1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 9 * Alan Cox <alan@lxorguk.ukuu.org.uk> 10 * 11 * Fixes: 12 * Alan Cox : Split from ip.c , see ip_input.c for history. 13 * David S. Miller : Begin massive cleanup... 14 * Andi Kleen : Add sysctls. 15 * xxxx : Overlapfrag bug. 16 * Ultima : ip_expire() kernel panic. 17 * Bill Hawes : Frag accounting and evictor fixes. 18 * John McDonald : 0 length frag bug. 19 * Alexey Kuznetsov: SMP races, threading, cleanup. 20 * Patrick McHardy : LRU queue of frag heads for evictor. 21 */ 22 23 #define pr_fmt(fmt) "IPv4: " fmt 24 25 #include <linux/compiler.h> 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/mm.h> 29 #include <linux/jiffies.h> 30 #include <linux/skbuff.h> 31 #include <linux/list.h> 32 #include <linux/ip.h> 33 #include <linux/icmp.h> 34 #include <linux/netdevice.h> 35 #include <linux/jhash.h> 36 #include <linux/random.h> 37 #include <linux/slab.h> 38 #include <net/route.h> 39 #include <net/dst.h> 40 #include <net/sock.h> 41 #include <net/ip.h> 42 #include <net/icmp.h> 43 #include <net/checksum.h> 44 #include <net/inetpeer.h> 45 #include <net/inet_frag.h> 46 #include <linux/tcp.h> 47 #include <linux/udp.h> 48 #include <linux/inet.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <net/inet_ecn.h> 51 52 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 53 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 54 * as well. Or notify me, at least. --ANK 55 */ 56 57 static int sysctl_ipfrag_max_dist __read_mostly = 64; 58 59 struct ipfrag_skb_cb 60 { 61 struct inet_skb_parm h; 62 int offset; 63 }; 64 65 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) 66 67 /* Describe an entry in the "incomplete datagrams" queue. */ 68 struct ipq { 69 struct inet_frag_queue q; 70 71 u32 user; 72 __be32 saddr; 73 __be32 daddr; 74 __be16 id; 75 u8 protocol; 76 u8 ecn; /* RFC3168 support */ 77 int iif; 78 unsigned int rid; 79 struct inet_peer *peer; 80 }; 81 82 static inline u8 ip4_frag_ecn(u8 tos) 83 { 84 return 1 << (tos & INET_ECN_MASK); 85 } 86 87 static struct inet_frags ip4_frags; 88 89 int ip_frag_nqueues(struct net *net) 90 { 91 return net->ipv4.frags.nqueues; 92 } 93 94 int ip_frag_mem(struct net *net) 95 { 96 return sum_frag_mem_limit(&net->ipv4.frags); 97 } 98 99 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 100 struct net_device *dev); 101 102 struct ip4_create_arg { 103 struct iphdr *iph; 104 u32 user; 105 }; 106 107 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 108 { 109 return jhash_3words((__force u32)id << 16 | prot, 110 (__force u32)saddr, (__force u32)daddr, 111 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 112 } 113 114 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 115 { 116 struct ipq *ipq; 117 118 ipq = container_of(q, struct ipq, q); 119 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 120 } 121 122 static bool ip4_frag_match(struct inet_frag_queue *q, void *a) 123 { 124 struct ipq *qp; 125 struct ip4_create_arg *arg = a; 126 127 qp = container_of(q, struct ipq, q); 128 return qp->id == arg->iph->id && 129 qp->saddr == arg->iph->saddr && 130 qp->daddr == arg->iph->daddr && 131 qp->protocol == arg->iph->protocol && 132 qp->user == arg->user; 133 } 134 135 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 136 { 137 struct ipq *qp = container_of(q, struct ipq, q); 138 struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4, 139 frags); 140 struct net *net = container_of(ipv4, struct net, ipv4); 141 142 struct ip4_create_arg *arg = a; 143 144 qp->protocol = arg->iph->protocol; 145 qp->id = arg->iph->id; 146 qp->ecn = ip4_frag_ecn(arg->iph->tos); 147 qp->saddr = arg->iph->saddr; 148 qp->daddr = arg->iph->daddr; 149 qp->user = arg->user; 150 qp->peer = sysctl_ipfrag_max_dist ? 151 inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL; 152 } 153 154 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 155 { 156 struct ipq *qp; 157 158 qp = container_of(q, struct ipq, q); 159 if (qp->peer) 160 inet_putpeer(qp->peer); 161 } 162 163 164 /* Destruction primitives. */ 165 166 static __inline__ void ipq_put(struct ipq *ipq) 167 { 168 inet_frag_put(&ipq->q, &ip4_frags); 169 } 170 171 /* Kill ipq entry. It is not destroyed immediately, 172 * because caller (and someone more) holds reference count. 173 */ 174 static void ipq_kill(struct ipq *ipq) 175 { 176 inet_frag_kill(&ipq->q, &ip4_frags); 177 } 178 179 /* Memory limiting on fragments. Evictor trashes the oldest 180 * fragment queue until we are back under the threshold. 181 */ 182 static void ip_evictor(struct net *net) 183 { 184 int evicted; 185 186 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags, false); 187 if (evicted) 188 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted); 189 } 190 191 /* 192 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 193 */ 194 static void ip_expire(unsigned long arg) 195 { 196 struct ipq *qp; 197 struct net *net; 198 199 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 200 net = container_of(qp->q.net, struct net, ipv4.frags); 201 202 spin_lock(&qp->q.lock); 203 204 if (qp->q.last_in & INET_FRAG_COMPLETE) 205 goto out; 206 207 ipq_kill(qp); 208 209 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT); 210 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 211 212 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { 213 struct sk_buff *head = qp->q.fragments; 214 const struct iphdr *iph; 215 int err; 216 217 rcu_read_lock(); 218 head->dev = dev_get_by_index_rcu(net, qp->iif); 219 if (!head->dev) 220 goto out_rcu_unlock; 221 222 /* skb has no dst, perform route lookup again */ 223 iph = ip_hdr(head); 224 err = ip_route_input_noref(head, iph->daddr, iph->saddr, 225 iph->tos, head->dev); 226 if (err) 227 goto out_rcu_unlock; 228 229 /* 230 * Only an end host needs to send an ICMP 231 * "Fragment Reassembly Timeout" message, per RFC792. 232 */ 233 if (qp->user == IP_DEFRAG_AF_PACKET || 234 (qp->user == IP_DEFRAG_CONNTRACK_IN && 235 skb_rtable(head)->rt_type != RTN_LOCAL)) 236 goto out_rcu_unlock; 237 238 239 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 240 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 241 out_rcu_unlock: 242 rcu_read_unlock(); 243 } 244 out: 245 spin_unlock(&qp->q.lock); 246 ipq_put(qp); 247 } 248 249 /* Find the correct entry in the "incomplete datagrams" queue for 250 * this IP datagram, and create new one, if nothing is found. 251 */ 252 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 253 { 254 struct inet_frag_queue *q; 255 struct ip4_create_arg arg; 256 unsigned int hash; 257 258 arg.iph = iph; 259 arg.user = user; 260 261 read_lock(&ip4_frags.lock); 262 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 263 264 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 265 if (IS_ERR_OR_NULL(q)) { 266 inet_frag_maybe_warn_overflow(q, pr_fmt()); 267 return NULL; 268 } 269 return container_of(q, struct ipq, q); 270 } 271 272 /* Is the fragment too far ahead to be part of ipq? */ 273 static inline int ip_frag_too_far(struct ipq *qp) 274 { 275 struct inet_peer *peer = qp->peer; 276 unsigned int max = sysctl_ipfrag_max_dist; 277 unsigned int start, end; 278 279 int rc; 280 281 if (!peer || !max) 282 return 0; 283 284 start = qp->rid; 285 end = atomic_inc_return(&peer->rid); 286 qp->rid = end; 287 288 rc = qp->q.fragments && (end - start) > max; 289 290 if (rc) { 291 struct net *net; 292 293 net = container_of(qp->q.net, struct net, ipv4.frags); 294 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 295 } 296 297 return rc; 298 } 299 300 static int ip_frag_reinit(struct ipq *qp) 301 { 302 struct sk_buff *fp; 303 unsigned int sum_truesize = 0; 304 305 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 306 atomic_inc(&qp->q.refcnt); 307 return -ETIMEDOUT; 308 } 309 310 fp = qp->q.fragments; 311 do { 312 struct sk_buff *xp = fp->next; 313 314 sum_truesize += fp->truesize; 315 kfree_skb(fp); 316 fp = xp; 317 } while (fp); 318 sub_frag_mem_limit(&qp->q, sum_truesize); 319 320 qp->q.last_in = 0; 321 qp->q.len = 0; 322 qp->q.meat = 0; 323 qp->q.fragments = NULL; 324 qp->q.fragments_tail = NULL; 325 qp->iif = 0; 326 qp->ecn = 0; 327 328 return 0; 329 } 330 331 /* Add new segment to existing queue. */ 332 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 333 { 334 struct sk_buff *prev, *next; 335 struct net_device *dev; 336 int flags, offset; 337 int ihl, end; 338 int err = -ENOENT; 339 u8 ecn; 340 341 if (qp->q.last_in & INET_FRAG_COMPLETE) 342 goto err; 343 344 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 345 unlikely(ip_frag_too_far(qp)) && 346 unlikely(err = ip_frag_reinit(qp))) { 347 ipq_kill(qp); 348 goto err; 349 } 350 351 ecn = ip4_frag_ecn(ip_hdr(skb)->tos); 352 offset = ntohs(ip_hdr(skb)->frag_off); 353 flags = offset & ~IP_OFFSET; 354 offset &= IP_OFFSET; 355 offset <<= 3; /* offset is in 8-byte chunks */ 356 ihl = ip_hdrlen(skb); 357 358 /* Determine the position of this fragment. */ 359 end = offset + skb->len - ihl; 360 err = -EINVAL; 361 362 /* Is this the final fragment? */ 363 if ((flags & IP_MF) == 0) { 364 /* If we already have some bits beyond end 365 * or have different end, the segment is corrupted. 366 */ 367 if (end < qp->q.len || 368 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) 369 goto err; 370 qp->q.last_in |= INET_FRAG_LAST_IN; 371 qp->q.len = end; 372 } else { 373 if (end&7) { 374 end &= ~7; 375 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 376 skb->ip_summed = CHECKSUM_NONE; 377 } 378 if (end > qp->q.len) { 379 /* Some bits beyond end -> corruption. */ 380 if (qp->q.last_in & INET_FRAG_LAST_IN) 381 goto err; 382 qp->q.len = end; 383 } 384 } 385 if (end == offset) 386 goto err; 387 388 err = -ENOMEM; 389 if (pskb_pull(skb, ihl) == NULL) 390 goto err; 391 392 err = pskb_trim_rcsum(skb, end - offset); 393 if (err) 394 goto err; 395 396 /* Find out which fragments are in front and at the back of us 397 * in the chain of fragments so far. We must know where to put 398 * this fragment, right? 399 */ 400 prev = qp->q.fragments_tail; 401 if (!prev || FRAG_CB(prev)->offset < offset) { 402 next = NULL; 403 goto found; 404 } 405 prev = NULL; 406 for (next = qp->q.fragments; next != NULL; next = next->next) { 407 if (FRAG_CB(next)->offset >= offset) 408 break; /* bingo! */ 409 prev = next; 410 } 411 412 found: 413 /* We found where to put this one. Check for overlap with 414 * preceding fragment, and, if needed, align things so that 415 * any overlaps are eliminated. 416 */ 417 if (prev) { 418 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 419 420 if (i > 0) { 421 offset += i; 422 err = -EINVAL; 423 if (end <= offset) 424 goto err; 425 err = -ENOMEM; 426 if (!pskb_pull(skb, i)) 427 goto err; 428 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 429 skb->ip_summed = CHECKSUM_NONE; 430 } 431 } 432 433 err = -ENOMEM; 434 435 while (next && FRAG_CB(next)->offset < end) { 436 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 437 438 if (i < next->len) { 439 /* Eat head of the next overlapped fragment 440 * and leave the loop. The next ones cannot overlap. 441 */ 442 if (!pskb_pull(next, i)) 443 goto err; 444 FRAG_CB(next)->offset += i; 445 qp->q.meat -= i; 446 if (next->ip_summed != CHECKSUM_UNNECESSARY) 447 next->ip_summed = CHECKSUM_NONE; 448 break; 449 } else { 450 struct sk_buff *free_it = next; 451 452 /* Old fragment is completely overridden with 453 * new one drop it. 454 */ 455 next = next->next; 456 457 if (prev) 458 prev->next = next; 459 else 460 qp->q.fragments = next; 461 462 qp->q.meat -= free_it->len; 463 sub_frag_mem_limit(&qp->q, free_it->truesize); 464 kfree_skb(free_it); 465 } 466 } 467 468 FRAG_CB(skb)->offset = offset; 469 470 /* Insert this fragment in the chain of fragments. */ 471 skb->next = next; 472 if (!next) 473 qp->q.fragments_tail = skb; 474 if (prev) 475 prev->next = skb; 476 else 477 qp->q.fragments = skb; 478 479 dev = skb->dev; 480 if (dev) { 481 qp->iif = dev->ifindex; 482 skb->dev = NULL; 483 } 484 qp->q.stamp = skb->tstamp; 485 qp->q.meat += skb->len; 486 qp->ecn |= ecn; 487 add_frag_mem_limit(&qp->q, skb->truesize); 488 if (offset == 0) 489 qp->q.last_in |= INET_FRAG_FIRST_IN; 490 491 if (ip_hdr(skb)->frag_off & htons(IP_DF) && 492 skb->len + ihl > qp->q.max_size) 493 qp->q.max_size = skb->len + ihl; 494 495 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 496 qp->q.meat == qp->q.len) { 497 unsigned long orefdst = skb->_skb_refdst; 498 499 skb->_skb_refdst = 0UL; 500 err = ip_frag_reasm(qp, prev, dev); 501 skb->_skb_refdst = orefdst; 502 return err; 503 } 504 505 skb_dst_drop(skb); 506 inet_frag_lru_move(&qp->q); 507 return -EINPROGRESS; 508 509 err: 510 kfree_skb(skb); 511 return err; 512 } 513 514 515 /* Build a new IP datagram from all its fragments. */ 516 517 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 518 struct net_device *dev) 519 { 520 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 521 struct iphdr *iph; 522 struct sk_buff *fp, *head = qp->q.fragments; 523 int len; 524 int ihlen; 525 int err; 526 int sum_truesize; 527 u8 ecn; 528 529 ipq_kill(qp); 530 531 ecn = ip_frag_ecn_table[qp->ecn]; 532 if (unlikely(ecn == 0xff)) { 533 err = -EINVAL; 534 goto out_fail; 535 } 536 /* Make the one we just received the head. */ 537 if (prev) { 538 head = prev->next; 539 fp = skb_clone(head, GFP_ATOMIC); 540 if (!fp) 541 goto out_nomem; 542 543 fp->next = head->next; 544 if (!fp->next) 545 qp->q.fragments_tail = fp; 546 prev->next = fp; 547 548 skb_morph(head, qp->q.fragments); 549 head->next = qp->q.fragments->next; 550 551 consume_skb(qp->q.fragments); 552 qp->q.fragments = head; 553 } 554 555 WARN_ON(head == NULL); 556 WARN_ON(FRAG_CB(head)->offset != 0); 557 558 /* Allocate a new buffer for the datagram. */ 559 ihlen = ip_hdrlen(head); 560 len = ihlen + qp->q.len; 561 562 err = -E2BIG; 563 if (len > 65535) 564 goto out_oversize; 565 566 /* Head of list must not be cloned. */ 567 if (skb_unclone(head, GFP_ATOMIC)) 568 goto out_nomem; 569 570 /* If the first fragment is fragmented itself, we split 571 * it to two chunks: the first with data and paged part 572 * and the second, holding only fragments. */ 573 if (skb_has_frag_list(head)) { 574 struct sk_buff *clone; 575 int i, plen = 0; 576 577 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 578 goto out_nomem; 579 clone->next = head->next; 580 head->next = clone; 581 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 582 skb_frag_list_init(head); 583 for (i = 0; i < skb_shinfo(head)->nr_frags; i++) 584 plen += skb_frag_size(&skb_shinfo(head)->frags[i]); 585 clone->len = clone->data_len = head->data_len - plen; 586 head->data_len -= clone->len; 587 head->len -= clone->len; 588 clone->csum = 0; 589 clone->ip_summed = head->ip_summed; 590 add_frag_mem_limit(&qp->q, clone->truesize); 591 } 592 593 skb_push(head, head->data - skb_network_header(head)); 594 595 sum_truesize = head->truesize; 596 for (fp = head->next; fp;) { 597 bool headstolen; 598 int delta; 599 struct sk_buff *next = fp->next; 600 601 sum_truesize += fp->truesize; 602 if (head->ip_summed != fp->ip_summed) 603 head->ip_summed = CHECKSUM_NONE; 604 else if (head->ip_summed == CHECKSUM_COMPLETE) 605 head->csum = csum_add(head->csum, fp->csum); 606 607 if (skb_try_coalesce(head, fp, &headstolen, &delta)) { 608 kfree_skb_partial(fp, headstolen); 609 } else { 610 if (!skb_shinfo(head)->frag_list) 611 skb_shinfo(head)->frag_list = fp; 612 head->data_len += fp->len; 613 head->len += fp->len; 614 head->truesize += fp->truesize; 615 } 616 fp = next; 617 } 618 sub_frag_mem_limit(&qp->q, sum_truesize); 619 620 head->next = NULL; 621 head->dev = dev; 622 head->tstamp = qp->q.stamp; 623 IPCB(head)->frag_max_size = qp->q.max_size; 624 625 iph = ip_hdr(head); 626 /* max_size != 0 implies at least one fragment had IP_DF set */ 627 iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0; 628 iph->tot_len = htons(len); 629 iph->tos |= ecn; 630 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); 631 qp->q.fragments = NULL; 632 qp->q.fragments_tail = NULL; 633 return 0; 634 635 out_nomem: 636 LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"), 637 qp); 638 err = -ENOMEM; 639 goto out_fail; 640 out_oversize: 641 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr); 642 out_fail: 643 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 644 return err; 645 } 646 647 /* Process an incoming IP datagram fragment. */ 648 int ip_defrag(struct sk_buff *skb, u32 user) 649 { 650 struct ipq *qp; 651 struct net *net; 652 653 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev); 654 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS); 655 656 /* Start by cleaning up the memory. */ 657 ip_evictor(net); 658 659 /* Lookup (or create) queue header */ 660 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 661 int ret; 662 663 spin_lock(&qp->q.lock); 664 665 ret = ip_frag_queue(qp, skb); 666 667 spin_unlock(&qp->q.lock); 668 ipq_put(qp); 669 return ret; 670 } 671 672 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 673 kfree_skb(skb); 674 return -ENOMEM; 675 } 676 EXPORT_SYMBOL(ip_defrag); 677 678 struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user) 679 { 680 struct iphdr iph; 681 u32 len; 682 683 if (skb->protocol != htons(ETH_P_IP)) 684 return skb; 685 686 if (!skb_copy_bits(skb, 0, &iph, sizeof(iph))) 687 return skb; 688 689 if (iph.ihl < 5 || iph.version != 4) 690 return skb; 691 692 len = ntohs(iph.tot_len); 693 if (skb->len < len || len < (iph.ihl * 4)) 694 return skb; 695 696 if (ip_is_fragment(&iph)) { 697 skb = skb_share_check(skb, GFP_ATOMIC); 698 if (skb) { 699 if (!pskb_may_pull(skb, iph.ihl*4)) 700 return skb; 701 if (pskb_trim_rcsum(skb, len)) 702 return skb; 703 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 704 if (ip_defrag(skb, user)) 705 return NULL; 706 skb->rxhash = 0; 707 } 708 } 709 return skb; 710 } 711 EXPORT_SYMBOL(ip_check_defrag); 712 713 #ifdef CONFIG_SYSCTL 714 static int zero; 715 716 static struct ctl_table ip4_frags_ns_ctl_table[] = { 717 { 718 .procname = "ipfrag_high_thresh", 719 .data = &init_net.ipv4.frags.high_thresh, 720 .maxlen = sizeof(int), 721 .mode = 0644, 722 .proc_handler = proc_dointvec 723 }, 724 { 725 .procname = "ipfrag_low_thresh", 726 .data = &init_net.ipv4.frags.low_thresh, 727 .maxlen = sizeof(int), 728 .mode = 0644, 729 .proc_handler = proc_dointvec 730 }, 731 { 732 .procname = "ipfrag_time", 733 .data = &init_net.ipv4.frags.timeout, 734 .maxlen = sizeof(int), 735 .mode = 0644, 736 .proc_handler = proc_dointvec_jiffies, 737 }, 738 { } 739 }; 740 741 static struct ctl_table ip4_frags_ctl_table[] = { 742 { 743 .procname = "ipfrag_secret_interval", 744 .data = &ip4_frags.secret_interval, 745 .maxlen = sizeof(int), 746 .mode = 0644, 747 .proc_handler = proc_dointvec_jiffies, 748 }, 749 { 750 .procname = "ipfrag_max_dist", 751 .data = &sysctl_ipfrag_max_dist, 752 .maxlen = sizeof(int), 753 .mode = 0644, 754 .proc_handler = proc_dointvec_minmax, 755 .extra1 = &zero 756 }, 757 { } 758 }; 759 760 static int __net_init ip4_frags_ns_ctl_register(struct net *net) 761 { 762 struct ctl_table *table; 763 struct ctl_table_header *hdr; 764 765 table = ip4_frags_ns_ctl_table; 766 if (!net_eq(net, &init_net)) { 767 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 768 if (table == NULL) 769 goto err_alloc; 770 771 table[0].data = &net->ipv4.frags.high_thresh; 772 table[1].data = &net->ipv4.frags.low_thresh; 773 table[2].data = &net->ipv4.frags.timeout; 774 775 /* Don't export sysctls to unprivileged users */ 776 if (net->user_ns != &init_user_ns) 777 table[0].procname = NULL; 778 } 779 780 hdr = register_net_sysctl(net, "net/ipv4", table); 781 if (hdr == NULL) 782 goto err_reg; 783 784 net->ipv4.frags_hdr = hdr; 785 return 0; 786 787 err_reg: 788 if (!net_eq(net, &init_net)) 789 kfree(table); 790 err_alloc: 791 return -ENOMEM; 792 } 793 794 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) 795 { 796 struct ctl_table *table; 797 798 table = net->ipv4.frags_hdr->ctl_table_arg; 799 unregister_net_sysctl_table(net->ipv4.frags_hdr); 800 kfree(table); 801 } 802 803 static void ip4_frags_ctl_register(void) 804 { 805 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table); 806 } 807 #else 808 static inline int ip4_frags_ns_ctl_register(struct net *net) 809 { 810 return 0; 811 } 812 813 static inline void ip4_frags_ns_ctl_unregister(struct net *net) 814 { 815 } 816 817 static inline void ip4_frags_ctl_register(void) 818 { 819 } 820 #endif 821 822 static int __net_init ipv4_frags_init_net(struct net *net) 823 { 824 /* Fragment cache limits. 825 * 826 * The fragment memory accounting code, (tries to) account for 827 * the real memory usage, by measuring both the size of frag 828 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue)) 829 * and the SKB's truesize. 830 * 831 * A 64K fragment consumes 129736 bytes (44*2944)+200 832 * (1500 truesize == 2944, sizeof(struct ipq) == 200) 833 * 834 * We will commit 4MB at one time. Should we cross that limit 835 * we will prune down to 3MB, making room for approx 8 big 64K 836 * fragments 8x128k. 837 */ 838 net->ipv4.frags.high_thresh = 4 * 1024 * 1024; 839 net->ipv4.frags.low_thresh = 3 * 1024 * 1024; 840 /* 841 * Important NOTE! Fragment queue must be destroyed before MSL expires. 842 * RFC791 is wrong proposing to prolongate timer each fragment arrival 843 * by TTL. 844 */ 845 net->ipv4.frags.timeout = IP_FRAG_TIME; 846 847 inet_frags_init_net(&net->ipv4.frags); 848 849 return ip4_frags_ns_ctl_register(net); 850 } 851 852 static void __net_exit ipv4_frags_exit_net(struct net *net) 853 { 854 ip4_frags_ns_ctl_unregister(net); 855 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 856 } 857 858 static struct pernet_operations ip4_frags_ops = { 859 .init = ipv4_frags_init_net, 860 .exit = ipv4_frags_exit_net, 861 }; 862 863 void __init ipfrag_init(void) 864 { 865 ip4_frags_ctl_register(); 866 register_pernet_subsys(&ip4_frags_ops); 867 ip4_frags.hashfn = ip4_hashfn; 868 ip4_frags.constructor = ip4_frag_init; 869 ip4_frags.destructor = ip4_frag_free; 870 ip4_frags.skb_free = NULL; 871 ip4_frags.qsize = sizeof(struct ipq); 872 ip4_frags.match = ip4_frag_match; 873 ip4_frags.frag_expire = ip_expire; 874 ip4_frags.secret_interval = 10 * 60 * HZ; 875 inet_frags_init(&ip4_frags); 876 } 877