xref: /openbmc/linux/net/ipv4/ip_input.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  * To Fix:
100  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
101  *		and could be made very efficient with the addition of some virtual memory hacks to permit
102  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
103  *		Output fragmentation wants updating along with the buffer management to use a single
104  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
105  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
106  *		fragmentation anyway.
107  */
108 
109 #define pr_fmt(fmt) "IPv4: " fmt
110 
111 #include <linux/module.h>
112 #include <linux/types.h>
113 #include <linux/kernel.h>
114 #include <linux/string.h>
115 #include <linux/errno.h>
116 #include <linux/slab.h>
117 
118 #include <linux/net.h>
119 #include <linux/socket.h>
120 #include <linux/sockios.h>
121 #include <linux/in.h>
122 #include <linux/inet.h>
123 #include <linux/inetdevice.h>
124 #include <linux/netdevice.h>
125 #include <linux/etherdevice.h>
126 #include <linux/indirect_call_wrapper.h>
127 
128 #include <net/snmp.h>
129 #include <net/ip.h>
130 #include <net/protocol.h>
131 #include <net/route.h>
132 #include <linux/skbuff.h>
133 #include <net/sock.h>
134 #include <net/arp.h>
135 #include <net/icmp.h>
136 #include <net/raw.h>
137 #include <net/checksum.h>
138 #include <net/inet_ecn.h>
139 #include <linux/netfilter_ipv4.h>
140 #include <net/xfrm.h>
141 #include <linux/mroute.h>
142 #include <linux/netlink.h>
143 #include <net/dst_metadata.h>
144 
145 /*
146  *	Process Router Attention IP option (RFC 2113)
147  */
148 bool ip_call_ra_chain(struct sk_buff *skb)
149 {
150 	struct ip_ra_chain *ra;
151 	u8 protocol = ip_hdr(skb)->protocol;
152 	struct sock *last = NULL;
153 	struct net_device *dev = skb->dev;
154 	struct net *net = dev_net(dev);
155 
156 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
157 		struct sock *sk = ra->sk;
158 
159 		/* If socket is bound to an interface, only report
160 		 * the packet if it came  from that interface.
161 		 */
162 		if (sk && inet_sk(sk)->inet_num == protocol &&
163 		    (!sk->sk_bound_dev_if ||
164 		     sk->sk_bound_dev_if == dev->ifindex)) {
165 			if (ip_is_fragment(ip_hdr(skb))) {
166 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
167 					return true;
168 			}
169 			if (last) {
170 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
171 				if (skb2)
172 					raw_rcv(last, skb2);
173 			}
174 			last = sk;
175 		}
176 	}
177 
178 	if (last) {
179 		raw_rcv(last, skb);
180 		return true;
181 	}
182 	return false;
183 }
184 
185 INDIRECT_CALLABLE_DECLARE(int udp_rcv(struct sk_buff *));
186 INDIRECT_CALLABLE_DECLARE(int tcp_v4_rcv(struct sk_buff *));
187 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
188 {
189 	const struct net_protocol *ipprot;
190 	int raw, ret;
191 
192 resubmit:
193 	raw = raw_local_deliver(skb, protocol);
194 
195 	ipprot = rcu_dereference(inet_protos[protocol]);
196 	if (ipprot) {
197 		if (!ipprot->no_policy) {
198 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
199 				kfree_skb_reason(skb,
200 						 SKB_DROP_REASON_XFRM_POLICY);
201 				return;
202 			}
203 			nf_reset_ct(skb);
204 		}
205 		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
206 				      skb);
207 		if (ret < 0) {
208 			protocol = -ret;
209 			goto resubmit;
210 		}
211 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
212 	} else {
213 		if (!raw) {
214 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
215 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
216 				icmp_send(skb, ICMP_DEST_UNREACH,
217 					  ICMP_PROT_UNREACH, 0);
218 			}
219 			kfree_skb_reason(skb, SKB_DROP_REASON_IP_NOPROTO);
220 		} else {
221 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
222 			consume_skb(skb);
223 		}
224 	}
225 }
226 
227 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
228 {
229 	skb_clear_delivery_time(skb);
230 	__skb_pull(skb, skb_network_header_len(skb));
231 
232 	rcu_read_lock();
233 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
234 	rcu_read_unlock();
235 
236 	return 0;
237 }
238 
239 /*
240  * 	Deliver IP Packets to the higher protocol layers.
241  */
242 int ip_local_deliver(struct sk_buff *skb)
243 {
244 	/*
245 	 *	Reassemble IP fragments.
246 	 */
247 	struct net *net = dev_net(skb->dev);
248 
249 	if (ip_is_fragment(ip_hdr(skb))) {
250 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
251 			return 0;
252 	}
253 
254 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
255 		       net, NULL, skb, skb->dev, NULL,
256 		       ip_local_deliver_finish);
257 }
258 EXPORT_SYMBOL(ip_local_deliver);
259 
260 static inline bool ip_rcv_options(struct sk_buff *skb, struct net_device *dev)
261 {
262 	struct ip_options *opt;
263 	const struct iphdr *iph;
264 
265 	/* It looks as overkill, because not all
266 	   IP options require packet mangling.
267 	   But it is the easiest for now, especially taking
268 	   into account that combination of IP options
269 	   and running sniffer is extremely rare condition.
270 					      --ANK (980813)
271 	*/
272 	if (skb_cow(skb, skb_headroom(skb))) {
273 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
274 		goto drop;
275 	}
276 
277 	iph = ip_hdr(skb);
278 	opt = &(IPCB(skb)->opt);
279 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
280 
281 	if (ip_options_compile(dev_net(dev), opt, skb)) {
282 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
283 		goto drop;
284 	}
285 
286 	if (unlikely(opt->srr)) {
287 		struct in_device *in_dev = __in_dev_get_rcu(dev);
288 
289 		if (in_dev) {
290 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
291 				if (IN_DEV_LOG_MARTIANS(in_dev))
292 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
293 							     &iph->saddr,
294 							     &iph->daddr);
295 				goto drop;
296 			}
297 		}
298 
299 		if (ip_options_rcv_srr(skb, dev))
300 			goto drop;
301 	}
302 
303 	return false;
304 drop:
305 	return true;
306 }
307 
308 static bool ip_can_use_hint(const struct sk_buff *skb, const struct iphdr *iph,
309 			    const struct sk_buff *hint)
310 {
311 	return hint && !skb_dst(skb) && ip_hdr(hint)->daddr == iph->daddr &&
312 	       ip_hdr(hint)->tos == iph->tos;
313 }
314 
315 INDIRECT_CALLABLE_DECLARE(int udp_v4_early_demux(struct sk_buff *));
316 INDIRECT_CALLABLE_DECLARE(int tcp_v4_early_demux(struct sk_buff *));
317 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
318 			      struct sk_buff *skb, struct net_device *dev,
319 			      const struct sk_buff *hint)
320 {
321 	const struct iphdr *iph = ip_hdr(skb);
322 	int (*edemux)(struct sk_buff *skb);
323 	int err, drop_reason;
324 	struct rtable *rt;
325 
326 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
327 
328 	if (ip_can_use_hint(skb, iph, hint)) {
329 		err = ip_route_use_hint(skb, iph->daddr, iph->saddr, iph->tos,
330 					dev, hint);
331 		if (unlikely(err))
332 			goto drop_error;
333 	}
334 
335 	if (net->ipv4.sysctl_ip_early_demux &&
336 	    !skb_dst(skb) &&
337 	    !skb->sk &&
338 	    !ip_is_fragment(iph)) {
339 		const struct net_protocol *ipprot;
340 		int protocol = iph->protocol;
341 
342 		ipprot = rcu_dereference(inet_protos[protocol]);
343 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
344 			err = INDIRECT_CALL_2(edemux, tcp_v4_early_demux,
345 					      udp_v4_early_demux, skb);
346 			if (unlikely(err))
347 				goto drop_error;
348 			/* must reload iph, skb->head might have changed */
349 			iph = ip_hdr(skb);
350 		}
351 	}
352 
353 	/*
354 	 *	Initialise the virtual path cache for the packet. It describes
355 	 *	how the packet travels inside Linux networking.
356 	 */
357 	if (!skb_valid_dst(skb)) {
358 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
359 					   iph->tos, dev);
360 		if (unlikely(err))
361 			goto drop_error;
362 	}
363 
364 #ifdef CONFIG_IP_ROUTE_CLASSID
365 	if (unlikely(skb_dst(skb)->tclassid)) {
366 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
367 		u32 idx = skb_dst(skb)->tclassid;
368 		st[idx&0xFF].o_packets++;
369 		st[idx&0xFF].o_bytes += skb->len;
370 		st[(idx>>16)&0xFF].i_packets++;
371 		st[(idx>>16)&0xFF].i_bytes += skb->len;
372 	}
373 #endif
374 
375 	if (iph->ihl > 5 && ip_rcv_options(skb, dev))
376 		goto drop;
377 
378 	rt = skb_rtable(skb);
379 	if (rt->rt_type == RTN_MULTICAST) {
380 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
381 	} else if (rt->rt_type == RTN_BROADCAST) {
382 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
383 	} else if (skb->pkt_type == PACKET_BROADCAST ||
384 		   skb->pkt_type == PACKET_MULTICAST) {
385 		struct in_device *in_dev = __in_dev_get_rcu(dev);
386 
387 		/* RFC 1122 3.3.6:
388 		 *
389 		 *   When a host sends a datagram to a link-layer broadcast
390 		 *   address, the IP destination address MUST be a legal IP
391 		 *   broadcast or IP multicast address.
392 		 *
393 		 *   A host SHOULD silently discard a datagram that is received
394 		 *   via a link-layer broadcast (see Section 2.4) but does not
395 		 *   specify an IP multicast or broadcast destination address.
396 		 *
397 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
398 		 * in a way a form of multicast and the most common use case for
399 		 * this is 802.11 protecting against cross-station spoofing (the
400 		 * so-called "hole-196" attack) so do it for both.
401 		 */
402 		if (in_dev &&
403 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST)) {
404 			drop_reason = SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST;
405 			goto drop;
406 		}
407 	}
408 
409 	return NET_RX_SUCCESS;
410 
411 drop:
412 	kfree_skb_reason(skb, drop_reason);
413 	return NET_RX_DROP;
414 
415 drop_error:
416 	if (err == -EXDEV) {
417 		drop_reason = SKB_DROP_REASON_IP_RPFILTER;
418 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
419 	}
420 	goto drop;
421 }
422 
423 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
424 {
425 	struct net_device *dev = skb->dev;
426 	int ret;
427 
428 	/* if ingress device is enslaved to an L3 master device pass the
429 	 * skb to its handler for processing
430 	 */
431 	skb = l3mdev_ip_rcv(skb);
432 	if (!skb)
433 		return NET_RX_SUCCESS;
434 
435 	ret = ip_rcv_finish_core(net, sk, skb, dev, NULL);
436 	if (ret != NET_RX_DROP)
437 		ret = dst_input(skb);
438 	return ret;
439 }
440 
441 /*
442  * 	Main IP Receive routine.
443  */
444 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
445 {
446 	const struct iphdr *iph;
447 	int drop_reason;
448 	u32 len;
449 
450 	/* When the interface is in promisc. mode, drop all the crap
451 	 * that it receives, do not try to analyse it.
452 	 */
453 	if (skb->pkt_type == PACKET_OTHERHOST) {
454 		dev_core_stats_rx_otherhost_dropped_inc(skb->dev);
455 		drop_reason = SKB_DROP_REASON_OTHERHOST;
456 		goto drop;
457 	}
458 
459 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
460 
461 	skb = skb_share_check(skb, GFP_ATOMIC);
462 	if (!skb) {
463 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
464 		goto out;
465 	}
466 
467 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
468 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
469 		goto inhdr_error;
470 
471 	iph = ip_hdr(skb);
472 
473 	/*
474 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
475 	 *
476 	 *	Is the datagram acceptable?
477 	 *
478 	 *	1.	Length at least the size of an ip header
479 	 *	2.	Version of 4
480 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
481 	 *	4.	Doesn't have a bogus length
482 	 */
483 
484 	if (iph->ihl < 5 || iph->version != 4)
485 		goto inhdr_error;
486 
487 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
488 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
489 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
490 	__IP_ADD_STATS(net,
491 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
492 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
493 
494 	if (!pskb_may_pull(skb, iph->ihl*4))
495 		goto inhdr_error;
496 
497 	iph = ip_hdr(skb);
498 
499 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
500 		goto csum_error;
501 
502 	len = ntohs(iph->tot_len);
503 	if (skb->len < len) {
504 		drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
505 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
506 		goto drop;
507 	} else if (len < (iph->ihl*4))
508 		goto inhdr_error;
509 
510 	/* Our transport medium may have padded the buffer out. Now we know it
511 	 * is IP we can trim to the true length of the frame.
512 	 * Note this now means skb->len holds ntohs(iph->tot_len).
513 	 */
514 	if (pskb_trim_rcsum(skb, len)) {
515 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
516 		goto drop;
517 	}
518 
519 	iph = ip_hdr(skb);
520 	skb->transport_header = skb->network_header + iph->ihl*4;
521 
522 	/* Remove any debris in the socket control block */
523 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
524 	IPCB(skb)->iif = skb->skb_iif;
525 
526 	/* Must drop socket now because of tproxy. */
527 	if (!skb_sk_is_prefetched(skb))
528 		skb_orphan(skb);
529 
530 	return skb;
531 
532 csum_error:
533 	drop_reason = SKB_DROP_REASON_IP_CSUM;
534 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
535 inhdr_error:
536 	if (drop_reason == SKB_DROP_REASON_NOT_SPECIFIED)
537 		drop_reason = SKB_DROP_REASON_IP_INHDR;
538 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
539 drop:
540 	kfree_skb_reason(skb, drop_reason);
541 out:
542 	return NULL;
543 }
544 
545 /*
546  * IP receive entry point
547  */
548 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
549 	   struct net_device *orig_dev)
550 {
551 	struct net *net = dev_net(dev);
552 
553 	skb = ip_rcv_core(skb, net);
554 	if (skb == NULL)
555 		return NET_RX_DROP;
556 
557 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
558 		       net, NULL, skb, dev, NULL,
559 		       ip_rcv_finish);
560 }
561 
562 static void ip_sublist_rcv_finish(struct list_head *head)
563 {
564 	struct sk_buff *skb, *next;
565 
566 	list_for_each_entry_safe(skb, next, head, list) {
567 		skb_list_del_init(skb);
568 		dst_input(skb);
569 	}
570 }
571 
572 static struct sk_buff *ip_extract_route_hint(const struct net *net,
573 					     struct sk_buff *skb, int rt_type)
574 {
575 	if (fib4_has_custom_rules(net) || rt_type == RTN_BROADCAST)
576 		return NULL;
577 
578 	return skb;
579 }
580 
581 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
582 			       struct list_head *head)
583 {
584 	struct sk_buff *skb, *next, *hint = NULL;
585 	struct dst_entry *curr_dst = NULL;
586 	struct list_head sublist;
587 
588 	INIT_LIST_HEAD(&sublist);
589 	list_for_each_entry_safe(skb, next, head, list) {
590 		struct net_device *dev = skb->dev;
591 		struct dst_entry *dst;
592 
593 		skb_list_del_init(skb);
594 		/* if ingress device is enslaved to an L3 master device pass the
595 		 * skb to its handler for processing
596 		 */
597 		skb = l3mdev_ip_rcv(skb);
598 		if (!skb)
599 			continue;
600 		if (ip_rcv_finish_core(net, sk, skb, dev, hint) == NET_RX_DROP)
601 			continue;
602 
603 		dst = skb_dst(skb);
604 		if (curr_dst != dst) {
605 			hint = ip_extract_route_hint(net, skb,
606 					       ((struct rtable *)dst)->rt_type);
607 
608 			/* dispatch old sublist */
609 			if (!list_empty(&sublist))
610 				ip_sublist_rcv_finish(&sublist);
611 			/* start new sublist */
612 			INIT_LIST_HEAD(&sublist);
613 			curr_dst = dst;
614 		}
615 		list_add_tail(&skb->list, &sublist);
616 	}
617 	/* dispatch final sublist */
618 	ip_sublist_rcv_finish(&sublist);
619 }
620 
621 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
622 			   struct net *net)
623 {
624 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
625 		     head, dev, NULL, ip_rcv_finish);
626 	ip_list_rcv_finish(net, NULL, head);
627 }
628 
629 /* Receive a list of IP packets */
630 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
631 		 struct net_device *orig_dev)
632 {
633 	struct net_device *curr_dev = NULL;
634 	struct net *curr_net = NULL;
635 	struct sk_buff *skb, *next;
636 	struct list_head sublist;
637 
638 	INIT_LIST_HEAD(&sublist);
639 	list_for_each_entry_safe(skb, next, head, list) {
640 		struct net_device *dev = skb->dev;
641 		struct net *net = dev_net(dev);
642 
643 		skb_list_del_init(skb);
644 		skb = ip_rcv_core(skb, net);
645 		if (skb == NULL)
646 			continue;
647 
648 		if (curr_dev != dev || curr_net != net) {
649 			/* dispatch old sublist */
650 			if (!list_empty(&sublist))
651 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
652 			/* start new sublist */
653 			INIT_LIST_HEAD(&sublist);
654 			curr_dev = dev;
655 			curr_net = net;
656 		}
657 		list_add_tail(&skb->list, &sublist);
658 	}
659 	/* dispatch final sublist */
660 	if (!list_empty(&sublist))
661 		ip_sublist_rcv(&sublist, curr_dev, curr_net);
662 }
663