xref: /openbmc/linux/net/ipv4/ip_input.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb(skb);
200 				return;
201 			}
202 			nf_reset(skb);
203 		}
204 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
205 				      skb);
206 		if (ret < 0) {
207 			protocol = -ret;
208 			goto resubmit;
209 		}
210 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
211 	} else {
212 		if (!raw) {
213 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
214 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
215 				icmp_send(skb, ICMP_DEST_UNREACH,
216 					  ICMP_PROT_UNREACH, 0);
217 			}
218 			kfree_skb(skb);
219 		} else {
220 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
221 			consume_skb(skb);
222 		}
223 	}
224 }
225 
226 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
227 {
228 	__skb_pull(skb, skb_network_header_len(skb));
229 
230 	rcu_read_lock();
231 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
232 	rcu_read_unlock();
233 
234 	return 0;
235 }
236 
237 /*
238  * 	Deliver IP Packets to the higher protocol layers.
239  */
240 int ip_local_deliver(struct sk_buff *skb)
241 {
242 	/*
243 	 *	Reassemble IP fragments.
244 	 */
245 	struct net *net = dev_net(skb->dev);
246 
247 	if (ip_is_fragment(ip_hdr(skb))) {
248 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
249 			return 0;
250 	}
251 
252 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
253 		       net, NULL, skb, skb->dev, NULL,
254 		       ip_local_deliver_finish);
255 }
256 
257 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
258 {
259 	struct ip_options *opt;
260 	const struct iphdr *iph;
261 
262 	/* It looks as overkill, because not all
263 	   IP options require packet mangling.
264 	   But it is the easiest for now, especially taking
265 	   into account that combination of IP options
266 	   and running sniffer is extremely rare condition.
267 					      --ANK (980813)
268 	*/
269 	if (skb_cow(skb, skb_headroom(skb))) {
270 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
271 		goto drop;
272 	}
273 
274 	iph = ip_hdr(skb);
275 	opt = &(IPCB(skb)->opt);
276 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
277 
278 	if (ip_options_compile(dev_net(dev), opt, skb)) {
279 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
280 		goto drop;
281 	}
282 
283 	if (unlikely(opt->srr)) {
284 		struct in_device *in_dev = __in_dev_get_rcu(dev);
285 
286 		if (in_dev) {
287 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
288 				if (IN_DEV_LOG_MARTIANS(in_dev))
289 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
290 							     &iph->saddr,
291 							     &iph->daddr);
292 				goto drop;
293 			}
294 		}
295 
296 		if (ip_options_rcv_srr(skb, dev))
297 			goto drop;
298 	}
299 
300 	return false;
301 drop:
302 	return true;
303 }
304 
305 INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
306 INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
307 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
308 			      struct sk_buff *skb, struct net_device *dev)
309 {
310 	const struct iphdr *iph = ip_hdr(skb);
311 	int (*edemux)(struct sk_buff *skb);
312 	struct rtable *rt;
313 	int err;
314 
315 	if (net->ipv4.sysctl_ip_early_demux &&
316 	    !skb_dst(skb) &&
317 	    !skb->sk &&
318 	    !ip_is_fragment(iph)) {
319 		const struct net_protocol *ipprot;
320 		int protocol = iph->protocol;
321 
322 		ipprot = rcu_dereference(inet_protos[protocol]);
323 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
324 			err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
325 					      udp_v4_early_demux, skb);
326 			if (unlikely(err))
327 				goto drop_error;
328 			/* must reload iph, skb->head might have changed */
329 			iph = ip_hdr(skb);
330 		}
331 	}
332 
333 	/*
334 	 *	Initialise the virtual path cache for the packet. It describes
335 	 *	how the packet travels inside Linux networking.
336 	 */
337 	if (!skb_valid_dst(skb)) {
338 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
339 					   iph->tos, dev);
340 		if (unlikely(err))
341 			goto drop_error;
342 	}
343 
344 #ifdef CONFIG_IP_ROUTE_CLASSID
345 	if (unlikely(skb_dst(skb)->tclassid)) {
346 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
347 		u32 idx = skb_dst(skb)->tclassid;
348 		st[idx&0xFF].o_packets++;
349 		st[idx&0xFF].o_bytes += skb->len;
350 		st[(idx>>16)&0xFF].i_packets++;
351 		st[(idx>>16)&0xFF].i_bytes += skb->len;
352 	}
353 #endif
354 
355 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
356 		goto drop;
357 
358 	rt = skb_rtable(skb);
359 	if (rt->rt_type == RTN_MULTICAST) {
360 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
361 	} else if (rt->rt_type == RTN_BROADCAST) {
362 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
363 	} else if (skb->pkt_type == PACKET_BROADCAST ||
364 		   skb->pkt_type == PACKET_MULTICAST) {
365 		struct in_device *in_dev = __in_dev_get_rcu(dev);
366 
367 		/* RFC 1122 3.3.6:
368 		 *
369 		 *   When a host sends a datagram to a link-layer broadcast
370 		 *   address, the IP destination address MUST be a legal IP
371 		 *   broadcast or IP multicast address.
372 		 *
373 		 *   A host SHOULD silently discard a datagram that is received
374 		 *   via a link-layer broadcast (see Section 2.4) but does not
375 		 *   specify an IP multicast or broadcast destination address.
376 		 *
377 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
378 		 * in a way a form of multicast and the most common use case for
379 		 * this is 802.11 protecting against cross-station spoofing (the
380 		 * so-called "hole-196" attack) so do it for both.
381 		 */
382 		if (in_dev &&
383 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
384 			goto drop;
385 	}
386 
387 	return NET_RX_SUCCESS;
388 
389 drop:
390 	kfree_skb(skb);
391 	return NET_RX_DROP;
392 
393 drop_error:
394 	if (err == -EXDEV)
395 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
396 	goto drop;
397 }
398 
399 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
400 {
401 	struct net_device *dev = skb->dev;
402 	int ret;
403 
404 	/* if ingress device is enslaved to an L3 master device pass the
405 	 * skb to its handler for processing
406 	 */
407 	skb = l3mdev_ip_rcv(skb);
408 	if (!skb)
409 		return NET_RX_SUCCESS;
410 
411 	ret = ip_rcv_finish_core(net, sk, skb, dev);
412 	if (ret != NET_RX_DROP)
413 		ret = dst_input(skb);
414 	return ret;
415 }
416 
417 /*
418  * 	Main IP Receive routine.
419  */
420 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
421 {
422 	const struct iphdr *iph;
423 	u32 len;
424 
425 	/* When the interface is in promisc. mode, drop all the crap
426 	 * that it receives, do not try to analyse it.
427 	 */
428 	if (skb->pkt_type == PACKET_OTHERHOST)
429 		goto drop;
430 
431 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
432 
433 	skb = skb_share_check(skb, GFP_ATOMIC);
434 	if (!skb) {
435 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
436 		goto out;
437 	}
438 
439 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
440 		goto inhdr_error;
441 
442 	iph = ip_hdr(skb);
443 
444 	/*
445 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
446 	 *
447 	 *	Is the datagram acceptable?
448 	 *
449 	 *	1.	Length at least the size of an ip header
450 	 *	2.	Version of 4
451 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
452 	 *	4.	Doesn't have a bogus length
453 	 */
454 
455 	if (iph->ihl < 5 || iph->version != 4)
456 		goto inhdr_error;
457 
458 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
459 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
460 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
461 	__IP_ADD_STATS(net,
462 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
463 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
464 
465 	if (!pskb_may_pull(skb, iph->ihl*4))
466 		goto inhdr_error;
467 
468 	iph = ip_hdr(skb);
469 
470 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
471 		goto csum_error;
472 
473 	len = ntohs(iph->tot_len);
474 	if (skb->len < len) {
475 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
476 		goto drop;
477 	} else if (len < (iph->ihl*4))
478 		goto inhdr_error;
479 
480 	/* Our transport medium may have padded the buffer out. Now we know it
481 	 * is IP we can trim to the true length of the frame.
482 	 * Note this now means skb->len holds ntohs(iph->tot_len).
483 	 */
484 	if (pskb_trim_rcsum(skb, len)) {
485 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
486 		goto drop;
487 	}
488 
489 	iph = ip_hdr(skb);
490 	skb->transport_header = skb->network_header + iph->ihl*4;
491 
492 	/* Remove any debris in the socket control block */
493 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
494 	IPCB(skb)->iif = skb->skb_iif;
495 
496 	/* Must drop socket now because of tproxy. */
497 	skb_orphan(skb);
498 
499 	return skb;
500 
501 csum_error:
502 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
503 inhdr_error:
504 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
505 drop:
506 	kfree_skb(skb);
507 out:
508 	return NULL;
509 }
510 
511 /*
512  * IP receive entry point
513  */
514 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
515 	   struct net_device *orig_dev)
516 {
517 	struct net *net = dev_net(dev);
518 
519 	skb = ip_rcv_core(skb, net);
520 	if (skb == NULL)
521 		return NET_RX_DROP;
522 
523 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
524 		       net, NULL, skb, dev, NULL,
525 		       ip_rcv_finish);
526 }
527 
528 static void ip_sublist_rcv_finish(struct list_head *head)
529 {
530 	struct sk_buff *skb, *next;
531 
532 	list_for_each_entry_safe(skb, next, head, list) {
533 		skb_list_del_init(skb);
534 		dst_input(skb);
535 	}
536 }
537 
538 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
539 			       struct list_head *head)
540 {
541 	struct dst_entry *curr_dst = NULL;
542 	struct sk_buff *skb, *next;
543 	struct list_head sublist;
544 
545 	INIT_LIST_HEAD(&sublist);
546 	list_for_each_entry_safe(skb, next, head, list) {
547 		struct net_device *dev = skb->dev;
548 		struct dst_entry *dst;
549 
550 		skb_list_del_init(skb);
551 		/* if ingress device is enslaved to an L3 master device pass the
552 		 * skb to its handler for processing
553 		 */
554 		skb = l3mdev_ip_rcv(skb);
555 		if (!skb)
556 			continue;
557 		if (ip_rcv_finish_core(net, sk, skb, dev) == NET_RX_DROP)
558 			continue;
559 
560 		dst = skb_dst(skb);
561 		if (curr_dst != dst) {
562 			/* dispatch old sublist */
563 			if (!list_empty(&sublist))
564 				ip_sublist_rcv_finish(&sublist);
565 			/* start new sublist */
566 			INIT_LIST_HEAD(&sublist);
567 			curr_dst = dst;
568 		}
569 		list_add_tail(&skb->list, &sublist);
570 	}
571 	/* dispatch final sublist */
572 	ip_sublist_rcv_finish(&sublist);
573 }
574 
575 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
576 			   struct net *net)
577 {
578 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
579 		     head, dev, NULL, ip_rcv_finish);
580 	ip_list_rcv_finish(net, NULL, head);
581 }
582 
583 /* Receive a list of IP packets */
584 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
585 		 struct net_device *orig_dev)
586 {
587 	struct net_device *curr_dev = NULL;
588 	struct net *curr_net = NULL;
589 	struct sk_buff *skb, *next;
590 	struct list_head sublist;
591 
592 	INIT_LIST_HEAD(&sublist);
593 	list_for_each_entry_safe(skb, next, head, list) {
594 		struct net_device *dev = skb->dev;
595 		struct net *net = dev_net(dev);
596 
597 		skb_list_del_init(skb);
598 		skb = ip_rcv_core(skb, net);
599 		if (skb == NULL)
600 			continue;
601 
602 		if (curr_dev != dev || curr_net != net) {
603 			/* dispatch old sublist */
604 			if (!list_empty(&sublist))
605 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
606 			/* start new sublist */
607 			INIT_LIST_HEAD(&sublist);
608 			curr_dev = dev;
609 			curr_net = net;
610 		}
611 		list_add_tail(&skb->list, &sublist);
612 	}
613 	/* dispatch final sublist */
614 	ip_sublist_rcv(&sublist, curr_dev, curr_net);
615 }
616