xref: /openbmc/linux/net/ipv4/ip_gre.c (revision c4ee0af3)
1 /*
2  *	Linux NET3:	GRE over IP protocol decoder.
3  *
4  *	Authors: Alexey Kuznetsov (kuznet@ms2.inr.ac.ru)
5  *
6  *	This program is free software; you can redistribute it and/or
7  *	modify it under the terms of the GNU General Public License
8  *	as published by the Free Software Foundation; either version
9  *	2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/capability.h>
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <asm/uaccess.h>
21 #include <linux/skbuff.h>
22 #include <linux/netdevice.h>
23 #include <linux/in.h>
24 #include <linux/tcp.h>
25 #include <linux/udp.h>
26 #include <linux/if_arp.h>
27 #include <linux/mroute.h>
28 #include <linux/init.h>
29 #include <linux/in6.h>
30 #include <linux/inetdevice.h>
31 #include <linux/igmp.h>
32 #include <linux/netfilter_ipv4.h>
33 #include <linux/etherdevice.h>
34 #include <linux/if_ether.h>
35 
36 #include <net/sock.h>
37 #include <net/ip.h>
38 #include <net/icmp.h>
39 #include <net/protocol.h>
40 #include <net/ip_tunnels.h>
41 #include <net/arp.h>
42 #include <net/checksum.h>
43 #include <net/dsfield.h>
44 #include <net/inet_ecn.h>
45 #include <net/xfrm.h>
46 #include <net/net_namespace.h>
47 #include <net/netns/generic.h>
48 #include <net/rtnetlink.h>
49 #include <net/gre.h>
50 
51 #if IS_ENABLED(CONFIG_IPV6)
52 #include <net/ipv6.h>
53 #include <net/ip6_fib.h>
54 #include <net/ip6_route.h>
55 #endif
56 
57 /*
58    Problems & solutions
59    --------------------
60 
61    1. The most important issue is detecting local dead loops.
62    They would cause complete host lockup in transmit, which
63    would be "resolved" by stack overflow or, if queueing is enabled,
64    with infinite looping in net_bh.
65 
66    We cannot track such dead loops during route installation,
67    it is infeasible task. The most general solutions would be
68    to keep skb->encapsulation counter (sort of local ttl),
69    and silently drop packet when it expires. It is a good
70    solution, but it supposes maintaining new variable in ALL
71    skb, even if no tunneling is used.
72 
73    Current solution: xmit_recursion breaks dead loops. This is a percpu
74    counter, since when we enter the first ndo_xmit(), cpu migration is
75    forbidden. We force an exit if this counter reaches RECURSION_LIMIT
76 
77    2. Networking dead loops would not kill routers, but would really
78    kill network. IP hop limit plays role of "t->recursion" in this case,
79    if we copy it from packet being encapsulated to upper header.
80    It is very good solution, but it introduces two problems:
81 
82    - Routing protocols, using packets with ttl=1 (OSPF, RIP2),
83      do not work over tunnels.
84    - traceroute does not work. I planned to relay ICMP from tunnel,
85      so that this problem would be solved and traceroute output
86      would even more informative. This idea appeared to be wrong:
87      only Linux complies to rfc1812 now (yes, guys, Linux is the only
88      true router now :-)), all routers (at least, in neighbourhood of mine)
89      return only 8 bytes of payload. It is the end.
90 
91    Hence, if we want that OSPF worked or traceroute said something reasonable,
92    we should search for another solution.
93 
94    One of them is to parse packet trying to detect inner encapsulation
95    made by our node. It is difficult or even impossible, especially,
96    taking into account fragmentation. TO be short, ttl is not solution at all.
97 
98    Current solution: The solution was UNEXPECTEDLY SIMPLE.
99    We force DF flag on tunnels with preconfigured hop limit,
100    that is ALL. :-) Well, it does not remove the problem completely,
101    but exponential growth of network traffic is changed to linear
102    (branches, that exceed pmtu are pruned) and tunnel mtu
103    rapidly degrades to value <68, where looping stops.
104    Yes, it is not good if there exists a router in the loop,
105    which does not force DF, even when encapsulating packets have DF set.
106    But it is not our problem! Nobody could accuse us, we made
107    all that we could make. Even if it is your gated who injected
108    fatal route to network, even if it were you who configured
109    fatal static route: you are innocent. :-)
110 
111    Alexey Kuznetsov.
112  */
113 
114 static bool log_ecn_error = true;
115 module_param(log_ecn_error, bool, 0644);
116 MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN");
117 
118 static struct rtnl_link_ops ipgre_link_ops __read_mostly;
119 static int ipgre_tunnel_init(struct net_device *dev);
120 
121 static int ipgre_net_id __read_mostly;
122 static int gre_tap_net_id __read_mostly;
123 
124 static int ipgre_err(struct sk_buff *skb, u32 info,
125 		     const struct tnl_ptk_info *tpi)
126 {
127 
128 	/* All the routers (except for Linux) return only
129 	   8 bytes of packet payload. It means, that precise relaying of
130 	   ICMP in the real Internet is absolutely infeasible.
131 
132 	   Moreover, Cisco "wise men" put GRE key to the third word
133 	   in GRE header. It makes impossible maintaining even soft
134 	   state for keyed GRE tunnels with enabled checksum. Tell
135 	   them "thank you".
136 
137 	   Well, I wonder, rfc1812 was written by Cisco employee,
138 	   what the hell these idiots break standards established
139 	   by themselves???
140 	   */
141 	struct net *net = dev_net(skb->dev);
142 	struct ip_tunnel_net *itn;
143 	const struct iphdr *iph;
144 	const int type = icmp_hdr(skb)->type;
145 	const int code = icmp_hdr(skb)->code;
146 	struct ip_tunnel *t;
147 
148 	switch (type) {
149 	default:
150 	case ICMP_PARAMETERPROB:
151 		return PACKET_RCVD;
152 
153 	case ICMP_DEST_UNREACH:
154 		switch (code) {
155 		case ICMP_SR_FAILED:
156 		case ICMP_PORT_UNREACH:
157 			/* Impossible event. */
158 			return PACKET_RCVD;
159 		default:
160 			/* All others are translated to HOST_UNREACH.
161 			   rfc2003 contains "deep thoughts" about NET_UNREACH,
162 			   I believe they are just ether pollution. --ANK
163 			 */
164 			break;
165 		}
166 		break;
167 	case ICMP_TIME_EXCEEDED:
168 		if (code != ICMP_EXC_TTL)
169 			return PACKET_RCVD;
170 		break;
171 
172 	case ICMP_REDIRECT:
173 		break;
174 	}
175 
176 	if (tpi->proto == htons(ETH_P_TEB))
177 		itn = net_generic(net, gre_tap_net_id);
178 	else
179 		itn = net_generic(net, ipgre_net_id);
180 
181 	iph = (const struct iphdr *)skb->data;
182 	t = ip_tunnel_lookup(itn, skb->dev->ifindex, tpi->flags,
183 			     iph->daddr, iph->saddr, tpi->key);
184 
185 	if (t == NULL)
186 		return PACKET_REJECT;
187 
188 	if (t->parms.iph.daddr == 0 ||
189 	    ipv4_is_multicast(t->parms.iph.daddr))
190 		return PACKET_RCVD;
191 
192 	if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED)
193 		return PACKET_RCVD;
194 
195 	if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO))
196 		t->err_count++;
197 	else
198 		t->err_count = 1;
199 	t->err_time = jiffies;
200 	return PACKET_RCVD;
201 }
202 
203 static int ipgre_rcv(struct sk_buff *skb, const struct tnl_ptk_info *tpi)
204 {
205 	struct net *net = dev_net(skb->dev);
206 	struct ip_tunnel_net *itn;
207 	const struct iphdr *iph;
208 	struct ip_tunnel *tunnel;
209 
210 	if (tpi->proto == htons(ETH_P_TEB))
211 		itn = net_generic(net, gre_tap_net_id);
212 	else
213 		itn = net_generic(net, ipgre_net_id);
214 
215 	iph = ip_hdr(skb);
216 	tunnel = ip_tunnel_lookup(itn, skb->dev->ifindex, tpi->flags,
217 				  iph->saddr, iph->daddr, tpi->key);
218 
219 	if (tunnel) {
220 		ip_tunnel_rcv(tunnel, skb, tpi, log_ecn_error);
221 		return PACKET_RCVD;
222 	}
223 	return PACKET_REJECT;
224 }
225 
226 static void __gre_xmit(struct sk_buff *skb, struct net_device *dev,
227 		       const struct iphdr *tnl_params,
228 		       __be16 proto)
229 {
230 	struct ip_tunnel *tunnel = netdev_priv(dev);
231 	struct tnl_ptk_info tpi;
232 
233 	tpi.flags = tunnel->parms.o_flags;
234 	tpi.proto = proto;
235 	tpi.key = tunnel->parms.o_key;
236 	if (tunnel->parms.o_flags & TUNNEL_SEQ)
237 		tunnel->o_seqno++;
238 	tpi.seq = htonl(tunnel->o_seqno);
239 
240 	/* Push GRE header. */
241 	gre_build_header(skb, &tpi, tunnel->hlen);
242 
243 	ip_tunnel_xmit(skb, dev, tnl_params, tnl_params->protocol);
244 }
245 
246 static netdev_tx_t ipgre_xmit(struct sk_buff *skb,
247 			      struct net_device *dev)
248 {
249 	struct ip_tunnel *tunnel = netdev_priv(dev);
250 	const struct iphdr *tnl_params;
251 
252 	skb = gre_handle_offloads(skb, !!(tunnel->parms.o_flags&TUNNEL_CSUM));
253 	if (IS_ERR(skb))
254 		goto out;
255 
256 	if (dev->header_ops) {
257 		/* Need space for new headers */
258 		if (skb_cow_head(skb, dev->needed_headroom -
259 				      (tunnel->hlen + sizeof(struct iphdr))))
260 			goto free_skb;
261 
262 		tnl_params = (const struct iphdr *)skb->data;
263 
264 		/* Pull skb since ip_tunnel_xmit() needs skb->data pointing
265 		 * to gre header.
266 		 */
267 		skb_pull(skb, tunnel->hlen + sizeof(struct iphdr));
268 	} else {
269 		if (skb_cow_head(skb, dev->needed_headroom))
270 			goto free_skb;
271 
272 		tnl_params = &tunnel->parms.iph;
273 	}
274 
275 	__gre_xmit(skb, dev, tnl_params, skb->protocol);
276 
277 	return NETDEV_TX_OK;
278 
279 free_skb:
280 	dev_kfree_skb(skb);
281 out:
282 	dev->stats.tx_dropped++;
283 	return NETDEV_TX_OK;
284 }
285 
286 static netdev_tx_t gre_tap_xmit(struct sk_buff *skb,
287 				struct net_device *dev)
288 {
289 	struct ip_tunnel *tunnel = netdev_priv(dev);
290 
291 	skb = gre_handle_offloads(skb, !!(tunnel->parms.o_flags&TUNNEL_CSUM));
292 	if (IS_ERR(skb))
293 		goto out;
294 
295 	if (skb_cow_head(skb, dev->needed_headroom))
296 		goto free_skb;
297 
298 	__gre_xmit(skb, dev, &tunnel->parms.iph, htons(ETH_P_TEB));
299 
300 	return NETDEV_TX_OK;
301 
302 free_skb:
303 	dev_kfree_skb(skb);
304 out:
305 	dev->stats.tx_dropped++;
306 	return NETDEV_TX_OK;
307 }
308 
309 static int ipgre_tunnel_ioctl(struct net_device *dev,
310 			      struct ifreq *ifr, int cmd)
311 {
312 	int err = 0;
313 	struct ip_tunnel_parm p;
314 
315 	if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p)))
316 		return -EFAULT;
317 	if (cmd == SIOCADDTUNNEL || cmd == SIOCCHGTUNNEL) {
318 		if (p.iph.version != 4 || p.iph.protocol != IPPROTO_GRE ||
319 		    p.iph.ihl != 5 || (p.iph.frag_off&htons(~IP_DF)) ||
320 		    ((p.i_flags|p.o_flags)&(GRE_VERSION|GRE_ROUTING)))
321 			return -EINVAL;
322 	}
323 	p.i_flags = gre_flags_to_tnl_flags(p.i_flags);
324 	p.o_flags = gre_flags_to_tnl_flags(p.o_flags);
325 
326 	err = ip_tunnel_ioctl(dev, &p, cmd);
327 	if (err)
328 		return err;
329 
330 	p.i_flags = tnl_flags_to_gre_flags(p.i_flags);
331 	p.o_flags = tnl_flags_to_gre_flags(p.o_flags);
332 
333 	if (copy_to_user(ifr->ifr_ifru.ifru_data, &p, sizeof(p)))
334 		return -EFAULT;
335 	return 0;
336 }
337 
338 /* Nice toy. Unfortunately, useless in real life :-)
339    It allows to construct virtual multiprotocol broadcast "LAN"
340    over the Internet, provided multicast routing is tuned.
341 
342 
343    I have no idea was this bicycle invented before me,
344    so that I had to set ARPHRD_IPGRE to a random value.
345    I have an impression, that Cisco could make something similar,
346    but this feature is apparently missing in IOS<=11.2(8).
347 
348    I set up 10.66.66/24 and fec0:6666:6666::0/96 as virtual networks
349    with broadcast 224.66.66.66. If you have access to mbone, play with me :-)
350 
351    ping -t 255 224.66.66.66
352 
353    If nobody answers, mbone does not work.
354 
355    ip tunnel add Universe mode gre remote 224.66.66.66 local <Your_real_addr> ttl 255
356    ip addr add 10.66.66.<somewhat>/24 dev Universe
357    ifconfig Universe up
358    ifconfig Universe add fe80::<Your_real_addr>/10
359    ifconfig Universe add fec0:6666:6666::<Your_real_addr>/96
360    ftp 10.66.66.66
361    ...
362    ftp fec0:6666:6666::193.233.7.65
363    ...
364  */
365 static int ipgre_header(struct sk_buff *skb, struct net_device *dev,
366 			unsigned short type,
367 			const void *daddr, const void *saddr, unsigned int len)
368 {
369 	struct ip_tunnel *t = netdev_priv(dev);
370 	struct iphdr *iph;
371 	struct gre_base_hdr *greh;
372 
373 	iph = (struct iphdr *)skb_push(skb, t->hlen + sizeof(*iph));
374 	greh = (struct gre_base_hdr *)(iph+1);
375 	greh->flags = tnl_flags_to_gre_flags(t->parms.o_flags);
376 	greh->protocol = htons(type);
377 
378 	memcpy(iph, &t->parms.iph, sizeof(struct iphdr));
379 
380 	/* Set the source hardware address. */
381 	if (saddr)
382 		memcpy(&iph->saddr, saddr, 4);
383 	if (daddr)
384 		memcpy(&iph->daddr, daddr, 4);
385 	if (iph->daddr)
386 		return t->hlen + sizeof(*iph);
387 
388 	return -(t->hlen + sizeof(*iph));
389 }
390 
391 static int ipgre_header_parse(const struct sk_buff *skb, unsigned char *haddr)
392 {
393 	const struct iphdr *iph = (const struct iphdr *) skb_mac_header(skb);
394 	memcpy(haddr, &iph->saddr, 4);
395 	return 4;
396 }
397 
398 static const struct header_ops ipgre_header_ops = {
399 	.create	= ipgre_header,
400 	.parse	= ipgre_header_parse,
401 };
402 
403 #ifdef CONFIG_NET_IPGRE_BROADCAST
404 static int ipgre_open(struct net_device *dev)
405 {
406 	struct ip_tunnel *t = netdev_priv(dev);
407 
408 	if (ipv4_is_multicast(t->parms.iph.daddr)) {
409 		struct flowi4 fl4;
410 		struct rtable *rt;
411 
412 		rt = ip_route_output_gre(dev_net(dev), &fl4,
413 					 t->parms.iph.daddr,
414 					 t->parms.iph.saddr,
415 					 t->parms.o_key,
416 					 RT_TOS(t->parms.iph.tos),
417 					 t->parms.link);
418 		if (IS_ERR(rt))
419 			return -EADDRNOTAVAIL;
420 		dev = rt->dst.dev;
421 		ip_rt_put(rt);
422 		if (__in_dev_get_rtnl(dev) == NULL)
423 			return -EADDRNOTAVAIL;
424 		t->mlink = dev->ifindex;
425 		ip_mc_inc_group(__in_dev_get_rtnl(dev), t->parms.iph.daddr);
426 	}
427 	return 0;
428 }
429 
430 static int ipgre_close(struct net_device *dev)
431 {
432 	struct ip_tunnel *t = netdev_priv(dev);
433 
434 	if (ipv4_is_multicast(t->parms.iph.daddr) && t->mlink) {
435 		struct in_device *in_dev;
436 		in_dev = inetdev_by_index(dev_net(dev), t->mlink);
437 		if (in_dev)
438 			ip_mc_dec_group(in_dev, t->parms.iph.daddr);
439 	}
440 	return 0;
441 }
442 #endif
443 
444 static const struct net_device_ops ipgre_netdev_ops = {
445 	.ndo_init		= ipgre_tunnel_init,
446 	.ndo_uninit		= ip_tunnel_uninit,
447 #ifdef CONFIG_NET_IPGRE_BROADCAST
448 	.ndo_open		= ipgre_open,
449 	.ndo_stop		= ipgre_close,
450 #endif
451 	.ndo_start_xmit		= ipgre_xmit,
452 	.ndo_do_ioctl		= ipgre_tunnel_ioctl,
453 	.ndo_change_mtu		= ip_tunnel_change_mtu,
454 	.ndo_get_stats64	= ip_tunnel_get_stats64,
455 };
456 
457 #define GRE_FEATURES (NETIF_F_SG |		\
458 		      NETIF_F_FRAGLIST |	\
459 		      NETIF_F_HIGHDMA |		\
460 		      NETIF_F_HW_CSUM)
461 
462 static void ipgre_tunnel_setup(struct net_device *dev)
463 {
464 	dev->netdev_ops		= &ipgre_netdev_ops;
465 	ip_tunnel_setup(dev, ipgre_net_id);
466 }
467 
468 static void __gre_tunnel_init(struct net_device *dev)
469 {
470 	struct ip_tunnel *tunnel;
471 
472 	tunnel = netdev_priv(dev);
473 	tunnel->hlen = ip_gre_calc_hlen(tunnel->parms.o_flags);
474 	tunnel->parms.iph.protocol = IPPROTO_GRE;
475 
476 	dev->needed_headroom	= LL_MAX_HEADER + sizeof(struct iphdr) + 4;
477 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 4;
478 
479 	dev->features		|= NETIF_F_NETNS_LOCAL | GRE_FEATURES;
480 	dev->hw_features	|= GRE_FEATURES;
481 
482 	if (!(tunnel->parms.o_flags & TUNNEL_SEQ)) {
483 		/* TCP offload with GRE SEQ is not supported. */
484 		dev->features    |= NETIF_F_GSO_SOFTWARE;
485 		dev->hw_features |= NETIF_F_GSO_SOFTWARE;
486 		/* Can use a lockless transmit, unless we generate
487 		 * output sequences
488 		 */
489 		dev->features |= NETIF_F_LLTX;
490 	}
491 }
492 
493 static int ipgre_tunnel_init(struct net_device *dev)
494 {
495 	struct ip_tunnel *tunnel = netdev_priv(dev);
496 	struct iphdr *iph = &tunnel->parms.iph;
497 
498 	__gre_tunnel_init(dev);
499 
500 	memcpy(dev->dev_addr, &iph->saddr, 4);
501 	memcpy(dev->broadcast, &iph->daddr, 4);
502 
503 	dev->type		= ARPHRD_IPGRE;
504 	dev->flags		= IFF_NOARP;
505 	dev->priv_flags		&= ~IFF_XMIT_DST_RELEASE;
506 	dev->addr_len		= 4;
507 
508 	if (iph->daddr) {
509 #ifdef CONFIG_NET_IPGRE_BROADCAST
510 		if (ipv4_is_multicast(iph->daddr)) {
511 			if (!iph->saddr)
512 				return -EINVAL;
513 			dev->flags = IFF_BROADCAST;
514 			dev->header_ops = &ipgre_header_ops;
515 		}
516 #endif
517 	} else
518 		dev->header_ops = &ipgre_header_ops;
519 
520 	return ip_tunnel_init(dev);
521 }
522 
523 static struct gre_cisco_protocol ipgre_protocol = {
524 	.handler        = ipgre_rcv,
525 	.err_handler    = ipgre_err,
526 	.priority       = 0,
527 };
528 
529 static int __net_init ipgre_init_net(struct net *net)
530 {
531 	return ip_tunnel_init_net(net, ipgre_net_id, &ipgre_link_ops, NULL);
532 }
533 
534 static void __net_exit ipgre_exit_net(struct net *net)
535 {
536 	struct ip_tunnel_net *itn = net_generic(net, ipgre_net_id);
537 	ip_tunnel_delete_net(itn, &ipgre_link_ops);
538 }
539 
540 static struct pernet_operations ipgre_net_ops = {
541 	.init = ipgre_init_net,
542 	.exit = ipgre_exit_net,
543 	.id   = &ipgre_net_id,
544 	.size = sizeof(struct ip_tunnel_net),
545 };
546 
547 static int ipgre_tunnel_validate(struct nlattr *tb[], struct nlattr *data[])
548 {
549 	__be16 flags;
550 
551 	if (!data)
552 		return 0;
553 
554 	flags = 0;
555 	if (data[IFLA_GRE_IFLAGS])
556 		flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]);
557 	if (data[IFLA_GRE_OFLAGS])
558 		flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]);
559 	if (flags & (GRE_VERSION|GRE_ROUTING))
560 		return -EINVAL;
561 
562 	return 0;
563 }
564 
565 static int ipgre_tap_validate(struct nlattr *tb[], struct nlattr *data[])
566 {
567 	__be32 daddr;
568 
569 	if (tb[IFLA_ADDRESS]) {
570 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
571 			return -EINVAL;
572 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
573 			return -EADDRNOTAVAIL;
574 	}
575 
576 	if (!data)
577 		goto out;
578 
579 	if (data[IFLA_GRE_REMOTE]) {
580 		memcpy(&daddr, nla_data(data[IFLA_GRE_REMOTE]), 4);
581 		if (!daddr)
582 			return -EINVAL;
583 	}
584 
585 out:
586 	return ipgre_tunnel_validate(tb, data);
587 }
588 
589 static void ipgre_netlink_parms(struct nlattr *data[], struct nlattr *tb[],
590 			       struct ip_tunnel_parm *parms)
591 {
592 	memset(parms, 0, sizeof(*parms));
593 
594 	parms->iph.protocol = IPPROTO_GRE;
595 
596 	if (!data)
597 		return;
598 
599 	if (data[IFLA_GRE_LINK])
600 		parms->link = nla_get_u32(data[IFLA_GRE_LINK]);
601 
602 	if (data[IFLA_GRE_IFLAGS])
603 		parms->i_flags = gre_flags_to_tnl_flags(nla_get_be16(data[IFLA_GRE_IFLAGS]));
604 
605 	if (data[IFLA_GRE_OFLAGS])
606 		parms->o_flags = gre_flags_to_tnl_flags(nla_get_be16(data[IFLA_GRE_OFLAGS]));
607 
608 	if (data[IFLA_GRE_IKEY])
609 		parms->i_key = nla_get_be32(data[IFLA_GRE_IKEY]);
610 
611 	if (data[IFLA_GRE_OKEY])
612 		parms->o_key = nla_get_be32(data[IFLA_GRE_OKEY]);
613 
614 	if (data[IFLA_GRE_LOCAL])
615 		parms->iph.saddr = nla_get_be32(data[IFLA_GRE_LOCAL]);
616 
617 	if (data[IFLA_GRE_REMOTE])
618 		parms->iph.daddr = nla_get_be32(data[IFLA_GRE_REMOTE]);
619 
620 	if (data[IFLA_GRE_TTL])
621 		parms->iph.ttl = nla_get_u8(data[IFLA_GRE_TTL]);
622 
623 	if (data[IFLA_GRE_TOS])
624 		parms->iph.tos = nla_get_u8(data[IFLA_GRE_TOS]);
625 
626 	if (!data[IFLA_GRE_PMTUDISC] || nla_get_u8(data[IFLA_GRE_PMTUDISC]))
627 		parms->iph.frag_off = htons(IP_DF);
628 }
629 
630 static int gre_tap_init(struct net_device *dev)
631 {
632 	__gre_tunnel_init(dev);
633 
634 	return ip_tunnel_init(dev);
635 }
636 
637 static const struct net_device_ops gre_tap_netdev_ops = {
638 	.ndo_init		= gre_tap_init,
639 	.ndo_uninit		= ip_tunnel_uninit,
640 	.ndo_start_xmit		= gre_tap_xmit,
641 	.ndo_set_mac_address 	= eth_mac_addr,
642 	.ndo_validate_addr	= eth_validate_addr,
643 	.ndo_change_mtu		= ip_tunnel_change_mtu,
644 	.ndo_get_stats64	= ip_tunnel_get_stats64,
645 };
646 
647 static void ipgre_tap_setup(struct net_device *dev)
648 {
649 	ether_setup(dev);
650 	dev->netdev_ops		= &gre_tap_netdev_ops;
651 	ip_tunnel_setup(dev, gre_tap_net_id);
652 }
653 
654 static int ipgre_newlink(struct net *src_net, struct net_device *dev,
655 			 struct nlattr *tb[], struct nlattr *data[])
656 {
657 	struct ip_tunnel_parm p;
658 
659 	ipgre_netlink_parms(data, tb, &p);
660 	return ip_tunnel_newlink(dev, tb, &p);
661 }
662 
663 static int ipgre_changelink(struct net_device *dev, struct nlattr *tb[],
664 			    struct nlattr *data[])
665 {
666 	struct ip_tunnel_parm p;
667 
668 	ipgre_netlink_parms(data, tb, &p);
669 	return ip_tunnel_changelink(dev, tb, &p);
670 }
671 
672 static size_t ipgre_get_size(const struct net_device *dev)
673 {
674 	return
675 		/* IFLA_GRE_LINK */
676 		nla_total_size(4) +
677 		/* IFLA_GRE_IFLAGS */
678 		nla_total_size(2) +
679 		/* IFLA_GRE_OFLAGS */
680 		nla_total_size(2) +
681 		/* IFLA_GRE_IKEY */
682 		nla_total_size(4) +
683 		/* IFLA_GRE_OKEY */
684 		nla_total_size(4) +
685 		/* IFLA_GRE_LOCAL */
686 		nla_total_size(4) +
687 		/* IFLA_GRE_REMOTE */
688 		nla_total_size(4) +
689 		/* IFLA_GRE_TTL */
690 		nla_total_size(1) +
691 		/* IFLA_GRE_TOS */
692 		nla_total_size(1) +
693 		/* IFLA_GRE_PMTUDISC */
694 		nla_total_size(1) +
695 		0;
696 }
697 
698 static int ipgre_fill_info(struct sk_buff *skb, const struct net_device *dev)
699 {
700 	struct ip_tunnel *t = netdev_priv(dev);
701 	struct ip_tunnel_parm *p = &t->parms;
702 
703 	if (nla_put_u32(skb, IFLA_GRE_LINK, p->link) ||
704 	    nla_put_be16(skb, IFLA_GRE_IFLAGS, tnl_flags_to_gre_flags(p->i_flags)) ||
705 	    nla_put_be16(skb, IFLA_GRE_OFLAGS, tnl_flags_to_gre_flags(p->o_flags)) ||
706 	    nla_put_be32(skb, IFLA_GRE_IKEY, p->i_key) ||
707 	    nla_put_be32(skb, IFLA_GRE_OKEY, p->o_key) ||
708 	    nla_put_be32(skb, IFLA_GRE_LOCAL, p->iph.saddr) ||
709 	    nla_put_be32(skb, IFLA_GRE_REMOTE, p->iph.daddr) ||
710 	    nla_put_u8(skb, IFLA_GRE_TTL, p->iph.ttl) ||
711 	    nla_put_u8(skb, IFLA_GRE_TOS, p->iph.tos) ||
712 	    nla_put_u8(skb, IFLA_GRE_PMTUDISC,
713 		       !!(p->iph.frag_off & htons(IP_DF))))
714 		goto nla_put_failure;
715 	return 0;
716 
717 nla_put_failure:
718 	return -EMSGSIZE;
719 }
720 
721 static const struct nla_policy ipgre_policy[IFLA_GRE_MAX + 1] = {
722 	[IFLA_GRE_LINK]		= { .type = NLA_U32 },
723 	[IFLA_GRE_IFLAGS]	= { .type = NLA_U16 },
724 	[IFLA_GRE_OFLAGS]	= { .type = NLA_U16 },
725 	[IFLA_GRE_IKEY]		= { .type = NLA_U32 },
726 	[IFLA_GRE_OKEY]		= { .type = NLA_U32 },
727 	[IFLA_GRE_LOCAL]	= { .len = FIELD_SIZEOF(struct iphdr, saddr) },
728 	[IFLA_GRE_REMOTE]	= { .len = FIELD_SIZEOF(struct iphdr, daddr) },
729 	[IFLA_GRE_TTL]		= { .type = NLA_U8 },
730 	[IFLA_GRE_TOS]		= { .type = NLA_U8 },
731 	[IFLA_GRE_PMTUDISC]	= { .type = NLA_U8 },
732 };
733 
734 static struct rtnl_link_ops ipgre_link_ops __read_mostly = {
735 	.kind		= "gre",
736 	.maxtype	= IFLA_GRE_MAX,
737 	.policy		= ipgre_policy,
738 	.priv_size	= sizeof(struct ip_tunnel),
739 	.setup		= ipgre_tunnel_setup,
740 	.validate	= ipgre_tunnel_validate,
741 	.newlink	= ipgre_newlink,
742 	.changelink	= ipgre_changelink,
743 	.dellink	= ip_tunnel_dellink,
744 	.get_size	= ipgre_get_size,
745 	.fill_info	= ipgre_fill_info,
746 };
747 
748 static struct rtnl_link_ops ipgre_tap_ops __read_mostly = {
749 	.kind		= "gretap",
750 	.maxtype	= IFLA_GRE_MAX,
751 	.policy		= ipgre_policy,
752 	.priv_size	= sizeof(struct ip_tunnel),
753 	.setup		= ipgre_tap_setup,
754 	.validate	= ipgre_tap_validate,
755 	.newlink	= ipgre_newlink,
756 	.changelink	= ipgre_changelink,
757 	.dellink	= ip_tunnel_dellink,
758 	.get_size	= ipgre_get_size,
759 	.fill_info	= ipgre_fill_info,
760 };
761 
762 static int __net_init ipgre_tap_init_net(struct net *net)
763 {
764 	return ip_tunnel_init_net(net, gre_tap_net_id, &ipgre_tap_ops, NULL);
765 }
766 
767 static void __net_exit ipgre_tap_exit_net(struct net *net)
768 {
769 	struct ip_tunnel_net *itn = net_generic(net, gre_tap_net_id);
770 	ip_tunnel_delete_net(itn, &ipgre_tap_ops);
771 }
772 
773 static struct pernet_operations ipgre_tap_net_ops = {
774 	.init = ipgre_tap_init_net,
775 	.exit = ipgre_tap_exit_net,
776 	.id   = &gre_tap_net_id,
777 	.size = sizeof(struct ip_tunnel_net),
778 };
779 
780 static int __init ipgre_init(void)
781 {
782 	int err;
783 
784 	pr_info("GRE over IPv4 tunneling driver\n");
785 
786 	err = register_pernet_device(&ipgre_net_ops);
787 	if (err < 0)
788 		return err;
789 
790 	err = register_pernet_device(&ipgre_tap_net_ops);
791 	if (err < 0)
792 		goto pnet_tap_faied;
793 
794 	err = gre_cisco_register(&ipgre_protocol);
795 	if (err < 0) {
796 		pr_info("%s: can't add protocol\n", __func__);
797 		goto add_proto_failed;
798 	}
799 
800 	err = rtnl_link_register(&ipgre_link_ops);
801 	if (err < 0)
802 		goto rtnl_link_failed;
803 
804 	err = rtnl_link_register(&ipgre_tap_ops);
805 	if (err < 0)
806 		goto tap_ops_failed;
807 
808 	return 0;
809 
810 tap_ops_failed:
811 	rtnl_link_unregister(&ipgre_link_ops);
812 rtnl_link_failed:
813 	gre_cisco_unregister(&ipgre_protocol);
814 add_proto_failed:
815 	unregister_pernet_device(&ipgre_tap_net_ops);
816 pnet_tap_faied:
817 	unregister_pernet_device(&ipgre_net_ops);
818 	return err;
819 }
820 
821 static void __exit ipgre_fini(void)
822 {
823 	rtnl_link_unregister(&ipgre_tap_ops);
824 	rtnl_link_unregister(&ipgre_link_ops);
825 	gre_cisco_unregister(&ipgre_protocol);
826 	unregister_pernet_device(&ipgre_tap_net_ops);
827 	unregister_pernet_device(&ipgre_net_ops);
828 }
829 
830 module_init(ipgre_init);
831 module_exit(ipgre_fini);
832 MODULE_LICENSE("GPL");
833 MODULE_ALIAS_RTNL_LINK("gre");
834 MODULE_ALIAS_RTNL_LINK("gretap");
835 MODULE_ALIAS_NETDEV("gre0");
836 MODULE_ALIAS_NETDEV("gretap0");
837