xref: /openbmc/linux/net/ipv4/ip_input.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  *
100  *
101  * To Fix:
102  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
103  *		and could be made very efficient with the addition of some virtual memory hacks to permit
104  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
105  *		Output fragmentation wants updating along with the buffer management to use a single
106  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
107  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
108  *		fragmentation anyway.
109  *
110  *		This program is free software; you can redistribute it and/or
111  *		modify it under the terms of the GNU General Public License
112  *		as published by the Free Software Foundation; either version
113  *		2 of the License, or (at your option) any later version.
114  */
115 
116 #define pr_fmt(fmt) "IPv4: " fmt
117 
118 #include <linux/module.h>
119 #include <linux/types.h>
120 #include <linux/kernel.h>
121 #include <linux/string.h>
122 #include <linux/errno.h>
123 #include <linux/slab.h>
124 
125 #include <linux/net.h>
126 #include <linux/socket.h>
127 #include <linux/sockios.h>
128 #include <linux/in.h>
129 #include <linux/inet.h>
130 #include <linux/inetdevice.h>
131 #include <linux/netdevice.h>
132 #include <linux/etherdevice.h>
133 #include <linux/indirect_call_wrapper.h>
134 
135 #include <net/snmp.h>
136 #include <net/ip.h>
137 #include <net/protocol.h>
138 #include <net/route.h>
139 #include <linux/skbuff.h>
140 #include <net/sock.h>
141 #include <net/arp.h>
142 #include <net/icmp.h>
143 #include <net/raw.h>
144 #include <net/checksum.h>
145 #include <net/inet_ecn.h>
146 #include <linux/netfilter_ipv4.h>
147 #include <net/xfrm.h>
148 #include <linux/mroute.h>
149 #include <linux/netlink.h>
150 #include <net/dst_metadata.h>
151 
152 /*
153  *	Process Router Attention IP option (RFC 2113)
154  */
155 bool ip_call_ra_chain(struct sk_buff *skb)
156 {
157 	struct ip_ra_chain *ra;
158 	u8 protocol = ip_hdr(skb)->protocol;
159 	struct sock *last = NULL;
160 	struct net_device *dev = skb->dev;
161 	struct net *net = dev_net(dev);
162 
163 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
164 		struct sock *sk = ra->sk;
165 
166 		/* If socket is bound to an interface, only report
167 		 * the packet if it came  from that interface.
168 		 */
169 		if (sk && inet_sk(sk)->inet_num == protocol &&
170 		    (!sk->sk_bound_dev_if ||
171 		     sk->sk_bound_dev_if == dev->ifindex)) {
172 			if (ip_is_fragment(ip_hdr(skb))) {
173 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
174 					return true;
175 			}
176 			if (last) {
177 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
178 				if (skb2)
179 					raw_rcv(last, skb2);
180 			}
181 			last = sk;
182 		}
183 	}
184 
185 	if (last) {
186 		raw_rcv(last, skb);
187 		return true;
188 	}
189 	return false;
190 }
191 
192 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
193 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
194 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
195 {
196 	const struct net_protocol *ipprot;
197 	int raw, ret;
198 
199 resubmit:
200 	raw = raw_local_deliver(skb, protocol);
201 
202 	ipprot = rcu_dereference(inet_protos[protocol]);
203 	if (ipprot) {
204 		if (!ipprot->no_policy) {
205 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
206 				kfree_skb(skb);
207 				return;
208 			}
209 			nf_reset(skb);
210 		}
211 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
212 				      skb);
213 		if (ret < 0) {
214 			protocol = -ret;
215 			goto resubmit;
216 		}
217 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
218 	} else {
219 		if (!raw) {
220 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
221 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
222 				icmp_send(skb, ICMP_DEST_UNREACH,
223 					  ICMP_PROT_UNREACH, 0);
224 			}
225 			kfree_skb(skb);
226 		} else {
227 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
228 			consume_skb(skb);
229 		}
230 	}
231 }
232 
233 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
234 {
235 	__skb_pull(skb, skb_network_header_len(skb));
236 
237 	rcu_read_lock();
238 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
239 	rcu_read_unlock();
240 
241 	return 0;
242 }
243 
244 /*
245  * 	Deliver IP Packets to the higher protocol layers.
246  */
247 int ip_local_deliver(struct sk_buff *skb)
248 {
249 	/*
250 	 *	Reassemble IP fragments.
251 	 */
252 	struct net *net = dev_net(skb->dev);
253 
254 	if (ip_is_fragment(ip_hdr(skb))) {
255 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
256 			return 0;
257 	}
258 
259 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
260 		       net, NULL, skb, skb->dev, NULL,
261 		       ip_local_deliver_finish);
262 }
263 
264 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
265 {
266 	struct ip_options *opt;
267 	const struct iphdr *iph;
268 
269 	/* It looks as overkill, because not all
270 	   IP options require packet mangling.
271 	   But it is the easiest for now, especially taking
272 	   into account that combination of IP options
273 	   and running sniffer is extremely rare condition.
274 					      --ANK (980813)
275 	*/
276 	if (skb_cow(skb, skb_headroom(skb))) {
277 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
278 		goto drop;
279 	}
280 
281 	iph = ip_hdr(skb);
282 	opt = &(IPCB(skb)->opt);
283 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
284 
285 	if (ip_options_compile(dev_net(dev), opt, skb)) {
286 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
287 		goto drop;
288 	}
289 
290 	if (unlikely(opt->srr)) {
291 		struct in_device *in_dev = __in_dev_get_rcu(dev);
292 
293 		if (in_dev) {
294 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
295 				if (IN_DEV_LOG_MARTIANS(in_dev))
296 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
297 							     &iph->saddr,
298 							     &iph->daddr);
299 				goto drop;
300 			}
301 		}
302 
303 		if (ip_options_rcv_srr(skb, dev))
304 			goto drop;
305 	}
306 
307 	return false;
308 drop:
309 	return true;
310 }
311 
312 INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
313 INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
314 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
315 			      struct sk_buff *skb, struct net_device *dev)
316 {
317 	const struct iphdr *iph = ip_hdr(skb);
318 	int (*edemux)(struct sk_buff *skb);
319 	struct rtable *rt;
320 	int err;
321 
322 	if (net->ipv4.sysctl_ip_early_demux &&
323 	    !skb_dst(skb) &&
324 	    !skb->sk &&
325 	    !ip_is_fragment(iph)) {
326 		const struct net_protocol *ipprot;
327 		int protocol = iph->protocol;
328 
329 		ipprot = rcu_dereference(inet_protos[protocol]);
330 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
331 			err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
332 					      udp_v4_early_demux, skb);
333 			if (unlikely(err))
334 				goto drop_error;
335 			/* must reload iph, skb->head might have changed */
336 			iph = ip_hdr(skb);
337 		}
338 	}
339 
340 	/*
341 	 *	Initialise the virtual path cache for the packet. It describes
342 	 *	how the packet travels inside Linux networking.
343 	 */
344 	if (!skb_valid_dst(skb)) {
345 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
346 					   iph->tos, dev);
347 		if (unlikely(err))
348 			goto drop_error;
349 	}
350 
351 #ifdef CONFIG_IP_ROUTE_CLASSID
352 	if (unlikely(skb_dst(skb)->tclassid)) {
353 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
354 		u32 idx = skb_dst(skb)->tclassid;
355 		st[idx&0xFF].o_packets++;
356 		st[idx&0xFF].o_bytes += skb->len;
357 		st[(idx>>16)&0xFF].i_packets++;
358 		st[(idx>>16)&0xFF].i_bytes += skb->len;
359 	}
360 #endif
361 
362 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
363 		goto drop;
364 
365 	rt = skb_rtable(skb);
366 	if (rt->rt_type == RTN_MULTICAST) {
367 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
368 	} else if (rt->rt_type == RTN_BROADCAST) {
369 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
370 	} else if (skb->pkt_type == PACKET_BROADCAST ||
371 		   skb->pkt_type == PACKET_MULTICAST) {
372 		struct in_device *in_dev = __in_dev_get_rcu(dev);
373 
374 		/* RFC 1122 3.3.6:
375 		 *
376 		 *   When a host sends a datagram to a link-layer broadcast
377 		 *   address, the IP destination address MUST be a legal IP
378 		 *   broadcast or IP multicast address.
379 		 *
380 		 *   A host SHOULD silently discard a datagram that is received
381 		 *   via a link-layer broadcast (see Section 2.4) but does not
382 		 *   specify an IP multicast or broadcast destination address.
383 		 *
384 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
385 		 * in a way a form of multicast and the most common use case for
386 		 * this is 802.11 protecting against cross-station spoofing (the
387 		 * so-called "hole-196" attack) so do it for both.
388 		 */
389 		if (in_dev &&
390 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
391 			goto drop;
392 	}
393 
394 	return NET_RX_SUCCESS;
395 
396 drop:
397 	kfree_skb(skb);
398 	return NET_RX_DROP;
399 
400 drop_error:
401 	if (err == -EXDEV)
402 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
403 	goto drop;
404 }
405 
406 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
407 {
408 	struct net_device *dev = skb->dev;
409 	int ret;
410 
411 	/* if ingress device is enslaved to an L3 master device pass the
412 	 * skb to its handler for processing
413 	 */
414 	skb = l3mdev_ip_rcv(skb);
415 	if (!skb)
416 		return NET_RX_SUCCESS;
417 
418 	ret = ip_rcv_finish_core(net, sk, skb, dev);
419 	if (ret != NET_RX_DROP)
420 		ret = dst_input(skb);
421 	return ret;
422 }
423 
424 /*
425  * 	Main IP Receive routine.
426  */
427 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
428 {
429 	const struct iphdr *iph;
430 	u32 len;
431 
432 	/* When the interface is in promisc. mode, drop all the crap
433 	 * that it receives, do not try to analyse it.
434 	 */
435 	if (skb->pkt_type == PACKET_OTHERHOST)
436 		goto drop;
437 
438 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
439 
440 	skb = skb_share_check(skb, GFP_ATOMIC);
441 	if (!skb) {
442 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
443 		goto out;
444 	}
445 
446 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
447 		goto inhdr_error;
448 
449 	iph = ip_hdr(skb);
450 
451 	/*
452 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
453 	 *
454 	 *	Is the datagram acceptable?
455 	 *
456 	 *	1.	Length at least the size of an ip header
457 	 *	2.	Version of 4
458 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
459 	 *	4.	Doesn't have a bogus length
460 	 */
461 
462 	if (iph->ihl < 5 || iph->version != 4)
463 		goto inhdr_error;
464 
465 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
466 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
467 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
468 	__IP_ADD_STATS(net,
469 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
470 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
471 
472 	if (!pskb_may_pull(skb, iph->ihl*4))
473 		goto inhdr_error;
474 
475 	iph = ip_hdr(skb);
476 
477 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
478 		goto csum_error;
479 
480 	len = ntohs(iph->tot_len);
481 	if (skb->len < len) {
482 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
483 		goto drop;
484 	} else if (len < (iph->ihl*4))
485 		goto inhdr_error;
486 
487 	/* Our transport medium may have padded the buffer out. Now we know it
488 	 * is IP we can trim to the true length of the frame.
489 	 * Note this now means skb->len holds ntohs(iph->tot_len).
490 	 */
491 	if (pskb_trim_rcsum(skb, len)) {
492 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
493 		goto drop;
494 	}
495 
496 	iph = ip_hdr(skb);
497 	skb->transport_header = skb->network_header + iph->ihl*4;
498 
499 	/* Remove any debris in the socket control block */
500 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
501 	IPCB(skb)->iif = skb->skb_iif;
502 
503 	/* Must drop socket now because of tproxy. */
504 	skb_orphan(skb);
505 
506 	return skb;
507 
508 csum_error:
509 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
510 inhdr_error:
511 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
512 drop:
513 	kfree_skb(skb);
514 out:
515 	return NULL;
516 }
517 
518 /*
519  * IP receive entry point
520  */
521 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
522 	   struct net_device *orig_dev)
523 {
524 	struct net *net = dev_net(dev);
525 
526 	skb = ip_rcv_core(skb, net);
527 	if (skb == NULL)
528 		return NET_RX_DROP;
529 
530 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
531 		       net, NULL, skb, dev, NULL,
532 		       ip_rcv_finish);
533 }
534 
535 static void ip_sublist_rcv_finish(struct list_head *head)
536 {
537 	struct sk_buff *skb, *next;
538 
539 	list_for_each_entry_safe(skb, next, head, list) {
540 		skb_list_del_init(skb);
541 		dst_input(skb);
542 	}
543 }
544 
545 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
546 			       struct list_head *head)
547 {
548 	struct dst_entry *curr_dst = NULL;
549 	struct sk_buff *skb, *next;
550 	struct list_head sublist;
551 
552 	INIT_LIST_HEAD(&sublist);
553 	list_for_each_entry_safe(skb, next, head, list) {
554 		struct net_device *dev = skb->dev;
555 		struct dst_entry *dst;
556 
557 		skb_list_del_init(skb);
558 		/* if ingress device is enslaved to an L3 master device pass the
559 		 * skb to its handler for processing
560 		 */
561 		skb = l3mdev_ip_rcv(skb);
562 		if (!skb)
563 			continue;
564 		if (ip_rcv_finish_core(net, sk, skb, dev) == NET_RX_DROP)
565 			continue;
566 
567 		dst = skb_dst(skb);
568 		if (curr_dst != dst) {
569 			/* dispatch old sublist */
570 			if (!list_empty(&sublist))
571 				ip_sublist_rcv_finish(&sublist);
572 			/* start new sublist */
573 			INIT_LIST_HEAD(&sublist);
574 			curr_dst = dst;
575 		}
576 		list_add_tail(&skb->list, &sublist);
577 	}
578 	/* dispatch final sublist */
579 	ip_sublist_rcv_finish(&sublist);
580 }
581 
582 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
583 			   struct net *net)
584 {
585 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
586 		     head, dev, NULL, ip_rcv_finish);
587 	ip_list_rcv_finish(net, NULL, head);
588 }
589 
590 /* Receive a list of IP packets */
591 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
592 		 struct net_device *orig_dev)
593 {
594 	struct net_device *curr_dev = NULL;
595 	struct net *curr_net = NULL;
596 	struct sk_buff *skb, *next;
597 	struct list_head sublist;
598 
599 	INIT_LIST_HEAD(&sublist);
600 	list_for_each_entry_safe(skb, next, head, list) {
601 		struct net_device *dev = skb->dev;
602 		struct net *net = dev_net(dev);
603 
604 		skb_list_del_init(skb);
605 		skb = ip_rcv_core(skb, net);
606 		if (skb == NULL)
607 			continue;
608 
609 		if (curr_dev != dev || curr_net != net) {
610 			/* dispatch old sublist */
611 			if (!list_empty(&sublist))
612 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
613 			/* start new sublist */
614 			INIT_LIST_HEAD(&sublist);
615 			curr_dev = dev;
616 			curr_net = net;
617 		}
618 		list_add_tail(&skb->list, &sublist);
619 	}
620 	/* dispatch final sublist */
621 	ip_sublist_rcv(&sublist, curr_dev, curr_net);
622 }
623