xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The IP fragmentation functionality.
8  *
9  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
11  *
12  * Fixes:
13  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
14  *		David S. Miller :	Begin massive cleanup...
15  *		Andi Kleen	:	Add sysctls.
16  *		xxxx		:	Overlapfrag bug.
17  *		Ultima          :       ip_expire() kernel panic.
18  *		Bill Hawes	:	Frag accounting and evictor fixes.
19  *		John McDonald	:	0 length frag bug.
20  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
21  *		Patrick McHardy :	LRU queue of frag heads for evictor.
22  */
23 
24 #define pr_fmt(fmt) "IPv4: " fmt
25 
26 #include <linux/compiler.h>
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/mm.h>
30 #include <linux/jiffies.h>
31 #include <linux/skbuff.h>
32 #include <linux/list.h>
33 #include <linux/ip.h>
34 #include <linux/icmp.h>
35 #include <linux/netdevice.h>
36 #include <linux/jhash.h>
37 #include <linux/random.h>
38 #include <linux/slab.h>
39 #include <net/route.h>
40 #include <net/dst.h>
41 #include <net/sock.h>
42 #include <net/ip.h>
43 #include <net/icmp.h>
44 #include <net/checksum.h>
45 #include <net/inetpeer.h>
46 #include <net/inet_frag.h>
47 #include <linux/tcp.h>
48 #include <linux/udp.h>
49 #include <linux/inet.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <net/inet_ecn.h>
52 #include <net/l3mdev.h>
53 
54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
55  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
56  * as well. Or notify me, at least. --ANK
57  */
58 static const char ip_frag_cache_name[] = "ip4-frags";
59 
60 /* Use skb->cb to track consecutive/adjacent fragments coming at
61  * the end of the queue. Nodes in the rb-tree queue will
62  * contain "runs" of one or more adjacent fragments.
63  *
64  * Invariants:
65  * - next_frag is NULL at the tail of a "run";
66  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
67  */
68 struct ipfrag_skb_cb {
69 	struct inet_skb_parm	h;
70 	struct sk_buff		*next_frag;
71 	int			frag_run_len;
72 };
73 
74 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
75 
76 static void ip4_frag_init_run(struct sk_buff *skb)
77 {
78 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
79 
80 	FRAG_CB(skb)->next_frag = NULL;
81 	FRAG_CB(skb)->frag_run_len = skb->len;
82 }
83 
84 /* Append skb to the last "run". */
85 static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
86 					struct sk_buff *skb)
87 {
88 	RB_CLEAR_NODE(&skb->rbnode);
89 	FRAG_CB(skb)->next_frag = NULL;
90 
91 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
92 	FRAG_CB(q->fragments_tail)->next_frag = skb;
93 	q->fragments_tail = skb;
94 }
95 
96 /* Create a new "run" with the skb. */
97 static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
98 {
99 	if (q->last_run_head)
100 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
101 			     &q->last_run_head->rbnode.rb_right);
102 	else
103 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
104 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
105 
106 	ip4_frag_init_run(skb);
107 	q->fragments_tail = skb;
108 	q->last_run_head = skb;
109 }
110 
111 /* Describe an entry in the "incomplete datagrams" queue. */
112 struct ipq {
113 	struct inet_frag_queue q;
114 
115 	u8		ecn; /* RFC3168 support */
116 	u16		max_df_size; /* largest frag with DF set seen */
117 	int             iif;
118 	unsigned int    rid;
119 	struct inet_peer *peer;
120 };
121 
122 static u8 ip4_frag_ecn(u8 tos)
123 {
124 	return 1 << (tos & INET_ECN_MASK);
125 }
126 
127 static struct inet_frags ip4_frags;
128 
129 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
130 			 struct sk_buff *prev_tail, struct net_device *dev);
131 
132 
133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
134 {
135 	struct ipq *qp = container_of(q, struct ipq, q);
136 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
137 					       frags);
138 	struct net *net = container_of(ipv4, struct net, ipv4);
139 
140 	const struct frag_v4_compare_key *key = a;
141 
142 	q->key.v4 = *key;
143 	qp->ecn = 0;
144 	qp->peer = q->net->max_dist ?
145 		inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) :
146 		NULL;
147 }
148 
149 static void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 	struct ipq *qp;
152 
153 	qp = container_of(q, struct ipq, q);
154 	if (qp->peer)
155 		inet_putpeer(qp->peer);
156 }
157 
158 
159 /* Destruction primitives. */
160 
161 static void ipq_put(struct ipq *ipq)
162 {
163 	inet_frag_put(&ipq->q);
164 }
165 
166 /* Kill ipq entry. It is not destroyed immediately,
167  * because caller (and someone more) holds reference count.
168  */
169 static void ipq_kill(struct ipq *ipq)
170 {
171 	inet_frag_kill(&ipq->q);
172 }
173 
174 static bool frag_expire_skip_icmp(u32 user)
175 {
176 	return user == IP_DEFRAG_AF_PACKET ||
177 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
178 					 __IP_DEFRAG_CONNTRACK_IN_END) ||
179 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
180 					 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
181 }
182 
183 /*
184  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
185  */
186 static void ip_expire(struct timer_list *t)
187 {
188 	struct inet_frag_queue *frag = from_timer(frag, t, timer);
189 	const struct iphdr *iph;
190 	struct sk_buff *head = NULL;
191 	struct net *net;
192 	struct ipq *qp;
193 	int err;
194 
195 	qp = container_of(frag, struct ipq, q);
196 	net = container_of(qp->q.net, struct net, ipv4.frags);
197 
198 	rcu_read_lock();
199 	spin_lock(&qp->q.lock);
200 
201 	if (qp->q.flags & INET_FRAG_COMPLETE)
202 		goto out;
203 
204 	ipq_kill(qp);
205 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
206 	__IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
207 
208 	if (!(qp->q.flags & INET_FRAG_FIRST_IN))
209 		goto out;
210 
211 	/* sk_buff::dev and sk_buff::rbnode are unionized. So we
212 	 * pull the head out of the tree in order to be able to
213 	 * deal with head->dev.
214 	 */
215 	if (qp->q.fragments) {
216 		head = qp->q.fragments;
217 		qp->q.fragments = head->next;
218 	} else {
219 		head = skb_rb_first(&qp->q.rb_fragments);
220 		if (!head)
221 			goto out;
222 		if (FRAG_CB(head)->next_frag)
223 			rb_replace_node(&head->rbnode,
224 					&FRAG_CB(head)->next_frag->rbnode,
225 					&qp->q.rb_fragments);
226 		else
227 			rb_erase(&head->rbnode, &qp->q.rb_fragments);
228 		memset(&head->rbnode, 0, sizeof(head->rbnode));
229 		barrier();
230 	}
231 	if (head == qp->q.fragments_tail)
232 		qp->q.fragments_tail = NULL;
233 
234 	sub_frag_mem_limit(qp->q.net, head->truesize);
235 
236 	head->dev = dev_get_by_index_rcu(net, qp->iif);
237 	if (!head->dev)
238 		goto out;
239 
240 
241 	/* skb has no dst, perform route lookup again */
242 	iph = ip_hdr(head);
243 	err = ip_route_input_noref(head, iph->daddr, iph->saddr,
244 					   iph->tos, head->dev);
245 	if (err)
246 		goto out;
247 
248 	/* Only an end host needs to send an ICMP
249 	 * "Fragment Reassembly Timeout" message, per RFC792.
250 	 */
251 	if (frag_expire_skip_icmp(qp->q.key.v4.user) &&
252 	    (skb_rtable(head)->rt_type != RTN_LOCAL))
253 		goto out;
254 
255 	spin_unlock(&qp->q.lock);
256 	icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
257 	goto out_rcu_unlock;
258 
259 out:
260 	spin_unlock(&qp->q.lock);
261 out_rcu_unlock:
262 	rcu_read_unlock();
263 	kfree_skb(head);
264 	ipq_put(qp);
265 }
266 
267 /* Find the correct entry in the "incomplete datagrams" queue for
268  * this IP datagram, and create new one, if nothing is found.
269  */
270 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
271 			   u32 user, int vif)
272 {
273 	struct frag_v4_compare_key key = {
274 		.saddr = iph->saddr,
275 		.daddr = iph->daddr,
276 		.user = user,
277 		.vif = vif,
278 		.id = iph->id,
279 		.protocol = iph->protocol,
280 	};
281 	struct inet_frag_queue *q;
282 
283 	q = inet_frag_find(&net->ipv4.frags, &key);
284 	if (!q)
285 		return NULL;
286 
287 	return container_of(q, struct ipq, q);
288 }
289 
290 /* Is the fragment too far ahead to be part of ipq? */
291 static int ip_frag_too_far(struct ipq *qp)
292 {
293 	struct inet_peer *peer = qp->peer;
294 	unsigned int max = qp->q.net->max_dist;
295 	unsigned int start, end;
296 
297 	int rc;
298 
299 	if (!peer || !max)
300 		return 0;
301 
302 	start = qp->rid;
303 	end = atomic_inc_return(&peer->rid);
304 	qp->rid = end;
305 
306 	rc = qp->q.fragments_tail && (end - start) > max;
307 
308 	if (rc) {
309 		struct net *net;
310 
311 		net = container_of(qp->q.net, struct net, ipv4.frags);
312 		__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
313 	}
314 
315 	return rc;
316 }
317 
318 static int ip_frag_reinit(struct ipq *qp)
319 {
320 	unsigned int sum_truesize = 0;
321 
322 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
323 		refcount_inc(&qp->q.refcnt);
324 		return -ETIMEDOUT;
325 	}
326 
327 	sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
328 	sub_frag_mem_limit(qp->q.net, sum_truesize);
329 
330 	qp->q.flags = 0;
331 	qp->q.len = 0;
332 	qp->q.meat = 0;
333 	qp->q.fragments = NULL;
334 	qp->q.rb_fragments = RB_ROOT;
335 	qp->q.fragments_tail = NULL;
336 	qp->q.last_run_head = NULL;
337 	qp->iif = 0;
338 	qp->ecn = 0;
339 
340 	return 0;
341 }
342 
343 /* Add new segment to existing queue. */
344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
345 {
346 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
347 	struct rb_node **rbn, *parent;
348 	struct sk_buff *skb1, *prev_tail;
349 	struct net_device *dev;
350 	unsigned int fragsize;
351 	int flags, offset;
352 	int ihl, end;
353 	int err = -ENOENT;
354 	u8 ecn;
355 
356 	if (qp->q.flags & INET_FRAG_COMPLETE)
357 		goto err;
358 
359 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
360 	    unlikely(ip_frag_too_far(qp)) &&
361 	    unlikely(err = ip_frag_reinit(qp))) {
362 		ipq_kill(qp);
363 		goto err;
364 	}
365 
366 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
367 	offset = ntohs(ip_hdr(skb)->frag_off);
368 	flags = offset & ~IP_OFFSET;
369 	offset &= IP_OFFSET;
370 	offset <<= 3;		/* offset is in 8-byte chunks */
371 	ihl = ip_hdrlen(skb);
372 
373 	/* Determine the position of this fragment. */
374 	end = offset + skb->len - skb_network_offset(skb) - ihl;
375 	err = -EINVAL;
376 
377 	/* Is this the final fragment? */
378 	if ((flags & IP_MF) == 0) {
379 		/* If we already have some bits beyond end
380 		 * or have different end, the segment is corrupted.
381 		 */
382 		if (end < qp->q.len ||
383 		    ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
384 			goto discard_qp;
385 		qp->q.flags |= INET_FRAG_LAST_IN;
386 		qp->q.len = end;
387 	} else {
388 		if (end&7) {
389 			end &= ~7;
390 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
391 				skb->ip_summed = CHECKSUM_NONE;
392 		}
393 		if (end > qp->q.len) {
394 			/* Some bits beyond end -> corruption. */
395 			if (qp->q.flags & INET_FRAG_LAST_IN)
396 				goto discard_qp;
397 			qp->q.len = end;
398 		}
399 	}
400 	if (end == offset)
401 		goto discard_qp;
402 
403 	err = -ENOMEM;
404 	if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
405 		goto discard_qp;
406 
407 	err = pskb_trim_rcsum(skb, end - offset);
408 	if (err)
409 		goto discard_qp;
410 
411 	/* Note : skb->rbnode and skb->dev share the same location. */
412 	dev = skb->dev;
413 	/* Makes sure compiler wont do silly aliasing games */
414 	barrier();
415 
416 	/* RFC5722, Section 4, amended by Errata ID : 3089
417 	 *                          When reassembling an IPv6 datagram, if
418 	 *   one or more its constituent fragments is determined to be an
419 	 *   overlapping fragment, the entire datagram (and any constituent
420 	 *   fragments) MUST be silently discarded.
421 	 *
422 	 * We do the same here for IPv4 (and increment an snmp counter).
423 	 */
424 
425 	err = -EINVAL;
426 	/* Find out where to put this fragment.  */
427 	prev_tail = qp->q.fragments_tail;
428 	if (!prev_tail)
429 		ip4_frag_create_run(&qp->q, skb);  /* First fragment. */
430 	else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
431 		/* This is the common case: skb goes to the end. */
432 		/* Detect and discard overlaps. */
433 		if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
434 			goto overlap;
435 		if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
436 			ip4_frag_append_to_last_run(&qp->q, skb);
437 		else
438 			ip4_frag_create_run(&qp->q, skb);
439 	} else {
440 		/* Binary search. Note that skb can become the first fragment,
441 		 * but not the last (covered above).
442 		 */
443 		rbn = &qp->q.rb_fragments.rb_node;
444 		do {
445 			parent = *rbn;
446 			skb1 = rb_to_skb(parent);
447 			if (end <= skb1->ip_defrag_offset)
448 				rbn = &parent->rb_left;
449 			else if (offset >= skb1->ip_defrag_offset +
450 						FRAG_CB(skb1)->frag_run_len)
451 				rbn = &parent->rb_right;
452 			else /* Found an overlap with skb1. */
453 				goto overlap;
454 		} while (*rbn);
455 		/* Here we have parent properly set, and rbn pointing to
456 		 * one of its NULL left/right children. Insert skb.
457 		 */
458 		ip4_frag_init_run(skb);
459 		rb_link_node(&skb->rbnode, parent, rbn);
460 		rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
461 	}
462 
463 	if (dev)
464 		qp->iif = dev->ifindex;
465 	skb->ip_defrag_offset = offset;
466 
467 	qp->q.stamp = skb->tstamp;
468 	qp->q.meat += skb->len;
469 	qp->ecn |= ecn;
470 	add_frag_mem_limit(qp->q.net, skb->truesize);
471 	if (offset == 0)
472 		qp->q.flags |= INET_FRAG_FIRST_IN;
473 
474 	fragsize = skb->len + ihl;
475 
476 	if (fragsize > qp->q.max_size)
477 		qp->q.max_size = fragsize;
478 
479 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
480 	    fragsize > qp->max_df_size)
481 		qp->max_df_size = fragsize;
482 
483 	if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
484 	    qp->q.meat == qp->q.len) {
485 		unsigned long orefdst = skb->_skb_refdst;
486 
487 		skb->_skb_refdst = 0UL;
488 		err = ip_frag_reasm(qp, skb, prev_tail, dev);
489 		skb->_skb_refdst = orefdst;
490 		if (err)
491 			inet_frag_kill(&qp->q);
492 		return err;
493 	}
494 
495 	skb_dst_drop(skb);
496 	return -EINPROGRESS;
497 
498 overlap:
499 	__IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
500 discard_qp:
501 	inet_frag_kill(&qp->q);
502 err:
503 	kfree_skb(skb);
504 	return err;
505 }
506 
507 /* Build a new IP datagram from all its fragments. */
508 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
509 			 struct sk_buff *prev_tail, struct net_device *dev)
510 {
511 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
512 	struct iphdr *iph;
513 	struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
514 	struct sk_buff **nextp; /* To build frag_list. */
515 	struct rb_node *rbn;
516 	int len;
517 	int ihlen;
518 	int err;
519 	u8 ecn;
520 
521 	ipq_kill(qp);
522 
523 	ecn = ip_frag_ecn_table[qp->ecn];
524 	if (unlikely(ecn == 0xff)) {
525 		err = -EINVAL;
526 		goto out_fail;
527 	}
528 	/* Make the one we just received the head. */
529 	if (head != skb) {
530 		fp = skb_clone(skb, GFP_ATOMIC);
531 		if (!fp)
532 			goto out_nomem;
533 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
534 		if (RB_EMPTY_NODE(&skb->rbnode))
535 			FRAG_CB(prev_tail)->next_frag = fp;
536 		else
537 			rb_replace_node(&skb->rbnode, &fp->rbnode,
538 					&qp->q.rb_fragments);
539 		if (qp->q.fragments_tail == skb)
540 			qp->q.fragments_tail = fp;
541 		skb_morph(skb, head);
542 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
543 		rb_replace_node(&head->rbnode, &skb->rbnode,
544 				&qp->q.rb_fragments);
545 		consume_skb(head);
546 		head = skb;
547 	}
548 
549 	WARN_ON(head->ip_defrag_offset != 0);
550 
551 	/* Allocate a new buffer for the datagram. */
552 	ihlen = ip_hdrlen(head);
553 	len = ihlen + qp->q.len;
554 
555 	err = -E2BIG;
556 	if (len > 65535)
557 		goto out_oversize;
558 
559 	/* Head of list must not be cloned. */
560 	if (skb_unclone(head, GFP_ATOMIC))
561 		goto out_nomem;
562 
563 	/* If the first fragment is fragmented itself, we split
564 	 * it to two chunks: the first with data and paged part
565 	 * and the second, holding only fragments. */
566 	if (skb_has_frag_list(head)) {
567 		struct sk_buff *clone;
568 		int i, plen = 0;
569 
570 		clone = alloc_skb(0, GFP_ATOMIC);
571 		if (!clone)
572 			goto out_nomem;
573 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
574 		skb_frag_list_init(head);
575 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
576 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
577 		clone->len = clone->data_len = head->data_len - plen;
578 		head->truesize += clone->truesize;
579 		clone->csum = 0;
580 		clone->ip_summed = head->ip_summed;
581 		add_frag_mem_limit(qp->q.net, clone->truesize);
582 		skb_shinfo(head)->frag_list = clone;
583 		nextp = &clone->next;
584 	} else {
585 		nextp = &skb_shinfo(head)->frag_list;
586 	}
587 
588 	skb_push(head, head->data - skb_network_header(head));
589 
590 	/* Traverse the tree in order, to build frag_list. */
591 	fp = FRAG_CB(head)->next_frag;
592 	rbn = rb_next(&head->rbnode);
593 	rb_erase(&head->rbnode, &qp->q.rb_fragments);
594 	while (rbn || fp) {
595 		/* fp points to the next sk_buff in the current run;
596 		 * rbn points to the next run.
597 		 */
598 		/* Go through the current run. */
599 		while (fp) {
600 			*nextp = fp;
601 			nextp = &fp->next;
602 			fp->prev = NULL;
603 			memset(&fp->rbnode, 0, sizeof(fp->rbnode));
604 			fp->sk = NULL;
605 			head->data_len += fp->len;
606 			head->len += fp->len;
607 			if (head->ip_summed != fp->ip_summed)
608 				head->ip_summed = CHECKSUM_NONE;
609 			else if (head->ip_summed == CHECKSUM_COMPLETE)
610 				head->csum = csum_add(head->csum, fp->csum);
611 			head->truesize += fp->truesize;
612 			fp = FRAG_CB(fp)->next_frag;
613 		}
614 		/* Move to the next run. */
615 		if (rbn) {
616 			struct rb_node *rbnext = rb_next(rbn);
617 
618 			fp = rb_to_skb(rbn);
619 			rb_erase(rbn, &qp->q.rb_fragments);
620 			rbn = rbnext;
621 		}
622 	}
623 	sub_frag_mem_limit(qp->q.net, head->truesize);
624 
625 	*nextp = NULL;
626 	skb_mark_not_on_list(head);
627 	head->prev = NULL;
628 	head->dev = dev;
629 	head->tstamp = qp->q.stamp;
630 	IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
631 
632 	iph = ip_hdr(head);
633 	iph->tot_len = htons(len);
634 	iph->tos |= ecn;
635 
636 	/* When we set IP_DF on a refragmented skb we must also force a
637 	 * call to ip_fragment to avoid forwarding a DF-skb of size s while
638 	 * original sender only sent fragments of size f (where f < s).
639 	 *
640 	 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
641 	 * frag seen to avoid sending tiny DF-fragments in case skb was built
642 	 * from one very small df-fragment and one large non-df frag.
643 	 */
644 	if (qp->max_df_size == qp->q.max_size) {
645 		IPCB(head)->flags |= IPSKB_FRAG_PMTU;
646 		iph->frag_off = htons(IP_DF);
647 	} else {
648 		iph->frag_off = 0;
649 	}
650 
651 	ip_send_check(iph);
652 
653 	__IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
654 	qp->q.fragments = NULL;
655 	qp->q.rb_fragments = RB_ROOT;
656 	qp->q.fragments_tail = NULL;
657 	qp->q.last_run_head = NULL;
658 	return 0;
659 
660 out_nomem:
661 	net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
662 	err = -ENOMEM;
663 	goto out_fail;
664 out_oversize:
665 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr);
666 out_fail:
667 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
668 	return err;
669 }
670 
671 /* Process an incoming IP datagram fragment. */
672 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
673 {
674 	struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
675 	int vif = l3mdev_master_ifindex_rcu(dev);
676 	struct ipq *qp;
677 
678 	__IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
679 	skb_orphan(skb);
680 
681 	/* Lookup (or create) queue header */
682 	qp = ip_find(net, ip_hdr(skb), user, vif);
683 	if (qp) {
684 		int ret;
685 
686 		spin_lock(&qp->q.lock);
687 
688 		ret = ip_frag_queue(qp, skb);
689 
690 		spin_unlock(&qp->q.lock);
691 		ipq_put(qp);
692 		return ret;
693 	}
694 
695 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
696 	kfree_skb(skb);
697 	return -ENOMEM;
698 }
699 EXPORT_SYMBOL(ip_defrag);
700 
701 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
702 {
703 	struct iphdr iph;
704 	int netoff;
705 	u32 len;
706 
707 	if (skb->protocol != htons(ETH_P_IP))
708 		return skb;
709 
710 	netoff = skb_network_offset(skb);
711 
712 	if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
713 		return skb;
714 
715 	if (iph.ihl < 5 || iph.version != 4)
716 		return skb;
717 
718 	len = ntohs(iph.tot_len);
719 	if (skb->len < netoff + len || len < (iph.ihl * 4))
720 		return skb;
721 
722 	if (ip_is_fragment(&iph)) {
723 		skb = skb_share_check(skb, GFP_ATOMIC);
724 		if (skb) {
725 			if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
726 				return skb;
727 			if (pskb_trim_rcsum(skb, netoff + len))
728 				return skb;
729 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
730 			if (ip_defrag(net, skb, user))
731 				return NULL;
732 			skb_clear_hash(skb);
733 		}
734 	}
735 	return skb;
736 }
737 EXPORT_SYMBOL(ip_check_defrag);
738 
739 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
740 {
741 	struct rb_node *p = rb_first(root);
742 	unsigned int sum = 0;
743 
744 	while (p) {
745 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
746 
747 		p = rb_next(p);
748 		rb_erase(&skb->rbnode, root);
749 		while (skb) {
750 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
751 
752 			sum += skb->truesize;
753 			kfree_skb(skb);
754 			skb = next;
755 		}
756 	}
757 	return sum;
758 }
759 EXPORT_SYMBOL(inet_frag_rbtree_purge);
760 
761 #ifdef CONFIG_SYSCTL
762 static int dist_min;
763 
764 static struct ctl_table ip4_frags_ns_ctl_table[] = {
765 	{
766 		.procname	= "ipfrag_high_thresh",
767 		.data		= &init_net.ipv4.frags.high_thresh,
768 		.maxlen		= sizeof(unsigned long),
769 		.mode		= 0644,
770 		.proc_handler	= proc_doulongvec_minmax,
771 		.extra1		= &init_net.ipv4.frags.low_thresh
772 	},
773 	{
774 		.procname	= "ipfrag_low_thresh",
775 		.data		= &init_net.ipv4.frags.low_thresh,
776 		.maxlen		= sizeof(unsigned long),
777 		.mode		= 0644,
778 		.proc_handler	= proc_doulongvec_minmax,
779 		.extra2		= &init_net.ipv4.frags.high_thresh
780 	},
781 	{
782 		.procname	= "ipfrag_time",
783 		.data		= &init_net.ipv4.frags.timeout,
784 		.maxlen		= sizeof(int),
785 		.mode		= 0644,
786 		.proc_handler	= proc_dointvec_jiffies,
787 	},
788 	{
789 		.procname	= "ipfrag_max_dist",
790 		.data		= &init_net.ipv4.frags.max_dist,
791 		.maxlen		= sizeof(int),
792 		.mode		= 0644,
793 		.proc_handler	= proc_dointvec_minmax,
794 		.extra1		= &dist_min,
795 	},
796 	{ }
797 };
798 
799 /* secret interval has been deprecated */
800 static int ip4_frags_secret_interval_unused;
801 static struct ctl_table ip4_frags_ctl_table[] = {
802 	{
803 		.procname	= "ipfrag_secret_interval",
804 		.data		= &ip4_frags_secret_interval_unused,
805 		.maxlen		= sizeof(int),
806 		.mode		= 0644,
807 		.proc_handler	= proc_dointvec_jiffies,
808 	},
809 	{ }
810 };
811 
812 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
813 {
814 	struct ctl_table *table;
815 	struct ctl_table_header *hdr;
816 
817 	table = ip4_frags_ns_ctl_table;
818 	if (!net_eq(net, &init_net)) {
819 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
820 		if (!table)
821 			goto err_alloc;
822 
823 		table[0].data = &net->ipv4.frags.high_thresh;
824 		table[0].extra1 = &net->ipv4.frags.low_thresh;
825 		table[1].data = &net->ipv4.frags.low_thresh;
826 		table[1].extra2 = &net->ipv4.frags.high_thresh;
827 		table[2].data = &net->ipv4.frags.timeout;
828 		table[3].data = &net->ipv4.frags.max_dist;
829 	}
830 
831 	hdr = register_net_sysctl(net, "net/ipv4", table);
832 	if (!hdr)
833 		goto err_reg;
834 
835 	net->ipv4.frags_hdr = hdr;
836 	return 0;
837 
838 err_reg:
839 	if (!net_eq(net, &init_net))
840 		kfree(table);
841 err_alloc:
842 	return -ENOMEM;
843 }
844 
845 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
846 {
847 	struct ctl_table *table;
848 
849 	table = net->ipv4.frags_hdr->ctl_table_arg;
850 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
851 	kfree(table);
852 }
853 
854 static void __init ip4_frags_ctl_register(void)
855 {
856 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
857 }
858 #else
859 static int ip4_frags_ns_ctl_register(struct net *net)
860 {
861 	return 0;
862 }
863 
864 static void ip4_frags_ns_ctl_unregister(struct net *net)
865 {
866 }
867 
868 static void __init ip4_frags_ctl_register(void)
869 {
870 }
871 #endif
872 
873 static int __net_init ipv4_frags_init_net(struct net *net)
874 {
875 	int res;
876 
877 	/* Fragment cache limits.
878 	 *
879 	 * The fragment memory accounting code, (tries to) account for
880 	 * the real memory usage, by measuring both the size of frag
881 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
882 	 * and the SKB's truesize.
883 	 *
884 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
885 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
886 	 *
887 	 * We will commit 4MB at one time. Should we cross that limit
888 	 * we will prune down to 3MB, making room for approx 8 big 64K
889 	 * fragments 8x128k.
890 	 */
891 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
892 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
893 	/*
894 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
895 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
896 	 * by TTL.
897 	 */
898 	net->ipv4.frags.timeout = IP_FRAG_TIME;
899 
900 	net->ipv4.frags.max_dist = 64;
901 	net->ipv4.frags.f = &ip4_frags;
902 
903 	res = inet_frags_init_net(&net->ipv4.frags);
904 	if (res < 0)
905 		return res;
906 	res = ip4_frags_ns_ctl_register(net);
907 	if (res < 0)
908 		inet_frags_exit_net(&net->ipv4.frags);
909 	return res;
910 }
911 
912 static void __net_exit ipv4_frags_exit_net(struct net *net)
913 {
914 	ip4_frags_ns_ctl_unregister(net);
915 	inet_frags_exit_net(&net->ipv4.frags);
916 }
917 
918 static struct pernet_operations ip4_frags_ops = {
919 	.init = ipv4_frags_init_net,
920 	.exit = ipv4_frags_exit_net,
921 };
922 
923 
924 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed)
925 {
926 	return jhash2(data,
927 		      sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
928 }
929 
930 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed)
931 {
932 	const struct inet_frag_queue *fq = data;
933 
934 	return jhash2((const u32 *)&fq->key.v4,
935 		      sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
936 }
937 
938 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr)
939 {
940 	const struct frag_v4_compare_key *key = arg->key;
941 	const struct inet_frag_queue *fq = ptr;
942 
943 	return !!memcmp(&fq->key, key, sizeof(*key));
944 }
945 
946 static const struct rhashtable_params ip4_rhash_params = {
947 	.head_offset		= offsetof(struct inet_frag_queue, node),
948 	.key_offset		= offsetof(struct inet_frag_queue, key),
949 	.key_len		= sizeof(struct frag_v4_compare_key),
950 	.hashfn			= ip4_key_hashfn,
951 	.obj_hashfn		= ip4_obj_hashfn,
952 	.obj_cmpfn		= ip4_obj_cmpfn,
953 	.automatic_shrinking	= true,
954 };
955 
956 void __init ipfrag_init(void)
957 {
958 	ip4_frags.constructor = ip4_frag_init;
959 	ip4_frags.destructor = ip4_frag_free;
960 	ip4_frags.qsize = sizeof(struct ipq);
961 	ip4_frags.frag_expire = ip_expire;
962 	ip4_frags.frags_cache_name = ip_frag_cache_name;
963 	ip4_frags.rhash_params = ip4_rhash_params;
964 	if (inet_frags_init(&ip4_frags))
965 		panic("IP: failed to allocate ip4_frags cache\n");
966 	ip4_frags_ctl_register();
967 	register_pernet_subsys(&ip4_frags_ops);
968 }
969