1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 9 * Alan Cox <alan@lxorguk.ukuu.org.uk> 10 * 11 * Fixes: 12 * Alan Cox : Split from ip.c , see ip_input.c for history. 13 * David S. Miller : Begin massive cleanup... 14 * Andi Kleen : Add sysctls. 15 * xxxx : Overlapfrag bug. 16 * Ultima : ip_expire() kernel panic. 17 * Bill Hawes : Frag accounting and evictor fixes. 18 * John McDonald : 0 length frag bug. 19 * Alexey Kuznetsov: SMP races, threading, cleanup. 20 * Patrick McHardy : LRU queue of frag heads for evictor. 21 */ 22 23 #include <linux/compiler.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/jiffies.h> 28 #include <linux/skbuff.h> 29 #include <linux/list.h> 30 #include <linux/ip.h> 31 #include <linux/icmp.h> 32 #include <linux/netdevice.h> 33 #include <linux/jhash.h> 34 #include <linux/random.h> 35 #include <net/sock.h> 36 #include <net/ip.h> 37 #include <net/icmp.h> 38 #include <net/checksum.h> 39 #include <net/inetpeer.h> 40 #include <net/inet_frag.h> 41 #include <linux/tcp.h> 42 #include <linux/udp.h> 43 #include <linux/inet.h> 44 #include <linux/netfilter_ipv4.h> 45 46 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 47 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 48 * as well. Or notify me, at least. --ANK 49 */ 50 51 static int sysctl_ipfrag_max_dist __read_mostly = 64; 52 53 struct ipfrag_skb_cb 54 { 55 struct inet_skb_parm h; 56 int offset; 57 }; 58 59 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) 60 61 /* Describe an entry in the "incomplete datagrams" queue. */ 62 struct ipq { 63 struct inet_frag_queue q; 64 65 u32 user; 66 __be32 saddr; 67 __be32 daddr; 68 __be16 id; 69 u8 protocol; 70 int iif; 71 unsigned int rid; 72 struct inet_peer *peer; 73 }; 74 75 static struct inet_frags ip4_frags; 76 77 int ip_frag_nqueues(struct net *net) 78 { 79 return net->ipv4.frags.nqueues; 80 } 81 82 int ip_frag_mem(struct net *net) 83 { 84 return atomic_read(&net->ipv4.frags.mem); 85 } 86 87 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 88 struct net_device *dev); 89 90 struct ip4_create_arg { 91 struct iphdr *iph; 92 u32 user; 93 }; 94 95 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 96 { 97 return jhash_3words((__force u32)id << 16 | prot, 98 (__force u32)saddr, (__force u32)daddr, 99 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 100 } 101 102 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 103 { 104 struct ipq *ipq; 105 106 ipq = container_of(q, struct ipq, q); 107 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 108 } 109 110 static int ip4_frag_match(struct inet_frag_queue *q, void *a) 111 { 112 struct ipq *qp; 113 struct ip4_create_arg *arg = a; 114 115 qp = container_of(q, struct ipq, q); 116 return (qp->id == arg->iph->id && 117 qp->saddr == arg->iph->saddr && 118 qp->daddr == arg->iph->daddr && 119 qp->protocol == arg->iph->protocol && 120 qp->user == arg->user); 121 } 122 123 /* Memory Tracking Functions. */ 124 static __inline__ void frag_kfree_skb(struct netns_frags *nf, 125 struct sk_buff *skb, int *work) 126 { 127 if (work) 128 *work -= skb->truesize; 129 atomic_sub(skb->truesize, &nf->mem); 130 kfree_skb(skb); 131 } 132 133 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 134 { 135 struct ipq *qp = container_of(q, struct ipq, q); 136 struct ip4_create_arg *arg = a; 137 138 qp->protocol = arg->iph->protocol; 139 qp->id = arg->iph->id; 140 qp->saddr = arg->iph->saddr; 141 qp->daddr = arg->iph->daddr; 142 qp->user = arg->user; 143 qp->peer = sysctl_ipfrag_max_dist ? 144 inet_getpeer(arg->iph->saddr, 1) : NULL; 145 } 146 147 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 148 { 149 struct ipq *qp; 150 151 qp = container_of(q, struct ipq, q); 152 if (qp->peer) 153 inet_putpeer(qp->peer); 154 } 155 156 157 /* Destruction primitives. */ 158 159 static __inline__ void ipq_put(struct ipq *ipq) 160 { 161 inet_frag_put(&ipq->q, &ip4_frags); 162 } 163 164 /* Kill ipq entry. It is not destroyed immediately, 165 * because caller (and someone more) holds reference count. 166 */ 167 static void ipq_kill(struct ipq *ipq) 168 { 169 inet_frag_kill(&ipq->q, &ip4_frags); 170 } 171 172 /* Memory limiting on fragments. Evictor trashes the oldest 173 * fragment queue until we are back under the threshold. 174 */ 175 static void ip_evictor(struct net *net) 176 { 177 int evicted; 178 179 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); 180 if (evicted) 181 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted); 182 } 183 184 /* 185 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 186 */ 187 static void ip_expire(unsigned long arg) 188 { 189 struct ipq *qp; 190 struct net *net; 191 192 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 193 net = container_of(qp->q.net, struct net, ipv4.frags); 194 195 spin_lock(&qp->q.lock); 196 197 if (qp->q.last_in & INET_FRAG_COMPLETE) 198 goto out; 199 200 ipq_kill(qp); 201 202 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT); 203 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 204 205 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { 206 struct sk_buff *head = qp->q.fragments; 207 208 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 209 if ((head->dev = dev_get_by_index(net, qp->iif)) != NULL) { 210 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 211 dev_put(head->dev); 212 } 213 } 214 out: 215 spin_unlock(&qp->q.lock); 216 ipq_put(qp); 217 } 218 219 /* Find the correct entry in the "incomplete datagrams" queue for 220 * this IP datagram, and create new one, if nothing is found. 221 */ 222 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 223 { 224 struct inet_frag_queue *q; 225 struct ip4_create_arg arg; 226 unsigned int hash; 227 228 arg.iph = iph; 229 arg.user = user; 230 231 read_lock(&ip4_frags.lock); 232 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 233 234 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 235 if (q == NULL) 236 goto out_nomem; 237 238 return container_of(q, struct ipq, q); 239 240 out_nomem: 241 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 242 return NULL; 243 } 244 245 /* Is the fragment too far ahead to be part of ipq? */ 246 static inline int ip_frag_too_far(struct ipq *qp) 247 { 248 struct inet_peer *peer = qp->peer; 249 unsigned int max = sysctl_ipfrag_max_dist; 250 unsigned int start, end; 251 252 int rc; 253 254 if (!peer || !max) 255 return 0; 256 257 start = qp->rid; 258 end = atomic_inc_return(&peer->rid); 259 qp->rid = end; 260 261 rc = qp->q.fragments && (end - start) > max; 262 263 if (rc) { 264 struct net *net; 265 266 net = container_of(qp->q.net, struct net, ipv4.frags); 267 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 268 } 269 270 return rc; 271 } 272 273 static int ip_frag_reinit(struct ipq *qp) 274 { 275 struct sk_buff *fp; 276 277 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 278 atomic_inc(&qp->q.refcnt); 279 return -ETIMEDOUT; 280 } 281 282 fp = qp->q.fragments; 283 do { 284 struct sk_buff *xp = fp->next; 285 frag_kfree_skb(qp->q.net, fp, NULL); 286 fp = xp; 287 } while (fp); 288 289 qp->q.last_in = 0; 290 qp->q.len = 0; 291 qp->q.meat = 0; 292 qp->q.fragments = NULL; 293 qp->iif = 0; 294 295 return 0; 296 } 297 298 /* Add new segment to existing queue. */ 299 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 300 { 301 struct sk_buff *prev, *next; 302 struct net_device *dev; 303 int flags, offset; 304 int ihl, end; 305 int err = -ENOENT; 306 307 if (qp->q.last_in & INET_FRAG_COMPLETE) 308 goto err; 309 310 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 311 unlikely(ip_frag_too_far(qp)) && 312 unlikely(err = ip_frag_reinit(qp))) { 313 ipq_kill(qp); 314 goto err; 315 } 316 317 offset = ntohs(ip_hdr(skb)->frag_off); 318 flags = offset & ~IP_OFFSET; 319 offset &= IP_OFFSET; 320 offset <<= 3; /* offset is in 8-byte chunks */ 321 ihl = ip_hdrlen(skb); 322 323 /* Determine the position of this fragment. */ 324 end = offset + skb->len - ihl; 325 err = -EINVAL; 326 327 /* Is this the final fragment? */ 328 if ((flags & IP_MF) == 0) { 329 /* If we already have some bits beyond end 330 * or have different end, the segment is corrrupted. 331 */ 332 if (end < qp->q.len || 333 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) 334 goto err; 335 qp->q.last_in |= INET_FRAG_LAST_IN; 336 qp->q.len = end; 337 } else { 338 if (end&7) { 339 end &= ~7; 340 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 341 skb->ip_summed = CHECKSUM_NONE; 342 } 343 if (end > qp->q.len) { 344 /* Some bits beyond end -> corruption. */ 345 if (qp->q.last_in & INET_FRAG_LAST_IN) 346 goto err; 347 qp->q.len = end; 348 } 349 } 350 if (end == offset) 351 goto err; 352 353 err = -ENOMEM; 354 if (pskb_pull(skb, ihl) == NULL) 355 goto err; 356 357 err = pskb_trim_rcsum(skb, end - offset); 358 if (err) 359 goto err; 360 361 /* Find out which fragments are in front and at the back of us 362 * in the chain of fragments so far. We must know where to put 363 * this fragment, right? 364 */ 365 prev = NULL; 366 for (next = qp->q.fragments; next != NULL; next = next->next) { 367 if (FRAG_CB(next)->offset >= offset) 368 break; /* bingo! */ 369 prev = next; 370 } 371 372 /* We found where to put this one. Check for overlap with 373 * preceding fragment, and, if needed, align things so that 374 * any overlaps are eliminated. 375 */ 376 if (prev) { 377 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 378 379 if (i > 0) { 380 offset += i; 381 err = -EINVAL; 382 if (end <= offset) 383 goto err; 384 err = -ENOMEM; 385 if (!pskb_pull(skb, i)) 386 goto err; 387 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 388 skb->ip_summed = CHECKSUM_NONE; 389 } 390 } 391 392 err = -ENOMEM; 393 394 while (next && FRAG_CB(next)->offset < end) { 395 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 396 397 if (i < next->len) { 398 /* Eat head of the next overlapped fragment 399 * and leave the loop. The next ones cannot overlap. 400 */ 401 if (!pskb_pull(next, i)) 402 goto err; 403 FRAG_CB(next)->offset += i; 404 qp->q.meat -= i; 405 if (next->ip_summed != CHECKSUM_UNNECESSARY) 406 next->ip_summed = CHECKSUM_NONE; 407 break; 408 } else { 409 struct sk_buff *free_it = next; 410 411 /* Old fragment is completely overridden with 412 * new one drop it. 413 */ 414 next = next->next; 415 416 if (prev) 417 prev->next = next; 418 else 419 qp->q.fragments = next; 420 421 qp->q.meat -= free_it->len; 422 frag_kfree_skb(qp->q.net, free_it, NULL); 423 } 424 } 425 426 FRAG_CB(skb)->offset = offset; 427 428 /* Insert this fragment in the chain of fragments. */ 429 skb->next = next; 430 if (prev) 431 prev->next = skb; 432 else 433 qp->q.fragments = skb; 434 435 dev = skb->dev; 436 if (dev) { 437 qp->iif = dev->ifindex; 438 skb->dev = NULL; 439 } 440 qp->q.stamp = skb->tstamp; 441 qp->q.meat += skb->len; 442 atomic_add(skb->truesize, &qp->q.net->mem); 443 if (offset == 0) 444 qp->q.last_in |= INET_FRAG_FIRST_IN; 445 446 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 447 qp->q.meat == qp->q.len) 448 return ip_frag_reasm(qp, prev, dev); 449 450 write_lock(&ip4_frags.lock); 451 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); 452 write_unlock(&ip4_frags.lock); 453 return -EINPROGRESS; 454 455 err: 456 kfree_skb(skb); 457 return err; 458 } 459 460 461 /* Build a new IP datagram from all its fragments. */ 462 463 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 464 struct net_device *dev) 465 { 466 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 467 struct iphdr *iph; 468 struct sk_buff *fp, *head = qp->q.fragments; 469 int len; 470 int ihlen; 471 int err; 472 473 ipq_kill(qp); 474 475 /* Make the one we just received the head. */ 476 if (prev) { 477 head = prev->next; 478 fp = skb_clone(head, GFP_ATOMIC); 479 if (!fp) 480 goto out_nomem; 481 482 fp->next = head->next; 483 prev->next = fp; 484 485 skb_morph(head, qp->q.fragments); 486 head->next = qp->q.fragments->next; 487 488 kfree_skb(qp->q.fragments); 489 qp->q.fragments = head; 490 } 491 492 WARN_ON(head == NULL); 493 WARN_ON(FRAG_CB(head)->offset != 0); 494 495 /* Allocate a new buffer for the datagram. */ 496 ihlen = ip_hdrlen(head); 497 len = ihlen + qp->q.len; 498 499 err = -E2BIG; 500 if (len > 65535) 501 goto out_oversize; 502 503 /* Head of list must not be cloned. */ 504 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 505 goto out_nomem; 506 507 /* If the first fragment is fragmented itself, we split 508 * it to two chunks: the first with data and paged part 509 * and the second, holding only fragments. */ 510 if (skb_has_frags(head)) { 511 struct sk_buff *clone; 512 int i, plen = 0; 513 514 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 515 goto out_nomem; 516 clone->next = head->next; 517 head->next = clone; 518 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 519 skb_frag_list_init(head); 520 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 521 plen += skb_shinfo(head)->frags[i].size; 522 clone->len = clone->data_len = head->data_len - plen; 523 head->data_len -= clone->len; 524 head->len -= clone->len; 525 clone->csum = 0; 526 clone->ip_summed = head->ip_summed; 527 atomic_add(clone->truesize, &qp->q.net->mem); 528 } 529 530 skb_shinfo(head)->frag_list = head->next; 531 skb_push(head, head->data - skb_network_header(head)); 532 atomic_sub(head->truesize, &qp->q.net->mem); 533 534 for (fp=head->next; fp; fp = fp->next) { 535 head->data_len += fp->len; 536 head->len += fp->len; 537 if (head->ip_summed != fp->ip_summed) 538 head->ip_summed = CHECKSUM_NONE; 539 else if (head->ip_summed == CHECKSUM_COMPLETE) 540 head->csum = csum_add(head->csum, fp->csum); 541 head->truesize += fp->truesize; 542 atomic_sub(fp->truesize, &qp->q.net->mem); 543 } 544 545 head->next = NULL; 546 head->dev = dev; 547 head->tstamp = qp->q.stamp; 548 549 iph = ip_hdr(head); 550 iph->frag_off = 0; 551 iph->tot_len = htons(len); 552 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); 553 qp->q.fragments = NULL; 554 return 0; 555 556 out_nomem: 557 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 558 "queue %p\n", qp); 559 err = -ENOMEM; 560 goto out_fail; 561 out_oversize: 562 if (net_ratelimit()) 563 printk(KERN_INFO "Oversized IP packet from %pI4.\n", 564 &qp->saddr); 565 out_fail: 566 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_REASMFAILS); 567 return err; 568 } 569 570 /* Process an incoming IP datagram fragment. */ 571 int ip_defrag(struct sk_buff *skb, u32 user) 572 { 573 struct ipq *qp; 574 struct net *net; 575 576 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev); 577 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS); 578 579 /* Start by cleaning up the memory. */ 580 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) 581 ip_evictor(net); 582 583 /* Lookup (or create) queue header */ 584 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 585 int ret; 586 587 spin_lock(&qp->q.lock); 588 589 ret = ip_frag_queue(qp, skb); 590 591 spin_unlock(&qp->q.lock); 592 ipq_put(qp); 593 return ret; 594 } 595 596 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 597 kfree_skb(skb); 598 return -ENOMEM; 599 } 600 601 #ifdef CONFIG_SYSCTL 602 static int zero; 603 604 static struct ctl_table ip4_frags_ns_ctl_table[] = { 605 { 606 .ctl_name = NET_IPV4_IPFRAG_HIGH_THRESH, 607 .procname = "ipfrag_high_thresh", 608 .data = &init_net.ipv4.frags.high_thresh, 609 .maxlen = sizeof(int), 610 .mode = 0644, 611 .proc_handler = proc_dointvec 612 }, 613 { 614 .ctl_name = NET_IPV4_IPFRAG_LOW_THRESH, 615 .procname = "ipfrag_low_thresh", 616 .data = &init_net.ipv4.frags.low_thresh, 617 .maxlen = sizeof(int), 618 .mode = 0644, 619 .proc_handler = proc_dointvec 620 }, 621 { 622 .ctl_name = NET_IPV4_IPFRAG_TIME, 623 .procname = "ipfrag_time", 624 .data = &init_net.ipv4.frags.timeout, 625 .maxlen = sizeof(int), 626 .mode = 0644, 627 .proc_handler = proc_dointvec_jiffies, 628 .strategy = sysctl_jiffies 629 }, 630 { } 631 }; 632 633 static struct ctl_table ip4_frags_ctl_table[] = { 634 { 635 .ctl_name = NET_IPV4_IPFRAG_SECRET_INTERVAL, 636 .procname = "ipfrag_secret_interval", 637 .data = &ip4_frags.secret_interval, 638 .maxlen = sizeof(int), 639 .mode = 0644, 640 .proc_handler = proc_dointvec_jiffies, 641 .strategy = sysctl_jiffies 642 }, 643 { 644 .procname = "ipfrag_max_dist", 645 .data = &sysctl_ipfrag_max_dist, 646 .maxlen = sizeof(int), 647 .mode = 0644, 648 .proc_handler = proc_dointvec_minmax, 649 .extra1 = &zero 650 }, 651 { } 652 }; 653 654 static int ip4_frags_ns_ctl_register(struct net *net) 655 { 656 struct ctl_table *table; 657 struct ctl_table_header *hdr; 658 659 table = ip4_frags_ns_ctl_table; 660 if (net != &init_net) { 661 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 662 if (table == NULL) 663 goto err_alloc; 664 665 table[0].data = &net->ipv4.frags.high_thresh; 666 table[1].data = &net->ipv4.frags.low_thresh; 667 table[2].data = &net->ipv4.frags.timeout; 668 } 669 670 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); 671 if (hdr == NULL) 672 goto err_reg; 673 674 net->ipv4.frags_hdr = hdr; 675 return 0; 676 677 err_reg: 678 if (net != &init_net) 679 kfree(table); 680 err_alloc: 681 return -ENOMEM; 682 } 683 684 static void ip4_frags_ns_ctl_unregister(struct net *net) 685 { 686 struct ctl_table *table; 687 688 table = net->ipv4.frags_hdr->ctl_table_arg; 689 unregister_net_sysctl_table(net->ipv4.frags_hdr); 690 kfree(table); 691 } 692 693 static void ip4_frags_ctl_register(void) 694 { 695 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table); 696 } 697 #else 698 static inline int ip4_frags_ns_ctl_register(struct net *net) 699 { 700 return 0; 701 } 702 703 static inline void ip4_frags_ns_ctl_unregister(struct net *net) 704 { 705 } 706 707 static inline void ip4_frags_ctl_register(void) 708 { 709 } 710 #endif 711 712 static int ipv4_frags_init_net(struct net *net) 713 { 714 /* 715 * Fragment cache limits. We will commit 256K at one time. Should we 716 * cross that limit we will prune down to 192K. This should cope with 717 * even the most extreme cases without allowing an attacker to 718 * measurably harm machine performance. 719 */ 720 net->ipv4.frags.high_thresh = 256 * 1024; 721 net->ipv4.frags.low_thresh = 192 * 1024; 722 /* 723 * Important NOTE! Fragment queue must be destroyed before MSL expires. 724 * RFC791 is wrong proposing to prolongate timer each fragment arrival 725 * by TTL. 726 */ 727 net->ipv4.frags.timeout = IP_FRAG_TIME; 728 729 inet_frags_init_net(&net->ipv4.frags); 730 731 return ip4_frags_ns_ctl_register(net); 732 } 733 734 static void ipv4_frags_exit_net(struct net *net) 735 { 736 ip4_frags_ns_ctl_unregister(net); 737 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 738 } 739 740 static struct pernet_operations ip4_frags_ops = { 741 .init = ipv4_frags_init_net, 742 .exit = ipv4_frags_exit_net, 743 }; 744 745 void __init ipfrag_init(void) 746 { 747 ip4_frags_ctl_register(); 748 register_pernet_subsys(&ip4_frags_ops); 749 ip4_frags.hashfn = ip4_hashfn; 750 ip4_frags.constructor = ip4_frag_init; 751 ip4_frags.destructor = ip4_frag_free; 752 ip4_frags.skb_free = NULL; 753 ip4_frags.qsize = sizeof(struct ipq); 754 ip4_frags.match = ip4_frag_match; 755 ip4_frags.frag_expire = ip_expire; 756 ip4_frags.secret_interval = 10 * 60 * HZ; 757 inet_frags_init(&ip4_frags); 758 } 759 760 EXPORT_SYMBOL(ip_defrag); 761