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1318 			if (unlikely(!skb)) {
1319 				err = -ENOBUFS;
1320 				goto error;
1321 			}
1322 
1323 			/*
1324 			 *	Fill in the control structures
1325 			 */
1326 			skb->ip_summed = CHECKSUM_NONE;
1327 			skb->csum = 0;
1328 			skb_reserve(skb, hh_len);
1329 
1330 			/*
1331 			 *	Find where to start putting bytes.
1332 			 */
1333 			skb_put(skb, fragheaderlen + fraggap);
1334 			skb_reset_network_header(skb);
1335 			skb->transport_header = (skb->network_header +
1336 						 fragheaderlen);
1337 			if (fraggap) {
1338 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1339 								   maxfraglen,
1340 						    skb_transport_header(skb),
1341 								   fraggap, 0);
1342 				skb_prev->csum = csum_sub(skb_prev->csum,
1343 							  skb->csum);
1344 				pskb_trim_unique(skb_prev, maxfraglen);
1345 			}
1346 
1347 			/*
1348 			 * Put the packet on the pending queue.
1349 			 */
1350 			__skb_queue_tail(&sk->sk_write_queue, skb);
1351 			continue;
1352 		}
1353 
1354 		if (len > size)
1355 			len = size;
1356 
1357 		if (skb_append_pagefrags(skb, page, offset, len)) {
1358 			err = -EMSGSIZE;
1359 			goto error;
1360 		}
1361 
1362 		if (skb->ip_summed == CHECKSUM_NONE) {
1363 			__wsum csum;
1364 			csum = csum_page(page, offset, len);
1365 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1366 		}
1367 
1368 		skb->len += len;
1369 		skb->data_len += len;
1370 		skb->truesize += len;
1371 		atomic_add(len, &sk->sk_wmem_alloc);
1372 		offset += len;
1373 		size -= len;
1374 	}
1375 	return 0;
1376 
1377 error:
1378 	cork->length -= size;
1379 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1380 	return err;
1381 }
1382 
1383 static void ip_cork_release(struct inet_cork *cork)
1384 {
1385 	cork->flags &= ~IPCORK_OPT;
1386 	kfree(cork->opt);
1387 	cork->opt = NULL;
1388 	dst_release(cork->dst);
1389 	cork->dst = NULL;
1390 }
1391 
1392 /*
1393  *	Combined all pending IP fragments on the socket as one IP datagram
1394  *	and push them out.
1395  */
1396 struct sk_buff *__ip_make_skb(struct sock *sk,
1397 			      struct flowi4 *fl4,
1398 			      struct sk_buff_head *queue,
1399 			      struct inet_cork *cork)
1400 {
1401 	struct sk_buff *skb, *tmp_skb;
1402 	struct sk_buff **tail_skb;
1403 	struct inet_sock *inet = inet_sk(sk);
1404 	struct net *net = sock_net(sk);
1405 	struct ip_options *opt = NULL;
1406 	struct rtable *rt = (struct rtable *)cork->dst;
1407 	struct iphdr *iph;
1408 	__be16 df = 0;
1409 	__u8 ttl;
1410 
1411 	skb = __skb_dequeue(queue);
1412 	if (!skb)
1413 		goto out;
1414 	tail_skb = &(skb_shinfo(skb)->frag_list);
1415 
1416 	/* move skb->data to ip header from ext header */
1417 	if (skb->data < skb_network_header(skb))
1418 		__skb_pull(skb, skb_network_offset(skb));
1419 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1420 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1421 		*tail_skb = tmp_skb;
1422 		tail_skb = &(tmp_skb->next);
1423 		skb->len += tmp_skb->len;
1424 		skb->data_len += tmp_skb->len;
1425 		skb->truesize += tmp_skb->truesize;
1426 		tmp_skb->destructor = NULL;
1427 		tmp_skb->sk = NULL;
1428 	}
1429 
1430 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1431 	 * to fragment the frame generated here. No matter, what transforms
1432 	 * how transforms change size of the packet, it will come out.
1433 	 */
1434 	skb->ignore_df = ip_sk_ignore_df(sk);
1435 
1436 	/* DF bit is set when we want to see DF on outgoing frames.
1437 	 * If ignore_df is set too, we still allow to fragment this frame
1438 	 * locally. */
1439 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1440 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1441 	    (skb->len <= dst_mtu(&rt->dst) &&
1442 	     ip_dont_fragment(sk, &rt->dst)))
1443 		df = htons(IP_DF);
1444 
1445 	if (cork->flags & IPCORK_OPT)
1446 		opt = cork->opt;
1447 
1448 	if (cork->ttl != 0)
1449 		ttl = cork->ttl;
1450 	else if (rt->rt_type == RTN_MULTICAST)
1451 		ttl = inet->mc_ttl;
1452 	else
1453 		ttl = ip_select_ttl(inet, &rt->dst);
1454 
1455 	iph = ip_hdr(skb);
1456 	iph->version = 4;
1457 	iph->ihl = 5;
1458 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1459 	iph->frag_off = df;
1460 	iph->ttl = ttl;
1461 	iph->protocol = sk->sk_protocol;
1462 	ip_copy_addrs(iph, fl4);
1463 	ip_select_ident(net, skb, sk);
1464 
1465 	if (opt) {
1466 		iph->ihl += opt->optlen>>2;
1467 		ip_options_build(skb, opt, cork->addr, rt, 0);
1468 	}
1469 
1470 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1471 	skb->mark = sk->sk_mark;
1472 	/*
1473 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1474 	 * on dst refcount
1475 	 */
1476 	cork->dst = NULL;
1477 	skb_dst_set(skb, &rt->dst);
1478 
1479 	if (iph->protocol == IPPROTO_ICMP)
1480 		icmp_out_count(net, ((struct icmphdr *)
1481 			skb_transport_header(skb))->type);
1482 
1483 	ip_cork_release(cork);
1484 out:
1485 	return skb;
1486 }
1487 
1488 int ip_send_skb(struct net *net, struct sk_buff *skb)
1489 {
1490 	int err;
1491 
1492 	err = ip_local_out(net, skb->sk, skb);
1493 	if (err) {
1494 		if (err > 0)
1495 			err = net_xmit_errno(err);
1496 		if (err)
1497 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1498 	}
1499 
1500 	return err;
1501 }
1502 
1503 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1504 {
1505 	struct sk_buff *skb;
1506 
1507 	skb = ip_finish_skb(sk, fl4);
1508 	if (!skb)
1509 		return 0;
1510 
1511 	/* Netfilter gets whole the not fragmented skb. */
1512 	return ip_send_skb(sock_net(sk), skb);
1513 }
1514 
1515 /*
1516  *	Throw away all pending data on the socket.
1517  */
1518 static void __ip_flush_pending_frames(struct sock *sk,
1519 				      struct sk_buff_head *queue,
1520 				      struct inet_cork *cork)
1521 {
1522 	struct sk_buff *skb;
1523 
1524 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1525 		kfree_skb(skb);
1526 
1527 	ip_cork_release(cork);
1528 }
1529 
1530 void ip_flush_pending_frames(struct sock *sk)
1531 {
1532 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1533 }
1534 
1535 struct sk_buff *ip_make_skb(struct sock *sk,
1536 			    struct flowi4 *fl4,
1537 			    int getfrag(void *from, char *to, int offset,
1538 					int len, int odd, struct sk_buff *skb),
1539 			    void *from, int length, int transhdrlen,
1540 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1541 			    unsigned int flags)
1542 {
1543 	struct inet_cork cork;
1544 	struct sk_buff_head queue;
1545 	int err;
1546 
1547 	if (flags & MSG_PROBE)
1548 		return NULL;
1549 
1550 	__skb_queue_head_init(&queue);
1551 
1552 	cork.flags = 0;
1553 	cork.addr = 0;
1554 	cork.opt = NULL;
1555 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1556 	if (err)
1557 		return ERR_PTR(err);
1558 
1559 	err = __ip_append_data(sk, fl4, &queue, &cork,
1560 			       &current->task_frag, getfrag,
1561 			       from, length, transhdrlen, flags);
1562 	if (err) {
1563 		__ip_flush_pending_frames(sk, &queue, &cork);
1564 		return ERR_PTR(err);
1565 	}
1566 
1567 	return __ip_make_skb(sk, fl4, &queue, &cork);
1568 }
1569 
1570 /*
1571  *	Fetch data from kernel space and fill in checksum if needed.
1572  */
1573 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1574 			      int len, int odd, struct sk_buff *skb)
1575 {
1576 	__wsum csum;
1577 
1578 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1579 	skb->csum = csum_block_add(skb->csum, csum, odd);
1580 	return 0;
1581 }
1582 
1583 /*
1584  *	Generic function to send a packet as reply to another packet.
1585  *	Used to send some TCP resets/acks so far.
1586  */
1587 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1588 			   const struct ip_options *sopt,
1589 			   __be32 daddr, __be32 saddr,
1590 			   const struct ip_reply_arg *arg,
1591 			   unsigned int len)
1592 {
1593 	struct ip_options_data replyopts;
1594 	struct ipcm_cookie ipc;
1595 	struct flowi4 fl4;
1596 	struct rtable *rt = skb_rtable(skb);
1597 	struct net *net = sock_net(sk);
1598 	struct sk_buff *nskb;
1599 	int err;
1600 	int oif;
1601 
1602 	if (__ip_options_echo(&replyopts.opt.opt, skb, sopt))
1603 		return;
1604 
1605 	ipc.addr = daddr;
1606 	ipc.opt = NULL;
1607 	ipc.tx_flags = 0;
1608 	ipc.ttl = 0;
1609 	ipc.tos = -1;
1610 
1611 	if (replyopts.opt.opt.optlen) {
1612 		ipc.opt = &replyopts.opt;
1613 
1614 		if (replyopts.opt.opt.srr)
1615 			daddr = replyopts.opt.opt.faddr;
1616 	}
1617 
1618 	oif = arg->bound_dev_if;
1619 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1620 		oif = skb->skb_iif;
1621 
1622 	flowi4_init_output(&fl4, oif,
1623 			   IP4_REPLY_MARK(net, skb->mark),
1624 			   RT_TOS(arg->tos),
1625 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1626 			   ip_reply_arg_flowi_flags(arg),
1627 			   daddr, saddr,
1628 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1629 			   arg->uid);
1630 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1631 	rt = ip_route_output_key(net, &fl4);
1632 	if (IS_ERR(rt))
1633 		return;
1634 
1635 	inet_sk(sk)->tos = arg->tos;
1636 
1637 	sk->sk_priority = skb->priority;
1638 	sk->sk_protocol = ip_hdr(skb)->protocol;
1639 	sk->sk_bound_dev_if = arg->bound_dev_if;
1640 	sk->sk_sndbuf = sysctl_wmem_default;
1641 	sk->sk_mark = fl4.flowi4_mark;
1642 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1643 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1644 	if (unlikely(err)) {
1645 		ip_flush_pending_frames(sk);
1646 		goto out;
1647 	}
1648 
1649 	nskb = skb_peek(&sk->sk_write_queue);
1650 	if (nskb) {
1651 		if (arg->csumoffset >= 0)
1652 			*((__sum16 *)skb_transport_header(nskb) +
1653 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1654 								arg->csum));
1655 		nskb->ip_summed = CHECKSUM_NONE;
1656 		ip_push_pending_frames(sk, &fl4);
1657 	}
1658 out:
1659 	ip_rt_put(rt);
1660 }
1661 
1662 void __init ip_init(void)
1663 {
1664 	ip_rt_init();
1665 	inet_initpeers();
1666 
1667 #if defined(CONFIG_IP_MULTICAST)
1668 	igmp_mc_init();
1669 #endif
1670 }
1671