xref: /openbmc/linux/net/ipv4/ip_input.c (revision 22fc4c4c9fd60427bcda00878cee94e7622cfa7a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *
17  *
18  * Fixes:
19  *		Alan Cox	:	Commented a couple of minor bits of surplus code
20  *		Alan Cox	:	Undefining IP_FORWARD doesn't include the code
21  *					(just stops a compiler warning).
22  *		Alan Cox	:	Frames with >=MAX_ROUTE record routes, strict routes or loose routes
23  *					are junked rather than corrupting things.
24  *		Alan Cox	:	Frames to bad broadcast subnets are dumped
25  *					We used to process them non broadcast and
26  *					boy could that cause havoc.
27  *		Alan Cox	:	ip_forward sets the free flag on the
28  *					new frame it queues. Still crap because
29  *					it copies the frame but at least it
30  *					doesn't eat memory too.
31  *		Alan Cox	:	Generic queue code and memory fixes.
32  *		Fred Van Kempen :	IP fragment support (borrowed from NET2E)
33  *		Gerhard Koerting:	Forward fragmented frames correctly.
34  *		Gerhard Koerting: 	Fixes to my fix of the above 8-).
35  *		Gerhard Koerting:	IP interface addressing fix.
36  *		Linus Torvalds	:	More robustness checks
37  *		Alan Cox	:	Even more checks: Still not as robust as it ought to be
38  *		Alan Cox	:	Save IP header pointer for later
39  *		Alan Cox	:	ip option setting
40  *		Alan Cox	:	Use ip_tos/ip_ttl settings
41  *		Alan Cox	:	Fragmentation bogosity removed
42  *					(Thanks to Mark.Bush@prg.ox.ac.uk)
43  *		Dmitry Gorodchanin :	Send of a raw packet crash fix.
44  *		Alan Cox	:	Silly ip bug when an overlength
45  *					fragment turns up. Now frees the
46  *					queue.
47  *		Linus Torvalds/ :	Memory leakage on fragmentation
48  *		Alan Cox	:	handling.
49  *		Gerhard Koerting:	Forwarding uses IP priority hints
50  *		Teemu Rantanen	:	Fragment problems.
51  *		Alan Cox	:	General cleanup, comments and reformat
52  *		Alan Cox	:	SNMP statistics
53  *		Alan Cox	:	BSD address rule semantics. Also see
54  *					UDP as there is a nasty checksum issue
55  *					if you do things the wrong way.
56  *		Alan Cox	:	Always defrag, moved IP_FORWARD to the config.in file
57  *		Alan Cox	: 	IP options adjust sk->priority.
58  *		Pedro Roque	:	Fix mtu/length error in ip_forward.
59  *		Alan Cox	:	Avoid ip_chk_addr when possible.
60  *	Richard Underwood	:	IP multicasting.
61  *		Alan Cox	:	Cleaned up multicast handlers.
62  *		Alan Cox	:	RAW sockets demultiplex in the BSD style.
63  *		Gunther Mayer	:	Fix the SNMP reporting typo
64  *		Alan Cox	:	Always in group 224.0.0.1
65  *	Pauline Middelink	:	Fast ip_checksum update when forwarding
66  *					Masquerading support.
67  *		Alan Cox	:	Multicast loopback error for 224.0.0.1
68  *		Alan Cox	:	IP_MULTICAST_LOOP option.
69  *		Alan Cox	:	Use notifiers.
70  *		Bjorn Ekwall	:	Removed ip_csum (from slhc.c too)
71  *		Bjorn Ekwall	:	Moved ip_fast_csum to ip.h (inline!)
72  *		Stefan Becker   :       Send out ICMP HOST REDIRECT
73  *	Arnt Gulbrandsen	:	ip_build_xmit
74  *		Alan Cox	:	Per socket routing cache
75  *		Alan Cox	:	Fixed routing cache, added header cache.
76  *		Alan Cox	:	Loopback didn't work right in original ip_build_xmit - fixed it.
77  *		Alan Cox	:	Only send ICMP_REDIRECT if src/dest are the same net.
78  *		Alan Cox	:	Incoming IP option handling.
79  *		Alan Cox	:	Set saddr on raw output frames as per BSD.
80  *		Alan Cox	:	Stopped broadcast source route explosions.
81  *		Alan Cox	:	Can disable source routing
82  *		Takeshi Sone    :	Masquerading didn't work.
83  *	Dave Bonn,Alan Cox	:	Faster IP forwarding whenever possible.
84  *		Alan Cox	:	Memory leaks, tramples, misc debugging.
85  *		Alan Cox	:	Fixed multicast (by popular demand 8))
86  *		Alan Cox	:	Fixed forwarding (by even more popular demand 8))
87  *		Alan Cox	:	Fixed SNMP statistics [I think]
88  *	Gerhard Koerting	:	IP fragmentation forwarding fix
89  *		Alan Cox	:	Device lock against page fault.
90  *		Alan Cox	:	IP_HDRINCL facility.
91  *	Werner Almesberger	:	Zero fragment bug
92  *		Alan Cox	:	RAW IP frame length bug
93  *		Alan Cox	:	Outgoing firewall on build_xmit
94  *		A.N.Kuznetsov	:	IP_OPTIONS support throughout the kernel
95  *		Alan Cox	:	Multicast routing hooks
96  *		Jos Vos		:	Do accounting *before* call_in_firewall
97  *	Willy Konynenberg	:	Transparent proxying support
98  *
99  *
100  *
101  * To Fix:
102  *		IP fragmentation wants rewriting cleanly. The RFC815 algorithm is much more efficient
103  *		and could be made very efficient with the addition of some virtual memory hacks to permit
104  *		the allocation of a buffer that can then be 'grown' by twiddling page tables.
105  *		Output fragmentation wants updating along with the buffer management to use a single
106  *		interleaved copy algorithm so that fragmenting has a one copy overhead. Actual packet
107  *		output should probably do its own fragmentation at the UDP/RAW layer. TCP shouldn't cause
108  *		fragmentation anyway.
109  *
110  *		This program is free software; you can redistribute it and/or
111  *		modify it under the terms of the GNU General Public License
112  *		as published by the Free Software Foundation; either version
113  *		2 of the License, or (at your option) any later version.
114  */
115 
116 #define pr_fmt(fmt) "IPv4: " fmt
117 
118 #include <linux/module.h>
119 #include <linux/types.h>
120 #include <linux/kernel.h>
121 #include <linux/string.h>
122 #include <linux/errno.h>
123 #include <linux/slab.h>
124 
125 #include <linux/net.h>
126 #include <linux/socket.h>
127 #include <linux/sockios.h>
128 #include <linux/in.h>
129 #include <linux/inet.h>
130 #include <linux/inetdevice.h>
131 #include <linux/netdevice.h>
132 #include <linux/etherdevice.h>
133 
134 #include <net/snmp.h>
135 #include <net/ip.h>
136 #include <net/protocol.h>
137 #include <net/route.h>
138 #include <linux/skbuff.h>
139 #include <net/sock.h>
140 #include <net/arp.h>
141 #include <net/icmp.h>
142 #include <net/raw.h>
143 #include <net/checksum.h>
144 #include <net/inet_ecn.h>
145 #include <linux/netfilter_ipv4.h>
146 #include <net/xfrm.h>
147 #include <linux/mroute.h>
148 #include <linux/netlink.h>
149 #include <net/dst_metadata.h>
150 
151 /*
152  *	Process Router Attention IP option (RFC 2113)
153  */
154 bool ip_call_ra_chain(struct sk_buff *skb)
155 {
156 	struct ip_ra_chain *ra;
157 	u8 protocol = ip_hdr(skb)->protocol;
158 	struct sock *last = NULL;
159 	struct net_device *dev = skb->dev;
160 	struct net *net = dev_net(dev);
161 
162 	for (ra = rcu_dereference(net->ipv4.ra_chain); ra; ra = rcu_dereference(ra->next)) {
163 		struct sock *sk = ra->sk;
164 
165 		/* If socket is bound to an interface, only report
166 		 * the packet if it came  from that interface.
167 		 */
168 		if (sk && inet_sk(sk)->inet_num == protocol &&
169 		    (!sk->sk_bound_dev_if ||
170 		     sk->sk_bound_dev_if == dev->ifindex)) {
171 			if (ip_is_fragment(ip_hdr(skb))) {
172 				if (ip_defrag(net, skb, IP_DEFRAG_CALL_RA_CHAIN))
173 					return true;
174 			}
175 			if (last) {
176 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
177 				if (skb2)
178 					raw_rcv(last, skb2);
179 			}
180 			last = sk;
181 		}
182 	}
183 
184 	if (last) {
185 		raw_rcv(last, skb);
186 		return true;
187 	}
188 	return false;
189 }
190 
191 void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
192 {
193 	const struct net_protocol *ipprot;
194 	int raw, ret;
195 
196 resubmit:
197 	raw = raw_local_deliver(skb, protocol);
198 
199 	ipprot = rcu_dereference(inet_protos[protocol]);
200 	if (ipprot) {
201 		if (!ipprot->no_policy) {
202 			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
203 				kfree_skb(skb);
204 				return;
205 			}
206 			nf_reset(skb);
207 		}
208 		ret = ipprot->handler(skb);
209 		if (ret < 0) {
210 			protocol = -ret;
211 			goto resubmit;
212 		}
213 		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
214 	} else {
215 		if (!raw) {
216 			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
217 				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
218 				icmp_send(skb, ICMP_DEST_UNREACH,
219 					  ICMP_PROT_UNREACH, 0);
220 			}
221 			kfree_skb(skb);
222 		} else {
223 			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
224 			consume_skb(skb);
225 		}
226 	}
227 }
228 
229 static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
230 {
231 	__skb_pull(skb, skb_network_header_len(skb));
232 
233 	rcu_read_lock();
234 	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
235 	rcu_read_unlock();
236 
237 	return 0;
238 }
239 
240 /*
241  * 	Deliver IP Packets to the higher protocol layers.
242  */
243 int ip_local_deliver(struct sk_buff *skb)
244 {
245 	/*
246 	 *	Reassemble IP fragments.
247 	 */
248 	struct net *net = dev_net(skb->dev);
249 
250 	if (ip_is_fragment(ip_hdr(skb))) {
251 		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
252 			return 0;
253 	}
254 
255 	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
256 		       net, NULL, skb, skb->dev, NULL,
257 		       ip_local_deliver_finish);
258 }
259 
260 static inline bool ip_rcv_options(struct sk_buff *skb)
261 {
262 	struct ip_options *opt;
263 	const struct iphdr *iph;
264 	struct net_device *dev = skb->dev;
265 
266 	/* It looks as overkill, because not all
267 	   IP options require packet mangling.
268 	   But it is the easiest for now, especially taking
269 	   into account that combination of IP options
270 	   and running sniffer is extremely rare condition.
271 					      --ANK (980813)
272 	*/
273 	if (skb_cow(skb, skb_headroom(skb))) {
274 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INDISCARDS);
275 		goto drop;
276 	}
277 
278 	iph = ip_hdr(skb);
279 	opt = &(IPCB(skb)->opt);
280 	opt->optlen = iph->ihl*4 - sizeof(struct iphdr);
281 
282 	if (ip_options_compile(dev_net(dev), opt, skb)) {
283 		__IP_INC_STATS(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
284 		goto drop;
285 	}
286 
287 	if (unlikely(opt->srr)) {
288 		struct in_device *in_dev = __in_dev_get_rcu(dev);
289 
290 		if (in_dev) {
291 			if (!IN_DEV_SOURCE_ROUTE(in_dev)) {
292 				if (IN_DEV_LOG_MARTIANS(in_dev))
293 					net_info_ratelimited("source route option %pI4 -> %pI4\n",
294 							     &iph->saddr,
295 							     &iph->daddr);
296 				goto drop;
297 			}
298 		}
299 
300 		if (ip_options_rcv_srr(skb))
301 			goto drop;
302 	}
303 
304 	return false;
305 drop:
306 	return true;
307 }
308 
309 static int ip_rcv_finish_core(struct net *net, struct sock *sk,
310 			      struct sk_buff *skb)
311 {
312 	const struct iphdr *iph = ip_hdr(skb);
313 	int (*edemux)(struct sk_buff *skb);
314 	struct net_device *dev = skb->dev;
315 	struct rtable *rt;
316 	int err;
317 
318 	if (net->ipv4.sysctl_ip_early_demux &&
319 	    !skb_dst(skb) &&
320 	    !skb->sk &&
321 	    !ip_is_fragment(iph)) {
322 		const struct net_protocol *ipprot;
323 		int protocol = iph->protocol;
324 
325 		ipprot = rcu_dereference(inet_protos[protocol]);
326 		if (ipprot && (edemux = READ_ONCE(ipprot->early_demux))) {
327 			err = edemux(skb);
328 			if (unlikely(err))
329 				goto drop_error;
330 			/* must reload iph, skb->head might have changed */
331 			iph = ip_hdr(skb);
332 		}
333 	}
334 
335 	/*
336 	 *	Initialise the virtual path cache for the packet. It describes
337 	 *	how the packet travels inside Linux networking.
338 	 */
339 	if (!skb_valid_dst(skb)) {
340 		err = ip_route_input_noref(skb, iph->daddr, iph->saddr,
341 					   iph->tos, dev);
342 		if (unlikely(err))
343 			goto drop_error;
344 	}
345 
346 #ifdef CONFIG_IP_ROUTE_CLASSID
347 	if (unlikely(skb_dst(skb)->tclassid)) {
348 		struct ip_rt_acct *st = this_cpu_ptr(ip_rt_acct);
349 		u32 idx = skb_dst(skb)->tclassid;
350 		st[idx&0xFF].o_packets++;
351 		st[idx&0xFF].o_bytes += skb->len;
352 		st[(idx>>16)&0xFF].i_packets++;
353 		st[(idx>>16)&0xFF].i_bytes += skb->len;
354 	}
355 #endif
356 
357 	if (iph->ihl > 5 && ip_rcv_options(skb))
358 		goto drop;
359 
360 	rt = skb_rtable(skb);
361 	if (rt->rt_type == RTN_MULTICAST) {
362 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INMCAST, skb->len);
363 	} else if (rt->rt_type == RTN_BROADCAST) {
364 		__IP_UPD_PO_STATS(net, IPSTATS_MIB_INBCAST, skb->len);
365 	} else if (skb->pkt_type == PACKET_BROADCAST ||
366 		   skb->pkt_type == PACKET_MULTICAST) {
367 		struct in_device *in_dev = __in_dev_get_rcu(dev);
368 
369 		/* RFC 1122 3.3.6:
370 		 *
371 		 *   When a host sends a datagram to a link-layer broadcast
372 		 *   address, the IP destination address MUST be a legal IP
373 		 *   broadcast or IP multicast address.
374 		 *
375 		 *   A host SHOULD silently discard a datagram that is received
376 		 *   via a link-layer broadcast (see Section 2.4) but does not
377 		 *   specify an IP multicast or broadcast destination address.
378 		 *
379 		 * This doesn't explicitly say L2 *broadcast*, but broadcast is
380 		 * in a way a form of multicast and the most common use case for
381 		 * this is 802.11 protecting against cross-station spoofing (the
382 		 * so-called "hole-196" attack) so do it for both.
383 		 */
384 		if (in_dev &&
385 		    IN_DEV_ORCONF(in_dev, DROP_UNICAST_IN_L2_MULTICAST))
386 			goto drop;
387 	}
388 
389 	return NET_RX_SUCCESS;
390 
391 drop:
392 	kfree_skb(skb);
393 	return NET_RX_DROP;
394 
395 drop_error:
396 	if (err == -EXDEV)
397 		__NET_INC_STATS(net, LINUX_MIB_IPRPFILTER);
398 	goto drop;
399 }
400 
401 static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
402 {
403 	int ret;
404 
405 	/* if ingress device is enslaved to an L3 master device pass the
406 	 * skb to its handler for processing
407 	 */
408 	skb = l3mdev_ip_rcv(skb);
409 	if (!skb)
410 		return NET_RX_SUCCESS;
411 
412 	ret = ip_rcv_finish_core(net, sk, skb);
413 	if (ret != NET_RX_DROP)
414 		ret = dst_input(skb);
415 	return ret;
416 }
417 
418 /*
419  * 	Main IP Receive routine.
420  */
421 static struct sk_buff *ip_rcv_core(struct sk_buff *skb, struct net *net)
422 {
423 	const struct iphdr *iph;
424 	u32 len;
425 
426 	/* When the interface is in promisc. mode, drop all the crap
427 	 * that it receives, do not try to analyse it.
428 	 */
429 	if (skb->pkt_type == PACKET_OTHERHOST)
430 		goto drop;
431 
432 
433 	__IP_UPD_PO_STATS(net, IPSTATS_MIB_IN, skb->len);
434 
435 	skb = skb_share_check(skb, GFP_ATOMIC);
436 	if (!skb) {
437 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
438 		goto out;
439 	}
440 
441 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
442 		goto inhdr_error;
443 
444 	iph = ip_hdr(skb);
445 
446 	/*
447 	 *	RFC1122: 3.2.1.2 MUST silently discard any IP frame that fails the checksum.
448 	 *
449 	 *	Is the datagram acceptable?
450 	 *
451 	 *	1.	Length at least the size of an ip header
452 	 *	2.	Version of 4
453 	 *	3.	Checksums correctly. [Speed optimisation for later, skip loopback checksums]
454 	 *	4.	Doesn't have a bogus length
455 	 */
456 
457 	if (iph->ihl < 5 || iph->version != 4)
458 		goto inhdr_error;
459 
460 	BUILD_BUG_ON(IPSTATS_MIB_ECT1PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_1);
461 	BUILD_BUG_ON(IPSTATS_MIB_ECT0PKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_ECT_0);
462 	BUILD_BUG_ON(IPSTATS_MIB_CEPKTS != IPSTATS_MIB_NOECTPKTS + INET_ECN_CE);
463 	__IP_ADD_STATS(net,
464 		       IPSTATS_MIB_NOECTPKTS + (iph->tos & INET_ECN_MASK),
465 		       max_t(unsigned short, 1, skb_shinfo(skb)->gso_segs));
466 
467 	if (!pskb_may_pull(skb, iph->ihl*4))
468 		goto inhdr_error;
469 
470 	iph = ip_hdr(skb);
471 
472 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
473 		goto csum_error;
474 
475 	len = ntohs(iph->tot_len);
476 	if (skb->len < len) {
477 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
478 		goto drop;
479 	} else if (len < (iph->ihl*4))
480 		goto inhdr_error;
481 
482 	/* Our transport medium may have padded the buffer out. Now we know it
483 	 * is IP we can trim to the true length of the frame.
484 	 * Note this now means skb->len holds ntohs(iph->tot_len).
485 	 */
486 	if (pskb_trim_rcsum(skb, len)) {
487 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
488 		goto drop;
489 	}
490 
491 	skb->transport_header = skb->network_header + iph->ihl*4;
492 
493 	/* Remove any debris in the socket control block */
494 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
495 	IPCB(skb)->iif = skb->skb_iif;
496 
497 	/* Must drop socket now because of tproxy. */
498 	skb_orphan(skb);
499 
500 	return skb;
501 
502 csum_error:
503 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
504 inhdr_error:
505 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
506 drop:
507 	kfree_skb(skb);
508 out:
509 	return NULL;
510 }
511 
512 /*
513  * IP receive entry point
514  */
515 int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
516 	   struct net_device *orig_dev)
517 {
518 	struct net *net = dev_net(dev);
519 
520 	skb = ip_rcv_core(skb, net);
521 	if (skb == NULL)
522 		return NET_RX_DROP;
523 	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
524 		       net, NULL, skb, dev, NULL,
525 		       ip_rcv_finish);
526 }
527 
528 static void ip_sublist_rcv_finish(struct list_head *head)
529 {
530 	struct sk_buff *skb, *next;
531 
532 	list_for_each_entry_safe(skb, next, head, list) {
533 		skb_list_del_init(skb);
534 		dst_input(skb);
535 	}
536 }
537 
538 static void ip_list_rcv_finish(struct net *net, struct sock *sk,
539 			       struct list_head *head)
540 {
541 	struct dst_entry *curr_dst = NULL;
542 	struct sk_buff *skb, *next;
543 	struct list_head sublist;
544 
545 	INIT_LIST_HEAD(&sublist);
546 	list_for_each_entry_safe(skb, next, head, list) {
547 		struct dst_entry *dst;
548 
549 		skb_list_del_init(skb);
550 		/* if ingress device is enslaved to an L3 master device pass the
551 		 * skb to its handler for processing
552 		 */
553 		skb = l3mdev_ip_rcv(skb);
554 		if (!skb)
555 			continue;
556 		if (ip_rcv_finish_core(net, sk, skb) == NET_RX_DROP)
557 			continue;
558 
559 		dst = skb_dst(skb);
560 		if (curr_dst != dst) {
561 			/* dispatch old sublist */
562 			if (!list_empty(&sublist))
563 				ip_sublist_rcv_finish(&sublist);
564 			/* start new sublist */
565 			INIT_LIST_HEAD(&sublist);
566 			curr_dst = dst;
567 		}
568 		list_add_tail(&skb->list, &sublist);
569 	}
570 	/* dispatch final sublist */
571 	ip_sublist_rcv_finish(&sublist);
572 }
573 
574 static void ip_sublist_rcv(struct list_head *head, struct net_device *dev,
575 			   struct net *net)
576 {
577 	NF_HOOK_LIST(NFPROTO_IPV4, NF_INET_PRE_ROUTING, net, NULL,
578 		     head, dev, NULL, ip_rcv_finish);
579 	ip_list_rcv_finish(net, NULL, head);
580 }
581 
582 /* Receive a list of IP packets */
583 void ip_list_rcv(struct list_head *head, struct packet_type *pt,
584 		 struct net_device *orig_dev)
585 {
586 	struct net_device *curr_dev = NULL;
587 	struct net *curr_net = NULL;
588 	struct sk_buff *skb, *next;
589 	struct list_head sublist;
590 
591 	INIT_LIST_HEAD(&sublist);
592 	list_for_each_entry_safe(skb, next, head, list) {
593 		struct net_device *dev = skb->dev;
594 		struct net *net = dev_net(dev);
595 
596 		skb_list_del_init(skb);
597 		skb = ip_rcv_core(skb, net);
598 		if (skb == NULL)
599 			continue;
600 
601 		if (curr_dev != dev || curr_net != net) {
602 			/* dispatch old sublist */
603 			if (!list_empty(&sublist))
604 				ip_sublist_rcv(&sublist, curr_dev, curr_net);
605 			/* start new sublist */
606 			INIT_LIST_HEAD(&sublist);
607 			curr_dev = dev;
608 			curr_net = net;
609 		}
610 		list_add_tail(&skb->list, &sublist);
611 	}
612 	/* dispatch final sublist */
613 	ip_sublist_rcv(&sublist, curr_dev, curr_net);
614 }
615