1 /* 2 * Linux NET3: GRE over IP protocol decoder. 3 * 4 * Authors: Alexey Kuznetsov (kuznet@ms2.inr.ac.ru) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/capability.h> 16 #include <linux/module.h> 17 #include <linux/types.h> 18 #include <linux/kernel.h> 19 #include <linux/slab.h> 20 #include <linux/uaccess.h> 21 #include <linux/skbuff.h> 22 #include <linux/netdevice.h> 23 #include <linux/in.h> 24 #include <linux/tcp.h> 25 #include <linux/udp.h> 26 #include <linux/if_arp.h> 27 #include <linux/if_vlan.h> 28 #include <linux/init.h> 29 #include <linux/in6.h> 30 #include <linux/inetdevice.h> 31 #include <linux/igmp.h> 32 #include <linux/netfilter_ipv4.h> 33 #include <linux/etherdevice.h> 34 #include <linux/if_ether.h> 35 36 #include <net/sock.h> 37 #include <net/ip.h> 38 #include <net/icmp.h> 39 #include <net/protocol.h> 40 #include <net/ip_tunnels.h> 41 #include <net/arp.h> 42 #include <net/checksum.h> 43 #include <net/dsfield.h> 44 #include <net/inet_ecn.h> 45 #include <net/xfrm.h> 46 #include <net/net_namespace.h> 47 #include <net/netns/generic.h> 48 #include <net/rtnetlink.h> 49 #include <net/gre.h> 50 #include <net/dst_metadata.h> 51 #include <net/erspan.h> 52 53 /* 54 Problems & solutions 55 -------------------- 56 57 1. The most important issue is detecting local dead loops. 58 They would cause complete host lockup in transmit, which 59 would be "resolved" by stack overflow or, if queueing is enabled, 60 with infinite looping in net_bh. 61 62 We cannot track such dead loops during route installation, 63 it is infeasible task. The most general solutions would be 64 to keep skb->encapsulation counter (sort of local ttl), 65 and silently drop packet when it expires. It is a good 66 solution, but it supposes maintaining new variable in ALL 67 skb, even if no tunneling is used. 68 69 Current solution: xmit_recursion breaks dead loops. This is a percpu 70 counter, since when we enter the first ndo_xmit(), cpu migration is 71 forbidden. We force an exit if this counter reaches RECURSION_LIMIT 72 73 2. Networking dead loops would not kill routers, but would really 74 kill network. IP hop limit plays role of "t->recursion" in this case, 75 if we copy it from packet being encapsulated to upper header. 76 It is very good solution, but it introduces two problems: 77 78 - Routing protocols, using packets with ttl=1 (OSPF, RIP2), 79 do not work over tunnels. 80 - traceroute does not work. I planned to relay ICMP from tunnel, 81 so that this problem would be solved and traceroute output 82 would even more informative. This idea appeared to be wrong: 83 only Linux complies to rfc1812 now (yes, guys, Linux is the only 84 true router now :-)), all routers (at least, in neighbourhood of mine) 85 return only 8 bytes of payload. It is the end. 86 87 Hence, if we want that OSPF worked or traceroute said something reasonable, 88 we should search for another solution. 89 90 One of them is to parse packet trying to detect inner encapsulation 91 made by our node. It is difficult or even impossible, especially, 92 taking into account fragmentation. TO be short, ttl is not solution at all. 93 94 Current solution: The solution was UNEXPECTEDLY SIMPLE. 95 We force DF flag on tunnels with preconfigured hop limit, 96 that is ALL. :-) Well, it does not remove the problem completely, 97 but exponential growth of network traffic is changed to linear 98 (branches, that exceed pmtu are pruned) and tunnel mtu 99 rapidly degrades to value <68, where looping stops. 100 Yes, it is not good if there exists a router in the loop, 101 which does not force DF, even when encapsulating packets have DF set. 102 But it is not our problem! Nobody could accuse us, we made 103 all that we could make. Even if it is your gated who injected 104 fatal route to network, even if it were you who configured 105 fatal static route: you are innocent. :-) 106 107 Alexey Kuznetsov. 108 */ 109 110 static bool log_ecn_error = true; 111 module_param(log_ecn_error, bool, 0644); 112 MODULE_PARM_DESC(log_ecn_error, "Log packets received with corrupted ECN"); 113 114 static struct rtnl_link_ops ipgre_link_ops __read_mostly; 115 static int ipgre_tunnel_init(struct net_device *dev); 116 static void erspan_build_header(struct sk_buff *skb, 117 __be32 id, u32 index, bool truncate); 118 119 static unsigned int ipgre_net_id __read_mostly; 120 static unsigned int gre_tap_net_id __read_mostly; 121 static unsigned int erspan_net_id __read_mostly; 122 123 static void ipgre_err(struct sk_buff *skb, u32 info, 124 const struct tnl_ptk_info *tpi) 125 { 126 127 /* All the routers (except for Linux) return only 128 8 bytes of packet payload. It means, that precise relaying of 129 ICMP in the real Internet is absolutely infeasible. 130 131 Moreover, Cisco "wise men" put GRE key to the third word 132 in GRE header. It makes impossible maintaining even soft 133 state for keyed GRE tunnels with enabled checksum. Tell 134 them "thank you". 135 136 Well, I wonder, rfc1812 was written by Cisco employee, 137 what the hell these idiots break standards established 138 by themselves??? 139 */ 140 struct net *net = dev_net(skb->dev); 141 struct ip_tunnel_net *itn; 142 const struct iphdr *iph; 143 const int type = icmp_hdr(skb)->type; 144 const int code = icmp_hdr(skb)->code; 145 unsigned int data_len = 0; 146 struct ip_tunnel *t; 147 148 switch (type) { 149 default: 150 case ICMP_PARAMETERPROB: 151 return; 152 153 case ICMP_DEST_UNREACH: 154 switch (code) { 155 case ICMP_SR_FAILED: 156 case ICMP_PORT_UNREACH: 157 /* Impossible event. */ 158 return; 159 default: 160 /* All others are translated to HOST_UNREACH. 161 rfc2003 contains "deep thoughts" about NET_UNREACH, 162 I believe they are just ether pollution. --ANK 163 */ 164 break; 165 } 166 break; 167 168 case ICMP_TIME_EXCEEDED: 169 if (code != ICMP_EXC_TTL) 170 return; 171 data_len = icmp_hdr(skb)->un.reserved[1] * 4; /* RFC 4884 4.1 */ 172 break; 173 174 case ICMP_REDIRECT: 175 break; 176 } 177 178 if (tpi->proto == htons(ETH_P_TEB)) 179 itn = net_generic(net, gre_tap_net_id); 180 else 181 itn = net_generic(net, ipgre_net_id); 182 183 iph = (const struct iphdr *)(icmp_hdr(skb) + 1); 184 t = ip_tunnel_lookup(itn, skb->dev->ifindex, tpi->flags, 185 iph->daddr, iph->saddr, tpi->key); 186 187 if (!t) 188 return; 189 190 #if IS_ENABLED(CONFIG_IPV6) 191 if (tpi->proto == htons(ETH_P_IPV6) && 192 !ip6_err_gen_icmpv6_unreach(skb, iph->ihl * 4 + tpi->hdr_len, 193 type, data_len)) 194 return; 195 #endif 196 197 if (t->parms.iph.daddr == 0 || 198 ipv4_is_multicast(t->parms.iph.daddr)) 199 return; 200 201 if (t->parms.iph.ttl == 0 && type == ICMP_TIME_EXCEEDED) 202 return; 203 204 if (time_before(jiffies, t->err_time + IPTUNNEL_ERR_TIMEO)) 205 t->err_count++; 206 else 207 t->err_count = 1; 208 t->err_time = jiffies; 209 } 210 211 static void gre_err(struct sk_buff *skb, u32 info) 212 { 213 /* All the routers (except for Linux) return only 214 * 8 bytes of packet payload. It means, that precise relaying of 215 * ICMP in the real Internet is absolutely infeasible. 216 * 217 * Moreover, Cisco "wise men" put GRE key to the third word 218 * in GRE header. It makes impossible maintaining even soft 219 * state for keyed 220 * GRE tunnels with enabled checksum. Tell them "thank you". 221 * 222 * Well, I wonder, rfc1812 was written by Cisco employee, 223 * what the hell these idiots break standards established 224 * by themselves??? 225 */ 226 227 const struct iphdr *iph = (struct iphdr *)skb->data; 228 const int type = icmp_hdr(skb)->type; 229 const int code = icmp_hdr(skb)->code; 230 struct tnl_ptk_info tpi; 231 bool csum_err = false; 232 233 if (gre_parse_header(skb, &tpi, &csum_err, htons(ETH_P_IP), 234 iph->ihl * 4) < 0) { 235 if (!csum_err) /* ignore csum errors. */ 236 return; 237 } 238 239 if (type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED) { 240 ipv4_update_pmtu(skb, dev_net(skb->dev), info, 241 skb->dev->ifindex, 0, IPPROTO_GRE, 0); 242 return; 243 } 244 if (type == ICMP_REDIRECT) { 245 ipv4_redirect(skb, dev_net(skb->dev), skb->dev->ifindex, 0, 246 IPPROTO_GRE, 0); 247 return; 248 } 249 250 ipgre_err(skb, info, &tpi); 251 } 252 253 static int erspan_rcv(struct sk_buff *skb, struct tnl_ptk_info *tpi, 254 int gre_hdr_len) 255 { 256 struct net *net = dev_net(skb->dev); 257 struct metadata_dst *tun_dst = NULL; 258 struct ip_tunnel_net *itn; 259 struct ip_tunnel *tunnel; 260 struct erspanhdr *ershdr; 261 const struct iphdr *iph; 262 __be32 index; 263 int len; 264 265 itn = net_generic(net, erspan_net_id); 266 len = gre_hdr_len + sizeof(*ershdr); 267 268 if (unlikely(!pskb_may_pull(skb, len))) 269 return PACKET_REJECT; 270 271 iph = ip_hdr(skb); 272 ershdr = (struct erspanhdr *)(skb->data + gre_hdr_len); 273 274 /* The original GRE header does not have key field, 275 * Use ERSPAN 10-bit session ID as key. 276 */ 277 tpi->key = cpu_to_be32(ntohs(ershdr->session_id) & ID_MASK); 278 index = ershdr->md.index; 279 tunnel = ip_tunnel_lookup(itn, skb->dev->ifindex, 280 tpi->flags | TUNNEL_KEY, 281 iph->saddr, iph->daddr, tpi->key); 282 283 if (tunnel) { 284 if (__iptunnel_pull_header(skb, 285 gre_hdr_len + sizeof(*ershdr), 286 htons(ETH_P_TEB), 287 false, false) < 0) 288 goto drop; 289 290 if (tunnel->collect_md) { 291 struct ip_tunnel_info *info; 292 struct erspan_metadata *md; 293 __be64 tun_id; 294 __be16 flags; 295 296 tpi->flags |= TUNNEL_KEY; 297 flags = tpi->flags; 298 tun_id = key32_to_tunnel_id(tpi->key); 299 300 tun_dst = ip_tun_rx_dst(skb, flags, 301 tun_id, sizeof(*md)); 302 if (!tun_dst) 303 return PACKET_REJECT; 304 305 md = ip_tunnel_info_opts(&tun_dst->u.tun_info); 306 if (!md) 307 return PACKET_REJECT; 308 309 md->index = index; 310 info = &tun_dst->u.tun_info; 311 info->key.tun_flags |= TUNNEL_ERSPAN_OPT; 312 info->options_len = sizeof(*md); 313 } else { 314 tunnel->index = ntohl(index); 315 } 316 317 skb_reset_mac_header(skb); 318 ip_tunnel_rcv(tunnel, skb, tpi, tun_dst, log_ecn_error); 319 return PACKET_RCVD; 320 } 321 drop: 322 kfree_skb(skb); 323 return PACKET_RCVD; 324 } 325 326 static int __ipgre_rcv(struct sk_buff *skb, const struct tnl_ptk_info *tpi, 327 struct ip_tunnel_net *itn, int hdr_len, bool raw_proto) 328 { 329 struct metadata_dst *tun_dst = NULL; 330 const struct iphdr *iph; 331 struct ip_tunnel *tunnel; 332 333 iph = ip_hdr(skb); 334 tunnel = ip_tunnel_lookup(itn, skb->dev->ifindex, tpi->flags, 335 iph->saddr, iph->daddr, tpi->key); 336 337 if (tunnel) { 338 if (__iptunnel_pull_header(skb, hdr_len, tpi->proto, 339 raw_proto, false) < 0) 340 goto drop; 341 342 if (tunnel->dev->type != ARPHRD_NONE) 343 skb_pop_mac_header(skb); 344 else 345 skb_reset_mac_header(skb); 346 if (tunnel->collect_md) { 347 __be16 flags; 348 __be64 tun_id; 349 350 flags = tpi->flags & (TUNNEL_CSUM | TUNNEL_KEY); 351 tun_id = key32_to_tunnel_id(tpi->key); 352 tun_dst = ip_tun_rx_dst(skb, flags, tun_id, 0); 353 if (!tun_dst) 354 return PACKET_REJECT; 355 } 356 357 ip_tunnel_rcv(tunnel, skb, tpi, tun_dst, log_ecn_error); 358 return PACKET_RCVD; 359 } 360 return PACKET_NEXT; 361 362 drop: 363 kfree_skb(skb); 364 return PACKET_RCVD; 365 } 366 367 static int ipgre_rcv(struct sk_buff *skb, const struct tnl_ptk_info *tpi, 368 int hdr_len) 369 { 370 struct net *net = dev_net(skb->dev); 371 struct ip_tunnel_net *itn; 372 int res; 373 374 if (tpi->proto == htons(ETH_P_TEB)) 375 itn = net_generic(net, gre_tap_net_id); 376 else 377 itn = net_generic(net, ipgre_net_id); 378 379 res = __ipgre_rcv(skb, tpi, itn, hdr_len, false); 380 if (res == PACKET_NEXT && tpi->proto == htons(ETH_P_TEB)) { 381 /* ipgre tunnels in collect metadata mode should receive 382 * also ETH_P_TEB traffic. 383 */ 384 itn = net_generic(net, ipgre_net_id); 385 res = __ipgre_rcv(skb, tpi, itn, hdr_len, true); 386 } 387 return res; 388 } 389 390 static int gre_rcv(struct sk_buff *skb) 391 { 392 struct tnl_ptk_info tpi; 393 bool csum_err = false; 394 int hdr_len; 395 396 #ifdef CONFIG_NET_IPGRE_BROADCAST 397 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) { 398 /* Looped back packet, drop it! */ 399 if (rt_is_output_route(skb_rtable(skb))) 400 goto drop; 401 } 402 #endif 403 404 hdr_len = gre_parse_header(skb, &tpi, &csum_err, htons(ETH_P_IP), 0); 405 if (hdr_len < 0) 406 goto drop; 407 408 if (unlikely(tpi.proto == htons(ETH_P_ERSPAN))) { 409 if (erspan_rcv(skb, &tpi, hdr_len) == PACKET_RCVD) 410 return 0; 411 } 412 413 if (ipgre_rcv(skb, &tpi, hdr_len) == PACKET_RCVD) 414 return 0; 415 416 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 417 drop: 418 kfree_skb(skb); 419 return 0; 420 } 421 422 static void __gre_xmit(struct sk_buff *skb, struct net_device *dev, 423 const struct iphdr *tnl_params, 424 __be16 proto) 425 { 426 struct ip_tunnel *tunnel = netdev_priv(dev); 427 428 if (tunnel->parms.o_flags & TUNNEL_SEQ) 429 tunnel->o_seqno++; 430 431 /* Push GRE header. */ 432 gre_build_header(skb, tunnel->tun_hlen, 433 tunnel->parms.o_flags, proto, tunnel->parms.o_key, 434 htonl(tunnel->o_seqno)); 435 436 ip_tunnel_xmit(skb, dev, tnl_params, tnl_params->protocol); 437 } 438 439 static int gre_handle_offloads(struct sk_buff *skb, bool csum) 440 { 441 return iptunnel_handle_offloads(skb, csum ? SKB_GSO_GRE_CSUM : SKB_GSO_GRE); 442 } 443 444 static struct rtable *gre_get_rt(struct sk_buff *skb, 445 struct net_device *dev, 446 struct flowi4 *fl, 447 const struct ip_tunnel_key *key) 448 { 449 struct net *net = dev_net(dev); 450 451 memset(fl, 0, sizeof(*fl)); 452 fl->daddr = key->u.ipv4.dst; 453 fl->saddr = key->u.ipv4.src; 454 fl->flowi4_tos = RT_TOS(key->tos); 455 fl->flowi4_mark = skb->mark; 456 fl->flowi4_proto = IPPROTO_GRE; 457 458 return ip_route_output_key(net, fl); 459 } 460 461 static struct rtable *prepare_fb_xmit(struct sk_buff *skb, 462 struct net_device *dev, 463 struct flowi4 *fl, 464 int tunnel_hlen) 465 { 466 struct ip_tunnel_info *tun_info; 467 const struct ip_tunnel_key *key; 468 struct rtable *rt = NULL; 469 int min_headroom; 470 bool use_cache; 471 int err; 472 473 tun_info = skb_tunnel_info(skb); 474 key = &tun_info->key; 475 use_cache = ip_tunnel_dst_cache_usable(skb, tun_info); 476 477 if (use_cache) 478 rt = dst_cache_get_ip4(&tun_info->dst_cache, &fl->saddr); 479 if (!rt) { 480 rt = gre_get_rt(skb, dev, fl, key); 481 if (IS_ERR(rt)) 482 goto err_free_skb; 483 if (use_cache) 484 dst_cache_set_ip4(&tun_info->dst_cache, &rt->dst, 485 fl->saddr); 486 } 487 488 min_headroom = LL_RESERVED_SPACE(rt->dst.dev) + rt->dst.header_len 489 + tunnel_hlen + sizeof(struct iphdr); 490 if (skb_headroom(skb) < min_headroom || skb_header_cloned(skb)) { 491 int head_delta = SKB_DATA_ALIGN(min_headroom - 492 skb_headroom(skb) + 493 16); 494 err = pskb_expand_head(skb, max_t(int, head_delta, 0), 495 0, GFP_ATOMIC); 496 if (unlikely(err)) 497 goto err_free_rt; 498 } 499 return rt; 500 501 err_free_rt: 502 ip_rt_put(rt); 503 err_free_skb: 504 kfree_skb(skb); 505 dev->stats.tx_dropped++; 506 return NULL; 507 } 508 509 static void gre_fb_xmit(struct sk_buff *skb, struct net_device *dev, 510 __be16 proto) 511 { 512 struct ip_tunnel_info *tun_info; 513 const struct ip_tunnel_key *key; 514 struct rtable *rt = NULL; 515 struct flowi4 fl; 516 int tunnel_hlen; 517 __be16 df, flags; 518 519 tun_info = skb_tunnel_info(skb); 520 if (unlikely(!tun_info || !(tun_info->mode & IP_TUNNEL_INFO_TX) || 521 ip_tunnel_info_af(tun_info) != AF_INET)) 522 goto err_free_skb; 523 524 key = &tun_info->key; 525 tunnel_hlen = gre_calc_hlen(key->tun_flags); 526 527 rt = prepare_fb_xmit(skb, dev, &fl, tunnel_hlen); 528 if (!rt) 529 return; 530 531 /* Push Tunnel header. */ 532 if (gre_handle_offloads(skb, !!(tun_info->key.tun_flags & TUNNEL_CSUM))) 533 goto err_free_rt; 534 535 flags = tun_info->key.tun_flags & (TUNNEL_CSUM | TUNNEL_KEY); 536 gre_build_header(skb, tunnel_hlen, flags, proto, 537 tunnel_id_to_key32(tun_info->key.tun_id), 0); 538 539 df = key->tun_flags & TUNNEL_DONT_FRAGMENT ? htons(IP_DF) : 0; 540 541 iptunnel_xmit(skb->sk, rt, skb, fl.saddr, key->u.ipv4.dst, IPPROTO_GRE, 542 key->tos, key->ttl, df, false); 543 return; 544 545 err_free_rt: 546 ip_rt_put(rt); 547 err_free_skb: 548 kfree_skb(skb); 549 dev->stats.tx_dropped++; 550 } 551 552 static void erspan_fb_xmit(struct sk_buff *skb, struct net_device *dev, 553 __be16 proto) 554 { 555 struct ip_tunnel *tunnel = netdev_priv(dev); 556 struct ip_tunnel_info *tun_info; 557 const struct ip_tunnel_key *key; 558 struct erspan_metadata *md; 559 struct rtable *rt = NULL; 560 bool truncate = false; 561 struct flowi4 fl; 562 int tunnel_hlen; 563 __be16 df; 564 565 tun_info = skb_tunnel_info(skb); 566 if (unlikely(!tun_info || !(tun_info->mode & IP_TUNNEL_INFO_TX) || 567 ip_tunnel_info_af(tun_info) != AF_INET)) 568 goto err_free_skb; 569 570 key = &tun_info->key; 571 572 /* ERSPAN has fixed 8 byte GRE header */ 573 tunnel_hlen = 8 + sizeof(struct erspanhdr); 574 575 rt = prepare_fb_xmit(skb, dev, &fl, tunnel_hlen); 576 if (!rt) 577 return; 578 579 if (gre_handle_offloads(skb, false)) 580 goto err_free_rt; 581 582 if (skb->len > dev->mtu + dev->hard_header_len) { 583 pskb_trim(skb, dev->mtu + dev->hard_header_len); 584 truncate = true; 585 } 586 587 md = ip_tunnel_info_opts(tun_info); 588 if (!md) 589 goto err_free_rt; 590 591 erspan_build_header(skb, tunnel_id_to_key32(key->tun_id), 592 ntohl(md->index), truncate); 593 594 gre_build_header(skb, 8, TUNNEL_SEQ, 595 htons(ETH_P_ERSPAN), 0, htonl(tunnel->o_seqno++)); 596 597 df = key->tun_flags & TUNNEL_DONT_FRAGMENT ? htons(IP_DF) : 0; 598 599 iptunnel_xmit(skb->sk, rt, skb, fl.saddr, key->u.ipv4.dst, IPPROTO_GRE, 600 key->tos, key->ttl, df, false); 601 return; 602 603 err_free_rt: 604 ip_rt_put(rt); 605 err_free_skb: 606 kfree_skb(skb); 607 dev->stats.tx_dropped++; 608 } 609 610 static int gre_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 611 { 612 struct ip_tunnel_info *info = skb_tunnel_info(skb); 613 struct rtable *rt; 614 struct flowi4 fl4; 615 616 if (ip_tunnel_info_af(info) != AF_INET) 617 return -EINVAL; 618 619 rt = gre_get_rt(skb, dev, &fl4, &info->key); 620 if (IS_ERR(rt)) 621 return PTR_ERR(rt); 622 623 ip_rt_put(rt); 624 info->key.u.ipv4.src = fl4.saddr; 625 return 0; 626 } 627 628 static netdev_tx_t ipgre_xmit(struct sk_buff *skb, 629 struct net_device *dev) 630 { 631 struct ip_tunnel *tunnel = netdev_priv(dev); 632 const struct iphdr *tnl_params; 633 634 if (tunnel->collect_md) { 635 gre_fb_xmit(skb, dev, skb->protocol); 636 return NETDEV_TX_OK; 637 } 638 639 if (dev->header_ops) { 640 /* Need space for new headers */ 641 if (skb_cow_head(skb, dev->needed_headroom - 642 (tunnel->hlen + sizeof(struct iphdr)))) 643 goto free_skb; 644 645 tnl_params = (const struct iphdr *)skb->data; 646 647 /* Pull skb since ip_tunnel_xmit() needs skb->data pointing 648 * to gre header. 649 */ 650 skb_pull(skb, tunnel->hlen + sizeof(struct iphdr)); 651 skb_reset_mac_header(skb); 652 } else { 653 if (skb_cow_head(skb, dev->needed_headroom)) 654 goto free_skb; 655 656 tnl_params = &tunnel->parms.iph; 657 } 658 659 if (gre_handle_offloads(skb, !!(tunnel->parms.o_flags & TUNNEL_CSUM))) 660 goto free_skb; 661 662 __gre_xmit(skb, dev, tnl_params, skb->protocol); 663 return NETDEV_TX_OK; 664 665 free_skb: 666 kfree_skb(skb); 667 dev->stats.tx_dropped++; 668 return NETDEV_TX_OK; 669 } 670 671 static inline u8 tos_to_cos(u8 tos) 672 { 673 u8 dscp, cos; 674 675 dscp = tos >> 2; 676 cos = dscp >> 3; 677 return cos; 678 } 679 680 static void erspan_build_header(struct sk_buff *skb, 681 __be32 id, u32 index, bool truncate) 682 { 683 struct iphdr *iphdr = ip_hdr(skb); 684 struct ethhdr *eth = eth_hdr(skb); 685 enum erspan_encap_type enc_type; 686 struct erspanhdr *ershdr; 687 struct qtag_prefix { 688 __be16 eth_type; 689 __be16 tci; 690 } *qp; 691 u16 vlan_tci = 0; 692 693 enc_type = ERSPAN_ENCAP_NOVLAN; 694 695 /* If mirrored packet has vlan tag, extract tci and 696 * perserve vlan header in the mirrored frame. 697 */ 698 if (eth->h_proto == htons(ETH_P_8021Q)) { 699 qp = (struct qtag_prefix *)(skb->data + 2 * ETH_ALEN); 700 vlan_tci = ntohs(qp->tci); 701 enc_type = ERSPAN_ENCAP_INFRAME; 702 } 703 704 skb_push(skb, sizeof(*ershdr)); 705 ershdr = (struct erspanhdr *)skb->data; 706 memset(ershdr, 0, sizeof(*ershdr)); 707 708 ershdr->ver_vlan = htons((vlan_tci & VLAN_MASK) | 709 (ERSPAN_VERSION << VER_OFFSET)); 710 ershdr->session_id = htons((u16)(ntohl(id) & ID_MASK) | 711 ((tos_to_cos(iphdr->tos) << COS_OFFSET) & COS_MASK) | 712 (enc_type << EN_OFFSET & EN_MASK) | 713 ((truncate << T_OFFSET) & T_MASK)); 714 ershdr->md.index = htonl(index & INDEX_MASK); 715 } 716 717 static netdev_tx_t erspan_xmit(struct sk_buff *skb, 718 struct net_device *dev) 719 { 720 struct ip_tunnel *tunnel = netdev_priv(dev); 721 bool truncate = false; 722 723 if (tunnel->collect_md) { 724 erspan_fb_xmit(skb, dev, skb->protocol); 725 return NETDEV_TX_OK; 726 } 727 728 if (gre_handle_offloads(skb, false)) 729 goto free_skb; 730 731 if (skb_cow_head(skb, dev->needed_headroom)) 732 goto free_skb; 733 734 if (skb->len > dev->mtu + dev->hard_header_len) { 735 pskb_trim(skb, dev->mtu + dev->hard_header_len); 736 truncate = true; 737 } 738 739 /* Push ERSPAN header */ 740 erspan_build_header(skb, tunnel->parms.o_key, tunnel->index, truncate); 741 tunnel->parms.o_flags &= ~TUNNEL_KEY; 742 __gre_xmit(skb, dev, &tunnel->parms.iph, htons(ETH_P_ERSPAN)); 743 return NETDEV_TX_OK; 744 745 free_skb: 746 kfree_skb(skb); 747 dev->stats.tx_dropped++; 748 return NETDEV_TX_OK; 749 } 750 751 static netdev_tx_t gre_tap_xmit(struct sk_buff *skb, 752 struct net_device *dev) 753 { 754 struct ip_tunnel *tunnel = netdev_priv(dev); 755 756 if (tunnel->collect_md) { 757 gre_fb_xmit(skb, dev, htons(ETH_P_TEB)); 758 return NETDEV_TX_OK; 759 } 760 761 if (gre_handle_offloads(skb, !!(tunnel->parms.o_flags & TUNNEL_CSUM))) 762 goto free_skb; 763 764 if (skb_cow_head(skb, dev->needed_headroom)) 765 goto free_skb; 766 767 __gre_xmit(skb, dev, &tunnel->parms.iph, htons(ETH_P_TEB)); 768 return NETDEV_TX_OK; 769 770 free_skb: 771 kfree_skb(skb); 772 dev->stats.tx_dropped++; 773 return NETDEV_TX_OK; 774 } 775 776 static void ipgre_link_update(struct net_device *dev, bool set_mtu) 777 { 778 struct ip_tunnel *tunnel = netdev_priv(dev); 779 int len; 780 781 len = tunnel->tun_hlen; 782 tunnel->tun_hlen = gre_calc_hlen(tunnel->parms.o_flags); 783 len = tunnel->tun_hlen - len; 784 tunnel->hlen = tunnel->hlen + len; 785 786 dev->needed_headroom = dev->needed_headroom + len; 787 if (set_mtu) 788 dev->mtu = max_t(int, dev->mtu - len, 68); 789 790 if (!(tunnel->parms.o_flags & TUNNEL_SEQ)) { 791 if (!(tunnel->parms.o_flags & TUNNEL_CSUM) || 792 tunnel->encap.type == TUNNEL_ENCAP_NONE) { 793 dev->features |= NETIF_F_GSO_SOFTWARE; 794 dev->hw_features |= NETIF_F_GSO_SOFTWARE; 795 } 796 dev->features |= NETIF_F_LLTX; 797 } 798 } 799 800 static int ipgre_tunnel_ioctl(struct net_device *dev, 801 struct ifreq *ifr, int cmd) 802 { 803 struct ip_tunnel_parm p; 804 int err; 805 806 if (copy_from_user(&p, ifr->ifr_ifru.ifru_data, sizeof(p))) 807 return -EFAULT; 808 809 if (cmd == SIOCADDTUNNEL || cmd == SIOCCHGTUNNEL) { 810 if (p.iph.version != 4 || p.iph.protocol != IPPROTO_GRE || 811 p.iph.ihl != 5 || (p.iph.frag_off & htons(~IP_DF)) || 812 ((p.i_flags | p.o_flags) & (GRE_VERSION | GRE_ROUTING))) 813 return -EINVAL; 814 } 815 816 p.i_flags = gre_flags_to_tnl_flags(p.i_flags); 817 p.o_flags = gre_flags_to_tnl_flags(p.o_flags); 818 819 err = ip_tunnel_ioctl(dev, &p, cmd); 820 if (err) 821 return err; 822 823 if (cmd == SIOCCHGTUNNEL) { 824 struct ip_tunnel *t = netdev_priv(dev); 825 826 t->parms.i_flags = p.i_flags; 827 t->parms.o_flags = p.o_flags; 828 829 if (strcmp(dev->rtnl_link_ops->kind, "erspan")) 830 ipgre_link_update(dev, true); 831 } 832 833 p.i_flags = gre_tnl_flags_to_gre_flags(p.i_flags); 834 p.o_flags = gre_tnl_flags_to_gre_flags(p.o_flags); 835 836 if (copy_to_user(ifr->ifr_ifru.ifru_data, &p, sizeof(p))) 837 return -EFAULT; 838 839 return 0; 840 } 841 842 /* Nice toy. Unfortunately, useless in real life :-) 843 It allows to construct virtual multiprotocol broadcast "LAN" 844 over the Internet, provided multicast routing is tuned. 845 846 847 I have no idea was this bicycle invented before me, 848 so that I had to set ARPHRD_IPGRE to a random value. 849 I have an impression, that Cisco could make something similar, 850 but this feature is apparently missing in IOS<=11.2(8). 851 852 I set up 10.66.66/24 and fec0:6666:6666::0/96 as virtual networks 853 with broadcast 224.66.66.66. If you have access to mbone, play with me :-) 854 855 ping -t 255 224.66.66.66 856 857 If nobody answers, mbone does not work. 858 859 ip tunnel add Universe mode gre remote 224.66.66.66 local <Your_real_addr> ttl 255 860 ip addr add 10.66.66.<somewhat>/24 dev Universe 861 ifconfig Universe up 862 ifconfig Universe add fe80::<Your_real_addr>/10 863 ifconfig Universe add fec0:6666:6666::<Your_real_addr>/96 864 ftp 10.66.66.66 865 ... 866 ftp fec0:6666:6666::193.233.7.65 867 ... 868 */ 869 static int ipgre_header(struct sk_buff *skb, struct net_device *dev, 870 unsigned short type, 871 const void *daddr, const void *saddr, unsigned int len) 872 { 873 struct ip_tunnel *t = netdev_priv(dev); 874 struct iphdr *iph; 875 struct gre_base_hdr *greh; 876 877 iph = skb_push(skb, t->hlen + sizeof(*iph)); 878 greh = (struct gre_base_hdr *)(iph+1); 879 greh->flags = gre_tnl_flags_to_gre_flags(t->parms.o_flags); 880 greh->protocol = htons(type); 881 882 memcpy(iph, &t->parms.iph, sizeof(struct iphdr)); 883 884 /* Set the source hardware address. */ 885 if (saddr) 886 memcpy(&iph->saddr, saddr, 4); 887 if (daddr) 888 memcpy(&iph->daddr, daddr, 4); 889 if (iph->daddr) 890 return t->hlen + sizeof(*iph); 891 892 return -(t->hlen + sizeof(*iph)); 893 } 894 895 static int ipgre_header_parse(const struct sk_buff *skb, unsigned char *haddr) 896 { 897 const struct iphdr *iph = (const struct iphdr *) skb_mac_header(skb); 898 memcpy(haddr, &iph->saddr, 4); 899 return 4; 900 } 901 902 static const struct header_ops ipgre_header_ops = { 903 .create = ipgre_header, 904 .parse = ipgre_header_parse, 905 }; 906 907 #ifdef CONFIG_NET_IPGRE_BROADCAST 908 static int ipgre_open(struct net_device *dev) 909 { 910 struct ip_tunnel *t = netdev_priv(dev); 911 912 if (ipv4_is_multicast(t->parms.iph.daddr)) { 913 struct flowi4 fl4; 914 struct rtable *rt; 915 916 rt = ip_route_output_gre(t->net, &fl4, 917 t->parms.iph.daddr, 918 t->parms.iph.saddr, 919 t->parms.o_key, 920 RT_TOS(t->parms.iph.tos), 921 t->parms.link); 922 if (IS_ERR(rt)) 923 return -EADDRNOTAVAIL; 924 dev = rt->dst.dev; 925 ip_rt_put(rt); 926 if (!__in_dev_get_rtnl(dev)) 927 return -EADDRNOTAVAIL; 928 t->mlink = dev->ifindex; 929 ip_mc_inc_group(__in_dev_get_rtnl(dev), t->parms.iph.daddr); 930 } 931 return 0; 932 } 933 934 static int ipgre_close(struct net_device *dev) 935 { 936 struct ip_tunnel *t = netdev_priv(dev); 937 938 if (ipv4_is_multicast(t->parms.iph.daddr) && t->mlink) { 939 struct in_device *in_dev; 940 in_dev = inetdev_by_index(t->net, t->mlink); 941 if (in_dev) 942 ip_mc_dec_group(in_dev, t->parms.iph.daddr); 943 } 944 return 0; 945 } 946 #endif 947 948 static const struct net_device_ops ipgre_netdev_ops = { 949 .ndo_init = ipgre_tunnel_init, 950 .ndo_uninit = ip_tunnel_uninit, 951 #ifdef CONFIG_NET_IPGRE_BROADCAST 952 .ndo_open = ipgre_open, 953 .ndo_stop = ipgre_close, 954 #endif 955 .ndo_start_xmit = ipgre_xmit, 956 .ndo_do_ioctl = ipgre_tunnel_ioctl, 957 .ndo_change_mtu = ip_tunnel_change_mtu, 958 .ndo_get_stats64 = ip_tunnel_get_stats64, 959 .ndo_get_iflink = ip_tunnel_get_iflink, 960 }; 961 962 #define GRE_FEATURES (NETIF_F_SG | \ 963 NETIF_F_FRAGLIST | \ 964 NETIF_F_HIGHDMA | \ 965 NETIF_F_HW_CSUM) 966 967 static void ipgre_tunnel_setup(struct net_device *dev) 968 { 969 dev->netdev_ops = &ipgre_netdev_ops; 970 dev->type = ARPHRD_IPGRE; 971 ip_tunnel_setup(dev, ipgre_net_id); 972 } 973 974 static void __gre_tunnel_init(struct net_device *dev) 975 { 976 struct ip_tunnel *tunnel; 977 int t_hlen; 978 979 tunnel = netdev_priv(dev); 980 tunnel->tun_hlen = gre_calc_hlen(tunnel->parms.o_flags); 981 tunnel->parms.iph.protocol = IPPROTO_GRE; 982 983 tunnel->hlen = tunnel->tun_hlen + tunnel->encap_hlen; 984 985 t_hlen = tunnel->hlen + sizeof(struct iphdr); 986 987 dev->needed_headroom = LL_MAX_HEADER + t_hlen + 4; 988 dev->mtu = ETH_DATA_LEN - t_hlen - 4; 989 990 dev->features |= GRE_FEATURES; 991 dev->hw_features |= GRE_FEATURES; 992 993 if (!(tunnel->parms.o_flags & TUNNEL_SEQ)) { 994 /* TCP offload with GRE SEQ is not supported, nor 995 * can we support 2 levels of outer headers requiring 996 * an update. 997 */ 998 if (!(tunnel->parms.o_flags & TUNNEL_CSUM) || 999 (tunnel->encap.type == TUNNEL_ENCAP_NONE)) { 1000 dev->features |= NETIF_F_GSO_SOFTWARE; 1001 dev->hw_features |= NETIF_F_GSO_SOFTWARE; 1002 } 1003 1004 /* Can use a lockless transmit, unless we generate 1005 * output sequences 1006 */ 1007 dev->features |= NETIF_F_LLTX; 1008 } 1009 } 1010 1011 static int ipgre_tunnel_init(struct net_device *dev) 1012 { 1013 struct ip_tunnel *tunnel = netdev_priv(dev); 1014 struct iphdr *iph = &tunnel->parms.iph; 1015 1016 __gre_tunnel_init(dev); 1017 1018 memcpy(dev->dev_addr, &iph->saddr, 4); 1019 memcpy(dev->broadcast, &iph->daddr, 4); 1020 1021 dev->flags = IFF_NOARP; 1022 netif_keep_dst(dev); 1023 dev->addr_len = 4; 1024 1025 if (iph->daddr && !tunnel->collect_md) { 1026 #ifdef CONFIG_NET_IPGRE_BROADCAST 1027 if (ipv4_is_multicast(iph->daddr)) { 1028 if (!iph->saddr) 1029 return -EINVAL; 1030 dev->flags = IFF_BROADCAST; 1031 dev->header_ops = &ipgre_header_ops; 1032 } 1033 #endif 1034 } else if (!tunnel->collect_md) { 1035 dev->header_ops = &ipgre_header_ops; 1036 } 1037 1038 return ip_tunnel_init(dev); 1039 } 1040 1041 static const struct gre_protocol ipgre_protocol = { 1042 .handler = gre_rcv, 1043 .err_handler = gre_err, 1044 }; 1045 1046 static int __net_init ipgre_init_net(struct net *net) 1047 { 1048 return ip_tunnel_init_net(net, ipgre_net_id, &ipgre_link_ops, NULL); 1049 } 1050 1051 static void __net_exit ipgre_exit_batch_net(struct list_head *list_net) 1052 { 1053 ip_tunnel_delete_nets(list_net, ipgre_net_id, &ipgre_link_ops); 1054 } 1055 1056 static struct pernet_operations ipgre_net_ops = { 1057 .init = ipgre_init_net, 1058 .exit_batch = ipgre_exit_batch_net, 1059 .id = &ipgre_net_id, 1060 .size = sizeof(struct ip_tunnel_net), 1061 }; 1062 1063 static int ipgre_tunnel_validate(struct nlattr *tb[], struct nlattr *data[], 1064 struct netlink_ext_ack *extack) 1065 { 1066 __be16 flags; 1067 1068 if (!data) 1069 return 0; 1070 1071 flags = 0; 1072 if (data[IFLA_GRE_IFLAGS]) 1073 flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]); 1074 if (data[IFLA_GRE_OFLAGS]) 1075 flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]); 1076 if (flags & (GRE_VERSION|GRE_ROUTING)) 1077 return -EINVAL; 1078 1079 if (data[IFLA_GRE_COLLECT_METADATA] && 1080 data[IFLA_GRE_ENCAP_TYPE] && 1081 nla_get_u16(data[IFLA_GRE_ENCAP_TYPE]) != TUNNEL_ENCAP_NONE) 1082 return -EINVAL; 1083 1084 return 0; 1085 } 1086 1087 static int ipgre_tap_validate(struct nlattr *tb[], struct nlattr *data[], 1088 struct netlink_ext_ack *extack) 1089 { 1090 __be32 daddr; 1091 1092 if (tb[IFLA_ADDRESS]) { 1093 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) 1094 return -EINVAL; 1095 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) 1096 return -EADDRNOTAVAIL; 1097 } 1098 1099 if (!data) 1100 goto out; 1101 1102 if (data[IFLA_GRE_REMOTE]) { 1103 memcpy(&daddr, nla_data(data[IFLA_GRE_REMOTE]), 4); 1104 if (!daddr) 1105 return -EINVAL; 1106 } 1107 1108 out: 1109 return ipgre_tunnel_validate(tb, data, extack); 1110 } 1111 1112 static int erspan_validate(struct nlattr *tb[], struct nlattr *data[], 1113 struct netlink_ext_ack *extack) 1114 { 1115 __be16 flags = 0; 1116 int ret; 1117 1118 if (!data) 1119 return 0; 1120 1121 ret = ipgre_tap_validate(tb, data, extack); 1122 if (ret) 1123 return ret; 1124 1125 /* ERSPAN should only have GRE sequence and key flag */ 1126 if (data[IFLA_GRE_OFLAGS]) 1127 flags |= nla_get_be16(data[IFLA_GRE_OFLAGS]); 1128 if (data[IFLA_GRE_IFLAGS]) 1129 flags |= nla_get_be16(data[IFLA_GRE_IFLAGS]); 1130 if (!data[IFLA_GRE_COLLECT_METADATA] && 1131 flags != (GRE_SEQ | GRE_KEY)) 1132 return -EINVAL; 1133 1134 /* ERSPAN Session ID only has 10-bit. Since we reuse 1135 * 32-bit key field as ID, check it's range. 1136 */ 1137 if (data[IFLA_GRE_IKEY] && 1138 (ntohl(nla_get_be32(data[IFLA_GRE_IKEY])) & ~ID_MASK)) 1139 return -EINVAL; 1140 1141 if (data[IFLA_GRE_OKEY] && 1142 (ntohl(nla_get_be32(data[IFLA_GRE_OKEY])) & ~ID_MASK)) 1143 return -EINVAL; 1144 1145 return 0; 1146 } 1147 1148 static int ipgre_netlink_parms(struct net_device *dev, 1149 struct nlattr *data[], 1150 struct nlattr *tb[], 1151 struct ip_tunnel_parm *parms, 1152 __u32 *fwmark) 1153 { 1154 struct ip_tunnel *t = netdev_priv(dev); 1155 1156 memset(parms, 0, sizeof(*parms)); 1157 1158 parms->iph.protocol = IPPROTO_GRE; 1159 1160 if (!data) 1161 return 0; 1162 1163 if (data[IFLA_GRE_LINK]) 1164 parms->link = nla_get_u32(data[IFLA_GRE_LINK]); 1165 1166 if (data[IFLA_GRE_IFLAGS]) 1167 parms->i_flags = gre_flags_to_tnl_flags(nla_get_be16(data[IFLA_GRE_IFLAGS])); 1168 1169 if (data[IFLA_GRE_OFLAGS]) 1170 parms->o_flags = gre_flags_to_tnl_flags(nla_get_be16(data[IFLA_GRE_OFLAGS])); 1171 1172 if (data[IFLA_GRE_IKEY]) 1173 parms->i_key = nla_get_be32(data[IFLA_GRE_IKEY]); 1174 1175 if (data[IFLA_GRE_OKEY]) 1176 parms->o_key = nla_get_be32(data[IFLA_GRE_OKEY]); 1177 1178 if (data[IFLA_GRE_LOCAL]) 1179 parms->iph.saddr = nla_get_in_addr(data[IFLA_GRE_LOCAL]); 1180 1181 if (data[IFLA_GRE_REMOTE]) 1182 parms->iph.daddr = nla_get_in_addr(data[IFLA_GRE_REMOTE]); 1183 1184 if (data[IFLA_GRE_TTL]) 1185 parms->iph.ttl = nla_get_u8(data[IFLA_GRE_TTL]); 1186 1187 if (data[IFLA_GRE_TOS]) 1188 parms->iph.tos = nla_get_u8(data[IFLA_GRE_TOS]); 1189 1190 if (!data[IFLA_GRE_PMTUDISC] || nla_get_u8(data[IFLA_GRE_PMTUDISC])) { 1191 if (t->ignore_df) 1192 return -EINVAL; 1193 parms->iph.frag_off = htons(IP_DF); 1194 } 1195 1196 if (data[IFLA_GRE_COLLECT_METADATA]) { 1197 t->collect_md = true; 1198 if (dev->type == ARPHRD_IPGRE) 1199 dev->type = ARPHRD_NONE; 1200 } 1201 1202 if (data[IFLA_GRE_IGNORE_DF]) { 1203 if (nla_get_u8(data[IFLA_GRE_IGNORE_DF]) 1204 && (parms->iph.frag_off & htons(IP_DF))) 1205 return -EINVAL; 1206 t->ignore_df = !!nla_get_u8(data[IFLA_GRE_IGNORE_DF]); 1207 } 1208 1209 if (data[IFLA_GRE_FWMARK]) 1210 *fwmark = nla_get_u32(data[IFLA_GRE_FWMARK]); 1211 1212 if (data[IFLA_GRE_ERSPAN_INDEX]) { 1213 t->index = nla_get_u32(data[IFLA_GRE_ERSPAN_INDEX]); 1214 1215 if (t->index & ~INDEX_MASK) 1216 return -EINVAL; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /* This function returns true when ENCAP attributes are present in the nl msg */ 1223 static bool ipgre_netlink_encap_parms(struct nlattr *data[], 1224 struct ip_tunnel_encap *ipencap) 1225 { 1226 bool ret = false; 1227 1228 memset(ipencap, 0, sizeof(*ipencap)); 1229 1230 if (!data) 1231 return ret; 1232 1233 if (data[IFLA_GRE_ENCAP_TYPE]) { 1234 ret = true; 1235 ipencap->type = nla_get_u16(data[IFLA_GRE_ENCAP_TYPE]); 1236 } 1237 1238 if (data[IFLA_GRE_ENCAP_FLAGS]) { 1239 ret = true; 1240 ipencap->flags = nla_get_u16(data[IFLA_GRE_ENCAP_FLAGS]); 1241 } 1242 1243 if (data[IFLA_GRE_ENCAP_SPORT]) { 1244 ret = true; 1245 ipencap->sport = nla_get_be16(data[IFLA_GRE_ENCAP_SPORT]); 1246 } 1247 1248 if (data[IFLA_GRE_ENCAP_DPORT]) { 1249 ret = true; 1250 ipencap->dport = nla_get_be16(data[IFLA_GRE_ENCAP_DPORT]); 1251 } 1252 1253 return ret; 1254 } 1255 1256 static int gre_tap_init(struct net_device *dev) 1257 { 1258 __gre_tunnel_init(dev); 1259 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1260 netif_keep_dst(dev); 1261 1262 return ip_tunnel_init(dev); 1263 } 1264 1265 static const struct net_device_ops gre_tap_netdev_ops = { 1266 .ndo_init = gre_tap_init, 1267 .ndo_uninit = ip_tunnel_uninit, 1268 .ndo_start_xmit = gre_tap_xmit, 1269 .ndo_set_mac_address = eth_mac_addr, 1270 .ndo_validate_addr = eth_validate_addr, 1271 .ndo_change_mtu = ip_tunnel_change_mtu, 1272 .ndo_get_stats64 = ip_tunnel_get_stats64, 1273 .ndo_get_iflink = ip_tunnel_get_iflink, 1274 .ndo_fill_metadata_dst = gre_fill_metadata_dst, 1275 }; 1276 1277 static int erspan_tunnel_init(struct net_device *dev) 1278 { 1279 struct ip_tunnel *tunnel = netdev_priv(dev); 1280 int t_hlen; 1281 1282 tunnel->tun_hlen = 8; 1283 tunnel->parms.iph.protocol = IPPROTO_GRE; 1284 tunnel->hlen = tunnel->tun_hlen + tunnel->encap_hlen + 1285 sizeof(struct erspanhdr); 1286 t_hlen = tunnel->hlen + sizeof(struct iphdr); 1287 1288 dev->needed_headroom = LL_MAX_HEADER + t_hlen + 4; 1289 dev->mtu = ETH_DATA_LEN - t_hlen - 4; 1290 dev->features |= GRE_FEATURES; 1291 dev->hw_features |= GRE_FEATURES; 1292 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1293 netif_keep_dst(dev); 1294 1295 return ip_tunnel_init(dev); 1296 } 1297 1298 static const struct net_device_ops erspan_netdev_ops = { 1299 .ndo_init = erspan_tunnel_init, 1300 .ndo_uninit = ip_tunnel_uninit, 1301 .ndo_start_xmit = erspan_xmit, 1302 .ndo_set_mac_address = eth_mac_addr, 1303 .ndo_validate_addr = eth_validate_addr, 1304 .ndo_change_mtu = ip_tunnel_change_mtu, 1305 .ndo_get_stats64 = ip_tunnel_get_stats64, 1306 .ndo_get_iflink = ip_tunnel_get_iflink, 1307 .ndo_fill_metadata_dst = gre_fill_metadata_dst, 1308 }; 1309 1310 static void ipgre_tap_setup(struct net_device *dev) 1311 { 1312 ether_setup(dev); 1313 dev->max_mtu = 0; 1314 dev->netdev_ops = &gre_tap_netdev_ops; 1315 dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1316 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1317 ip_tunnel_setup(dev, gre_tap_net_id); 1318 } 1319 1320 static int ipgre_newlink(struct net *src_net, struct net_device *dev, 1321 struct nlattr *tb[], struct nlattr *data[], 1322 struct netlink_ext_ack *extack) 1323 { 1324 struct ip_tunnel_parm p; 1325 struct ip_tunnel_encap ipencap; 1326 __u32 fwmark = 0; 1327 int err; 1328 1329 if (ipgre_netlink_encap_parms(data, &ipencap)) { 1330 struct ip_tunnel *t = netdev_priv(dev); 1331 err = ip_tunnel_encap_setup(t, &ipencap); 1332 1333 if (err < 0) 1334 return err; 1335 } 1336 1337 err = ipgre_netlink_parms(dev, data, tb, &p, &fwmark); 1338 if (err < 0) 1339 return err; 1340 return ip_tunnel_newlink(dev, tb, &p, fwmark); 1341 } 1342 1343 static int ipgre_changelink(struct net_device *dev, struct nlattr *tb[], 1344 struct nlattr *data[], 1345 struct netlink_ext_ack *extack) 1346 { 1347 struct ip_tunnel *t = netdev_priv(dev); 1348 struct ip_tunnel_encap ipencap; 1349 __u32 fwmark = t->fwmark; 1350 struct ip_tunnel_parm p; 1351 int err; 1352 1353 if (ipgre_netlink_encap_parms(data, &ipencap)) { 1354 err = ip_tunnel_encap_setup(t, &ipencap); 1355 1356 if (err < 0) 1357 return err; 1358 } 1359 1360 err = ipgre_netlink_parms(dev, data, tb, &p, &fwmark); 1361 if (err < 0) 1362 return err; 1363 1364 err = ip_tunnel_changelink(dev, tb, &p, fwmark); 1365 if (err < 0) 1366 return err; 1367 1368 t->parms.i_flags = p.i_flags; 1369 t->parms.o_flags = p.o_flags; 1370 1371 if (strcmp(dev->rtnl_link_ops->kind, "erspan")) 1372 ipgre_link_update(dev, !tb[IFLA_MTU]); 1373 1374 return 0; 1375 } 1376 1377 static size_t ipgre_get_size(const struct net_device *dev) 1378 { 1379 return 1380 /* IFLA_GRE_LINK */ 1381 nla_total_size(4) + 1382 /* IFLA_GRE_IFLAGS */ 1383 nla_total_size(2) + 1384 /* IFLA_GRE_OFLAGS */ 1385 nla_total_size(2) + 1386 /* IFLA_GRE_IKEY */ 1387 nla_total_size(4) + 1388 /* IFLA_GRE_OKEY */ 1389 nla_total_size(4) + 1390 /* IFLA_GRE_LOCAL */ 1391 nla_total_size(4) + 1392 /* IFLA_GRE_REMOTE */ 1393 nla_total_size(4) + 1394 /* IFLA_GRE_TTL */ 1395 nla_total_size(1) + 1396 /* IFLA_GRE_TOS */ 1397 nla_total_size(1) + 1398 /* IFLA_GRE_PMTUDISC */ 1399 nla_total_size(1) + 1400 /* IFLA_GRE_ENCAP_TYPE */ 1401 nla_total_size(2) + 1402 /* IFLA_GRE_ENCAP_FLAGS */ 1403 nla_total_size(2) + 1404 /* IFLA_GRE_ENCAP_SPORT */ 1405 nla_total_size(2) + 1406 /* IFLA_GRE_ENCAP_DPORT */ 1407 nla_total_size(2) + 1408 /* IFLA_GRE_COLLECT_METADATA */ 1409 nla_total_size(0) + 1410 /* IFLA_GRE_IGNORE_DF */ 1411 nla_total_size(1) + 1412 /* IFLA_GRE_FWMARK */ 1413 nla_total_size(4) + 1414 /* IFLA_GRE_ERSPAN_INDEX */ 1415 nla_total_size(4) + 1416 0; 1417 } 1418 1419 static int ipgre_fill_info(struct sk_buff *skb, const struct net_device *dev) 1420 { 1421 struct ip_tunnel *t = netdev_priv(dev); 1422 struct ip_tunnel_parm *p = &t->parms; 1423 1424 if (nla_put_u32(skb, IFLA_GRE_LINK, p->link) || 1425 nla_put_be16(skb, IFLA_GRE_IFLAGS, 1426 gre_tnl_flags_to_gre_flags(p->i_flags)) || 1427 nla_put_be16(skb, IFLA_GRE_OFLAGS, 1428 gre_tnl_flags_to_gre_flags(p->o_flags)) || 1429 nla_put_be32(skb, IFLA_GRE_IKEY, p->i_key) || 1430 nla_put_be32(skb, IFLA_GRE_OKEY, p->o_key) || 1431 nla_put_in_addr(skb, IFLA_GRE_LOCAL, p->iph.saddr) || 1432 nla_put_in_addr(skb, IFLA_GRE_REMOTE, p->iph.daddr) || 1433 nla_put_u8(skb, IFLA_GRE_TTL, p->iph.ttl) || 1434 nla_put_u8(skb, IFLA_GRE_TOS, p->iph.tos) || 1435 nla_put_u8(skb, IFLA_GRE_PMTUDISC, 1436 !!(p->iph.frag_off & htons(IP_DF))) || 1437 nla_put_u32(skb, IFLA_GRE_FWMARK, t->fwmark)) 1438 goto nla_put_failure; 1439 1440 if (nla_put_u16(skb, IFLA_GRE_ENCAP_TYPE, 1441 t->encap.type) || 1442 nla_put_be16(skb, IFLA_GRE_ENCAP_SPORT, 1443 t->encap.sport) || 1444 nla_put_be16(skb, IFLA_GRE_ENCAP_DPORT, 1445 t->encap.dport) || 1446 nla_put_u16(skb, IFLA_GRE_ENCAP_FLAGS, 1447 t->encap.flags)) 1448 goto nla_put_failure; 1449 1450 if (nla_put_u8(skb, IFLA_GRE_IGNORE_DF, t->ignore_df)) 1451 goto nla_put_failure; 1452 1453 if (t->collect_md) { 1454 if (nla_put_flag(skb, IFLA_GRE_COLLECT_METADATA)) 1455 goto nla_put_failure; 1456 } 1457 1458 if (t->index) 1459 if (nla_put_u32(skb, IFLA_GRE_ERSPAN_INDEX, t->index)) 1460 goto nla_put_failure; 1461 1462 return 0; 1463 1464 nla_put_failure: 1465 return -EMSGSIZE; 1466 } 1467 1468 static void erspan_setup(struct net_device *dev) 1469 { 1470 ether_setup(dev); 1471 dev->netdev_ops = &erspan_netdev_ops; 1472 dev->priv_flags &= ~IFF_TX_SKB_SHARING; 1473 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1474 ip_tunnel_setup(dev, erspan_net_id); 1475 } 1476 1477 static const struct nla_policy ipgre_policy[IFLA_GRE_MAX + 1] = { 1478 [IFLA_GRE_LINK] = { .type = NLA_U32 }, 1479 [IFLA_GRE_IFLAGS] = { .type = NLA_U16 }, 1480 [IFLA_GRE_OFLAGS] = { .type = NLA_U16 }, 1481 [IFLA_GRE_IKEY] = { .type = NLA_U32 }, 1482 [IFLA_GRE_OKEY] = { .type = NLA_U32 }, 1483 [IFLA_GRE_LOCAL] = { .len = FIELD_SIZEOF(struct iphdr, saddr) }, 1484 [IFLA_GRE_REMOTE] = { .len = FIELD_SIZEOF(struct iphdr, daddr) }, 1485 [IFLA_GRE_TTL] = { .type = NLA_U8 }, 1486 [IFLA_GRE_TOS] = { .type = NLA_U8 }, 1487 [IFLA_GRE_PMTUDISC] = { .type = NLA_U8 }, 1488 [IFLA_GRE_ENCAP_TYPE] = { .type = NLA_U16 }, 1489 [IFLA_GRE_ENCAP_FLAGS] = { .type = NLA_U16 }, 1490 [IFLA_GRE_ENCAP_SPORT] = { .type = NLA_U16 }, 1491 [IFLA_GRE_ENCAP_DPORT] = { .type = NLA_U16 }, 1492 [IFLA_GRE_COLLECT_METADATA] = { .type = NLA_FLAG }, 1493 [IFLA_GRE_IGNORE_DF] = { .type = NLA_U8 }, 1494 [IFLA_GRE_FWMARK] = { .type = NLA_U32 }, 1495 [IFLA_GRE_ERSPAN_INDEX] = { .type = NLA_U32 }, 1496 }; 1497 1498 static struct rtnl_link_ops ipgre_link_ops __read_mostly = { 1499 .kind = "gre", 1500 .maxtype = IFLA_GRE_MAX, 1501 .policy = ipgre_policy, 1502 .priv_size = sizeof(struct ip_tunnel), 1503 .setup = ipgre_tunnel_setup, 1504 .validate = ipgre_tunnel_validate, 1505 .newlink = ipgre_newlink, 1506 .changelink = ipgre_changelink, 1507 .dellink = ip_tunnel_dellink, 1508 .get_size = ipgre_get_size, 1509 .fill_info = ipgre_fill_info, 1510 .get_link_net = ip_tunnel_get_link_net, 1511 }; 1512 1513 static struct rtnl_link_ops ipgre_tap_ops __read_mostly = { 1514 .kind = "gretap", 1515 .maxtype = IFLA_GRE_MAX, 1516 .policy = ipgre_policy, 1517 .priv_size = sizeof(struct ip_tunnel), 1518 .setup = ipgre_tap_setup, 1519 .validate = ipgre_tap_validate, 1520 .newlink = ipgre_newlink, 1521 .changelink = ipgre_changelink, 1522 .dellink = ip_tunnel_dellink, 1523 .get_size = ipgre_get_size, 1524 .fill_info = ipgre_fill_info, 1525 .get_link_net = ip_tunnel_get_link_net, 1526 }; 1527 1528 static struct rtnl_link_ops erspan_link_ops __read_mostly = { 1529 .kind = "erspan", 1530 .maxtype = IFLA_GRE_MAX, 1531 .policy = ipgre_policy, 1532 .priv_size = sizeof(struct ip_tunnel), 1533 .setup = erspan_setup, 1534 .validate = erspan_validate, 1535 .newlink = ipgre_newlink, 1536 .changelink = ipgre_changelink, 1537 .dellink = ip_tunnel_dellink, 1538 .get_size = ipgre_get_size, 1539 .fill_info = ipgre_fill_info, 1540 .get_link_net = ip_tunnel_get_link_net, 1541 }; 1542 1543 struct net_device *gretap_fb_dev_create(struct net *net, const char *name, 1544 u8 name_assign_type) 1545 { 1546 struct nlattr *tb[IFLA_MAX + 1]; 1547 struct net_device *dev; 1548 LIST_HEAD(list_kill); 1549 struct ip_tunnel *t; 1550 int err; 1551 1552 memset(&tb, 0, sizeof(tb)); 1553 1554 dev = rtnl_create_link(net, name, name_assign_type, 1555 &ipgre_tap_ops, tb); 1556 if (IS_ERR(dev)) 1557 return dev; 1558 1559 /* Configure flow based GRE device. */ 1560 t = netdev_priv(dev); 1561 t->collect_md = true; 1562 1563 err = ipgre_newlink(net, dev, tb, NULL, NULL); 1564 if (err < 0) { 1565 free_netdev(dev); 1566 return ERR_PTR(err); 1567 } 1568 1569 /* openvswitch users expect packet sizes to be unrestricted, 1570 * so set the largest MTU we can. 1571 */ 1572 err = __ip_tunnel_change_mtu(dev, IP_MAX_MTU, false); 1573 if (err) 1574 goto out; 1575 1576 err = rtnl_configure_link(dev, NULL); 1577 if (err < 0) 1578 goto out; 1579 1580 return dev; 1581 out: 1582 ip_tunnel_dellink(dev, &list_kill); 1583 unregister_netdevice_many(&list_kill); 1584 return ERR_PTR(err); 1585 } 1586 EXPORT_SYMBOL_GPL(gretap_fb_dev_create); 1587 1588 static int __net_init ipgre_tap_init_net(struct net *net) 1589 { 1590 return ip_tunnel_init_net(net, gre_tap_net_id, &ipgre_tap_ops, "gretap0"); 1591 } 1592 1593 static void __net_exit ipgre_tap_exit_batch_net(struct list_head *list_net) 1594 { 1595 ip_tunnel_delete_nets(list_net, gre_tap_net_id, &ipgre_tap_ops); 1596 } 1597 1598 static struct pernet_operations ipgre_tap_net_ops = { 1599 .init = ipgre_tap_init_net, 1600 .exit_batch = ipgre_tap_exit_batch_net, 1601 .id = &gre_tap_net_id, 1602 .size = sizeof(struct ip_tunnel_net), 1603 }; 1604 1605 static int __net_init erspan_init_net(struct net *net) 1606 { 1607 return ip_tunnel_init_net(net, erspan_net_id, 1608 &erspan_link_ops, "erspan0"); 1609 } 1610 1611 static void __net_exit erspan_exit_batch_net(struct list_head *net_list) 1612 { 1613 ip_tunnel_delete_nets(net_list, erspan_net_id, &erspan_link_ops); 1614 } 1615 1616 static struct pernet_operations erspan_net_ops = { 1617 .init = erspan_init_net, 1618 .exit_batch = erspan_exit_batch_net, 1619 .id = &erspan_net_id, 1620 .size = sizeof(struct ip_tunnel_net), 1621 }; 1622 1623 static int __init ipgre_init(void) 1624 { 1625 int err; 1626 1627 pr_info("GRE over IPv4 tunneling driver\n"); 1628 1629 err = register_pernet_device(&ipgre_net_ops); 1630 if (err < 0) 1631 return err; 1632 1633 err = register_pernet_device(&ipgre_tap_net_ops); 1634 if (err < 0) 1635 goto pnet_tap_failed; 1636 1637 err = register_pernet_device(&erspan_net_ops); 1638 if (err < 0) 1639 goto pnet_erspan_failed; 1640 1641 err = gre_add_protocol(&ipgre_protocol, GREPROTO_CISCO); 1642 if (err < 0) { 1643 pr_info("%s: can't add protocol\n", __func__); 1644 goto add_proto_failed; 1645 } 1646 1647 err = rtnl_link_register(&ipgre_link_ops); 1648 if (err < 0) 1649 goto rtnl_link_failed; 1650 1651 err = rtnl_link_register(&ipgre_tap_ops); 1652 if (err < 0) 1653 goto tap_ops_failed; 1654 1655 err = rtnl_link_register(&erspan_link_ops); 1656 if (err < 0) 1657 goto erspan_link_failed; 1658 1659 return 0; 1660 1661 erspan_link_failed: 1662 rtnl_link_unregister(&ipgre_tap_ops); 1663 tap_ops_failed: 1664 rtnl_link_unregister(&ipgre_link_ops); 1665 rtnl_link_failed: 1666 gre_del_protocol(&ipgre_protocol, GREPROTO_CISCO); 1667 add_proto_failed: 1668 unregister_pernet_device(&erspan_net_ops); 1669 pnet_erspan_failed: 1670 unregister_pernet_device(&ipgre_tap_net_ops); 1671 pnet_tap_failed: 1672 unregister_pernet_device(&ipgre_net_ops); 1673 return err; 1674 } 1675 1676 static void __exit ipgre_fini(void) 1677 { 1678 rtnl_link_unregister(&ipgre_tap_ops); 1679 rtnl_link_unregister(&ipgre_link_ops); 1680 rtnl_link_unregister(&erspan_link_ops); 1681 gre_del_protocol(&ipgre_protocol, GREPROTO_CISCO); 1682 unregister_pernet_device(&ipgre_tap_net_ops); 1683 unregister_pernet_device(&ipgre_net_ops); 1684 unregister_pernet_device(&erspan_net_ops); 1685 } 1686 1687 module_init(ipgre_init); 1688 module_exit(ipgre_fini); 1689 MODULE_LICENSE("GPL"); 1690 MODULE_ALIAS_RTNL_LINK("gre"); 1691 MODULE_ALIAS_RTNL_LINK("gretap"); 1692 MODULE_ALIAS_RTNL_LINK("erspan"); 1693 MODULE_ALIAS_NETDEV("gre0"); 1694 MODULE_ALIAS_NETDEV("gretap0"); 1695 MODULE_ALIAS_NETDEV("erspan0"); 1696