xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision c67e8ec0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The IP fragmentation functionality.
8  *
9  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
11  *
12  * Fixes:
13  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
14  *		David S. Miller :	Begin massive cleanup...
15  *		Andi Kleen	:	Add sysctls.
16  *		xxxx		:	Overlapfrag bug.
17  *		Ultima          :       ip_expire() kernel panic.
18  *		Bill Hawes	:	Frag accounting and evictor fixes.
19  *		John McDonald	:	0 length frag bug.
20  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
21  *		Patrick McHardy :	LRU queue of frag heads for evictor.
22  */
23 
24 #define pr_fmt(fmt) "IPv4: " fmt
25 
26 #include <linux/compiler.h>
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/mm.h>
30 #include <linux/jiffies.h>
31 #include <linux/skbuff.h>
32 #include <linux/list.h>
33 #include <linux/ip.h>
34 #include <linux/icmp.h>
35 #include <linux/netdevice.h>
36 #include <linux/jhash.h>
37 #include <linux/random.h>
38 #include <linux/slab.h>
39 #include <net/route.h>
40 #include <net/dst.h>
41 #include <net/sock.h>
42 #include <net/ip.h>
43 #include <net/icmp.h>
44 #include <net/checksum.h>
45 #include <net/inetpeer.h>
46 #include <net/inet_frag.h>
47 #include <linux/tcp.h>
48 #include <linux/udp.h>
49 #include <linux/inet.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <net/inet_ecn.h>
52 #include <net/l3mdev.h>
53 
54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
55  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
56  * as well. Or notify me, at least. --ANK
57  */
58 static const char ip_frag_cache_name[] = "ip4-frags";
59 
60 /* Use skb->cb to track consecutive/adjacent fragments coming at
61  * the end of the queue. Nodes in the rb-tree queue will
62  * contain "runs" of one or more adjacent fragments.
63  *
64  * Invariants:
65  * - next_frag is NULL at the tail of a "run";
66  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
67  */
68 struct ipfrag_skb_cb {
69 	struct inet_skb_parm	h;
70 	struct sk_buff		*next_frag;
71 	int			frag_run_len;
72 };
73 
74 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
75 
76 static void ip4_frag_init_run(struct sk_buff *skb)
77 {
78 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
79 
80 	FRAG_CB(skb)->next_frag = NULL;
81 	FRAG_CB(skb)->frag_run_len = skb->len;
82 }
83 
84 /* Append skb to the last "run". */
85 static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
86 					struct sk_buff *skb)
87 {
88 	RB_CLEAR_NODE(&skb->rbnode);
89 	FRAG_CB(skb)->next_frag = NULL;
90 
91 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
92 	FRAG_CB(q->fragments_tail)->next_frag = skb;
93 	q->fragments_tail = skb;
94 }
95 
96 /* Create a new "run" with the skb. */
97 static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
98 {
99 	if (q->last_run_head)
100 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
101 			     &q->last_run_head->rbnode.rb_right);
102 	else
103 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
104 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
105 
106 	ip4_frag_init_run(skb);
107 	q->fragments_tail = skb;
108 	q->last_run_head = skb;
109 }
110 
111 /* Describe an entry in the "incomplete datagrams" queue. */
112 struct ipq {
113 	struct inet_frag_queue q;
114 
115 	u8		ecn; /* RFC3168 support */
116 	u16		max_df_size; /* largest frag with DF set seen */
117 	int             iif;
118 	unsigned int    rid;
119 	struct inet_peer *peer;
120 };
121 
122 static u8 ip4_frag_ecn(u8 tos)
123 {
124 	return 1 << (tos & INET_ECN_MASK);
125 }
126 
127 static struct inet_frags ip4_frags;
128 
129 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
130 			 struct sk_buff *prev_tail, struct net_device *dev);
131 
132 
133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
134 {
135 	struct ipq *qp = container_of(q, struct ipq, q);
136 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
137 					       frags);
138 	struct net *net = container_of(ipv4, struct net, ipv4);
139 
140 	const struct frag_v4_compare_key *key = a;
141 
142 	q->key.v4 = *key;
143 	qp->ecn = 0;
144 	qp->peer = q->net->max_dist ?
145 		inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) :
146 		NULL;
147 }
148 
149 static void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 	struct ipq *qp;
152 
153 	qp = container_of(q, struct ipq, q);
154 	if (qp->peer)
155 		inet_putpeer(qp->peer);
156 }
157 
158 
159 /* Destruction primitives. */
160 
161 static void ipq_put(struct ipq *ipq)
162 {
163 	inet_frag_put(&ipq->q);
164 }
165 
166 /* Kill ipq entry. It is not destroyed immediately,
167  * because caller (and someone more) holds reference count.
168  */
169 static void ipq_kill(struct ipq *ipq)
170 {
171 	inet_frag_kill(&ipq->q);
172 }
173 
174 static bool frag_expire_skip_icmp(u32 user)
175 {
176 	return user == IP_DEFRAG_AF_PACKET ||
177 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
178 					 __IP_DEFRAG_CONNTRACK_IN_END) ||
179 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
180 					 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
181 }
182 
183 /*
184  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
185  */
186 static void ip_expire(struct timer_list *t)
187 {
188 	struct inet_frag_queue *frag = from_timer(frag, t, timer);
189 	const struct iphdr *iph;
190 	struct sk_buff *head = NULL;
191 	struct net *net;
192 	struct ipq *qp;
193 	int err;
194 
195 	qp = container_of(frag, struct ipq, q);
196 	net = container_of(qp->q.net, struct net, ipv4.frags);
197 
198 	rcu_read_lock();
199 	spin_lock(&qp->q.lock);
200 
201 	if (qp->q.flags & INET_FRAG_COMPLETE)
202 		goto out;
203 
204 	ipq_kill(qp);
205 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
206 	__IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
207 
208 	if (!(qp->q.flags & INET_FRAG_FIRST_IN))
209 		goto out;
210 
211 	/* sk_buff::dev and sk_buff::rbnode are unionized. So we
212 	 * pull the head out of the tree in order to be able to
213 	 * deal with head->dev.
214 	 */
215 	if (qp->q.fragments) {
216 		head = qp->q.fragments;
217 		qp->q.fragments = head->next;
218 	} else {
219 		head = skb_rb_first(&qp->q.rb_fragments);
220 		if (!head)
221 			goto out;
222 		if (FRAG_CB(head)->next_frag)
223 			rb_replace_node(&head->rbnode,
224 					&FRAG_CB(head)->next_frag->rbnode,
225 					&qp->q.rb_fragments);
226 		else
227 			rb_erase(&head->rbnode, &qp->q.rb_fragments);
228 		memset(&head->rbnode, 0, sizeof(head->rbnode));
229 		barrier();
230 	}
231 	if (head == qp->q.fragments_tail)
232 		qp->q.fragments_tail = NULL;
233 
234 	sub_frag_mem_limit(qp->q.net, head->truesize);
235 
236 	head->dev = dev_get_by_index_rcu(net, qp->iif);
237 	if (!head->dev)
238 		goto out;
239 
240 
241 	/* skb has no dst, perform route lookup again */
242 	iph = ip_hdr(head);
243 	err = ip_route_input_noref(head, iph->daddr, iph->saddr,
244 					   iph->tos, head->dev);
245 	if (err)
246 		goto out;
247 
248 	/* Only an end host needs to send an ICMP
249 	 * "Fragment Reassembly Timeout" message, per RFC792.
250 	 */
251 	if (frag_expire_skip_icmp(qp->q.key.v4.user) &&
252 	    (skb_rtable(head)->rt_type != RTN_LOCAL))
253 		goto out;
254 
255 	spin_unlock(&qp->q.lock);
256 	icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
257 	goto out_rcu_unlock;
258 
259 out:
260 	spin_unlock(&qp->q.lock);
261 out_rcu_unlock:
262 	rcu_read_unlock();
263 	kfree_skb(head);
264 	ipq_put(qp);
265 }
266 
267 /* Find the correct entry in the "incomplete datagrams" queue for
268  * this IP datagram, and create new one, if nothing is found.
269  */
270 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
271 			   u32 user, int vif)
272 {
273 	struct frag_v4_compare_key key = {
274 		.saddr = iph->saddr,
275 		.daddr = iph->daddr,
276 		.user = user,
277 		.vif = vif,
278 		.id = iph->id,
279 		.protocol = iph->protocol,
280 	};
281 	struct inet_frag_queue *q;
282 
283 	q = inet_frag_find(&net->ipv4.frags, &key);
284 	if (!q)
285 		return NULL;
286 
287 	return container_of(q, struct ipq, q);
288 }
289 
290 /* Is the fragment too far ahead to be part of ipq? */
291 static int ip_frag_too_far(struct ipq *qp)
292 {
293 	struct inet_peer *peer = qp->peer;
294 	unsigned int max = qp->q.net->max_dist;
295 	unsigned int start, end;
296 
297 	int rc;
298 
299 	if (!peer || !max)
300 		return 0;
301 
302 	start = qp->rid;
303 	end = atomic_inc_return(&peer->rid);
304 	qp->rid = end;
305 
306 	rc = qp->q.fragments_tail && (end - start) > max;
307 
308 	if (rc) {
309 		struct net *net;
310 
311 		net = container_of(qp->q.net, struct net, ipv4.frags);
312 		__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
313 	}
314 
315 	return rc;
316 }
317 
318 static int ip_frag_reinit(struct ipq *qp)
319 {
320 	unsigned int sum_truesize = 0;
321 
322 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
323 		refcount_inc(&qp->q.refcnt);
324 		return -ETIMEDOUT;
325 	}
326 
327 	sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
328 	sub_frag_mem_limit(qp->q.net, sum_truesize);
329 
330 	qp->q.flags = 0;
331 	qp->q.len = 0;
332 	qp->q.meat = 0;
333 	qp->q.fragments = NULL;
334 	qp->q.rb_fragments = RB_ROOT;
335 	qp->q.fragments_tail = NULL;
336 	qp->q.last_run_head = NULL;
337 	qp->iif = 0;
338 	qp->ecn = 0;
339 
340 	return 0;
341 }
342 
343 /* Add new segment to existing queue. */
344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
345 {
346 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
347 	struct rb_node **rbn, *parent;
348 	struct sk_buff *skb1, *prev_tail;
349 	int ihl, end, skb1_run_end;
350 	struct net_device *dev;
351 	unsigned int fragsize;
352 	int flags, offset;
353 	int err = -ENOENT;
354 	u8 ecn;
355 
356 	if (qp->q.flags & INET_FRAG_COMPLETE)
357 		goto err;
358 
359 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
360 	    unlikely(ip_frag_too_far(qp)) &&
361 	    unlikely(err = ip_frag_reinit(qp))) {
362 		ipq_kill(qp);
363 		goto err;
364 	}
365 
366 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
367 	offset = ntohs(ip_hdr(skb)->frag_off);
368 	flags = offset & ~IP_OFFSET;
369 	offset &= IP_OFFSET;
370 	offset <<= 3;		/* offset is in 8-byte chunks */
371 	ihl = ip_hdrlen(skb);
372 
373 	/* Determine the position of this fragment. */
374 	end = offset + skb->len - skb_network_offset(skb) - ihl;
375 	err = -EINVAL;
376 
377 	/* Is this the final fragment? */
378 	if ((flags & IP_MF) == 0) {
379 		/* If we already have some bits beyond end
380 		 * or have different end, the segment is corrupted.
381 		 */
382 		if (end < qp->q.len ||
383 		    ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
384 			goto discard_qp;
385 		qp->q.flags |= INET_FRAG_LAST_IN;
386 		qp->q.len = end;
387 	} else {
388 		if (end&7) {
389 			end &= ~7;
390 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
391 				skb->ip_summed = CHECKSUM_NONE;
392 		}
393 		if (end > qp->q.len) {
394 			/* Some bits beyond end -> corruption. */
395 			if (qp->q.flags & INET_FRAG_LAST_IN)
396 				goto discard_qp;
397 			qp->q.len = end;
398 		}
399 	}
400 	if (end == offset)
401 		goto discard_qp;
402 
403 	err = -ENOMEM;
404 	if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
405 		goto discard_qp;
406 
407 	err = pskb_trim_rcsum(skb, end - offset);
408 	if (err)
409 		goto discard_qp;
410 
411 	/* Note : skb->rbnode and skb->dev share the same location. */
412 	dev = skb->dev;
413 	/* Makes sure compiler wont do silly aliasing games */
414 	barrier();
415 
416 	/* RFC5722, Section 4, amended by Errata ID : 3089
417 	 *                          When reassembling an IPv6 datagram, if
418 	 *   one or more its constituent fragments is determined to be an
419 	 *   overlapping fragment, the entire datagram (and any constituent
420 	 *   fragments) MUST be silently discarded.
421 	 *
422 	 * We do the same here for IPv4 (and increment an snmp counter) but
423 	 * we do not want to drop the whole queue in response to a duplicate
424 	 * fragment.
425 	 */
426 
427 	err = -EINVAL;
428 	/* Find out where to put this fragment.  */
429 	prev_tail = qp->q.fragments_tail;
430 	if (!prev_tail)
431 		ip4_frag_create_run(&qp->q, skb);  /* First fragment. */
432 	else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
433 		/* This is the common case: skb goes to the end. */
434 		/* Detect and discard overlaps. */
435 		if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
436 			goto overlap;
437 		if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
438 			ip4_frag_append_to_last_run(&qp->q, skb);
439 		else
440 			ip4_frag_create_run(&qp->q, skb);
441 	} else {
442 		/* Binary search. Note that skb can become the first fragment,
443 		 * but not the last (covered above).
444 		 */
445 		rbn = &qp->q.rb_fragments.rb_node;
446 		do {
447 			parent = *rbn;
448 			skb1 = rb_to_skb(parent);
449 			skb1_run_end = skb1->ip_defrag_offset +
450 				       FRAG_CB(skb1)->frag_run_len;
451 			if (end <= skb1->ip_defrag_offset)
452 				rbn = &parent->rb_left;
453 			else if (offset >= skb1_run_end)
454 				rbn = &parent->rb_right;
455 			else if (offset >= skb1->ip_defrag_offset &&
456 				 end <= skb1_run_end)
457 				goto err; /* No new data, potential duplicate */
458 			else
459 				goto overlap; /* Found an overlap */
460 		} while (*rbn);
461 		/* Here we have parent properly set, and rbn pointing to
462 		 * one of its NULL left/right children. Insert skb.
463 		 */
464 		ip4_frag_init_run(skb);
465 		rb_link_node(&skb->rbnode, parent, rbn);
466 		rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
467 	}
468 
469 	if (dev)
470 		qp->iif = dev->ifindex;
471 	skb->ip_defrag_offset = offset;
472 
473 	qp->q.stamp = skb->tstamp;
474 	qp->q.meat += skb->len;
475 	qp->ecn |= ecn;
476 	add_frag_mem_limit(qp->q.net, skb->truesize);
477 	if (offset == 0)
478 		qp->q.flags |= INET_FRAG_FIRST_IN;
479 
480 	fragsize = skb->len + ihl;
481 
482 	if (fragsize > qp->q.max_size)
483 		qp->q.max_size = fragsize;
484 
485 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
486 	    fragsize > qp->max_df_size)
487 		qp->max_df_size = fragsize;
488 
489 	if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
490 	    qp->q.meat == qp->q.len) {
491 		unsigned long orefdst = skb->_skb_refdst;
492 
493 		skb->_skb_refdst = 0UL;
494 		err = ip_frag_reasm(qp, skb, prev_tail, dev);
495 		skb->_skb_refdst = orefdst;
496 		if (err)
497 			inet_frag_kill(&qp->q);
498 		return err;
499 	}
500 
501 	skb_dst_drop(skb);
502 	return -EINPROGRESS;
503 
504 overlap:
505 	__IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
506 discard_qp:
507 	inet_frag_kill(&qp->q);
508 err:
509 	kfree_skb(skb);
510 	return err;
511 }
512 
513 /* Build a new IP datagram from all its fragments. */
514 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
515 			 struct sk_buff *prev_tail, struct net_device *dev)
516 {
517 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
518 	struct iphdr *iph;
519 	struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
520 	struct sk_buff **nextp; /* To build frag_list. */
521 	struct rb_node *rbn;
522 	int len;
523 	int ihlen;
524 	int delta;
525 	int err;
526 	u8 ecn;
527 
528 	ipq_kill(qp);
529 
530 	ecn = ip_frag_ecn_table[qp->ecn];
531 	if (unlikely(ecn == 0xff)) {
532 		err = -EINVAL;
533 		goto out_fail;
534 	}
535 	/* Make the one we just received the head. */
536 	if (head != skb) {
537 		fp = skb_clone(skb, GFP_ATOMIC);
538 		if (!fp)
539 			goto out_nomem;
540 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
541 		if (RB_EMPTY_NODE(&skb->rbnode))
542 			FRAG_CB(prev_tail)->next_frag = fp;
543 		else
544 			rb_replace_node(&skb->rbnode, &fp->rbnode,
545 					&qp->q.rb_fragments);
546 		if (qp->q.fragments_tail == skb)
547 			qp->q.fragments_tail = fp;
548 		skb_morph(skb, head);
549 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
550 		rb_replace_node(&head->rbnode, &skb->rbnode,
551 				&qp->q.rb_fragments);
552 		consume_skb(head);
553 		head = skb;
554 	}
555 
556 	WARN_ON(head->ip_defrag_offset != 0);
557 
558 	/* Allocate a new buffer for the datagram. */
559 	ihlen = ip_hdrlen(head);
560 	len = ihlen + qp->q.len;
561 
562 	err = -E2BIG;
563 	if (len > 65535)
564 		goto out_oversize;
565 
566 	delta = - head->truesize;
567 
568 	/* Head of list must not be cloned. */
569 	if (skb_unclone(head, GFP_ATOMIC))
570 		goto out_nomem;
571 
572 	delta += head->truesize;
573 	if (delta)
574 		add_frag_mem_limit(qp->q.net, delta);
575 
576 	/* If the first fragment is fragmented itself, we split
577 	 * it to two chunks: the first with data and paged part
578 	 * and the second, holding only fragments. */
579 	if (skb_has_frag_list(head)) {
580 		struct sk_buff *clone;
581 		int i, plen = 0;
582 
583 		clone = alloc_skb(0, GFP_ATOMIC);
584 		if (!clone)
585 			goto out_nomem;
586 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
587 		skb_frag_list_init(head);
588 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
589 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
590 		clone->len = clone->data_len = head->data_len - plen;
591 		head->truesize += clone->truesize;
592 		clone->csum = 0;
593 		clone->ip_summed = head->ip_summed;
594 		add_frag_mem_limit(qp->q.net, clone->truesize);
595 		skb_shinfo(head)->frag_list = clone;
596 		nextp = &clone->next;
597 	} else {
598 		nextp = &skb_shinfo(head)->frag_list;
599 	}
600 
601 	skb_push(head, head->data - skb_network_header(head));
602 
603 	/* Traverse the tree in order, to build frag_list. */
604 	fp = FRAG_CB(head)->next_frag;
605 	rbn = rb_next(&head->rbnode);
606 	rb_erase(&head->rbnode, &qp->q.rb_fragments);
607 	while (rbn || fp) {
608 		/* fp points to the next sk_buff in the current run;
609 		 * rbn points to the next run.
610 		 */
611 		/* Go through the current run. */
612 		while (fp) {
613 			*nextp = fp;
614 			nextp = &fp->next;
615 			fp->prev = NULL;
616 			memset(&fp->rbnode, 0, sizeof(fp->rbnode));
617 			fp->sk = NULL;
618 			head->data_len += fp->len;
619 			head->len += fp->len;
620 			if (head->ip_summed != fp->ip_summed)
621 				head->ip_summed = CHECKSUM_NONE;
622 			else if (head->ip_summed == CHECKSUM_COMPLETE)
623 				head->csum = csum_add(head->csum, fp->csum);
624 			head->truesize += fp->truesize;
625 			fp = FRAG_CB(fp)->next_frag;
626 		}
627 		/* Move to the next run. */
628 		if (rbn) {
629 			struct rb_node *rbnext = rb_next(rbn);
630 
631 			fp = rb_to_skb(rbn);
632 			rb_erase(rbn, &qp->q.rb_fragments);
633 			rbn = rbnext;
634 		}
635 	}
636 	sub_frag_mem_limit(qp->q.net, head->truesize);
637 
638 	*nextp = NULL;
639 	skb_mark_not_on_list(head);
640 	head->prev = NULL;
641 	head->dev = dev;
642 	head->tstamp = qp->q.stamp;
643 	IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
644 
645 	iph = ip_hdr(head);
646 	iph->tot_len = htons(len);
647 	iph->tos |= ecn;
648 
649 	/* When we set IP_DF on a refragmented skb we must also force a
650 	 * call to ip_fragment to avoid forwarding a DF-skb of size s while
651 	 * original sender only sent fragments of size f (where f < s).
652 	 *
653 	 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
654 	 * frag seen to avoid sending tiny DF-fragments in case skb was built
655 	 * from one very small df-fragment and one large non-df frag.
656 	 */
657 	if (qp->max_df_size == qp->q.max_size) {
658 		IPCB(head)->flags |= IPSKB_FRAG_PMTU;
659 		iph->frag_off = htons(IP_DF);
660 	} else {
661 		iph->frag_off = 0;
662 	}
663 
664 	ip_send_check(iph);
665 
666 	__IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
667 	qp->q.fragments = NULL;
668 	qp->q.rb_fragments = RB_ROOT;
669 	qp->q.fragments_tail = NULL;
670 	qp->q.last_run_head = NULL;
671 	return 0;
672 
673 out_nomem:
674 	net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
675 	err = -ENOMEM;
676 	goto out_fail;
677 out_oversize:
678 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr);
679 out_fail:
680 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
681 	return err;
682 }
683 
684 /* Process an incoming IP datagram fragment. */
685 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
686 {
687 	struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
688 	int vif = l3mdev_master_ifindex_rcu(dev);
689 	struct ipq *qp;
690 
691 	__IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
692 	skb_orphan(skb);
693 
694 	/* Lookup (or create) queue header */
695 	qp = ip_find(net, ip_hdr(skb), user, vif);
696 	if (qp) {
697 		int ret;
698 
699 		spin_lock(&qp->q.lock);
700 
701 		ret = ip_frag_queue(qp, skb);
702 
703 		spin_unlock(&qp->q.lock);
704 		ipq_put(qp);
705 		return ret;
706 	}
707 
708 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
709 	kfree_skb(skb);
710 	return -ENOMEM;
711 }
712 EXPORT_SYMBOL(ip_defrag);
713 
714 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
715 {
716 	struct iphdr iph;
717 	int netoff;
718 	u32 len;
719 
720 	if (skb->protocol != htons(ETH_P_IP))
721 		return skb;
722 
723 	netoff = skb_network_offset(skb);
724 
725 	if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
726 		return skb;
727 
728 	if (iph.ihl < 5 || iph.version != 4)
729 		return skb;
730 
731 	len = ntohs(iph.tot_len);
732 	if (skb->len < netoff + len || len < (iph.ihl * 4))
733 		return skb;
734 
735 	if (ip_is_fragment(&iph)) {
736 		skb = skb_share_check(skb, GFP_ATOMIC);
737 		if (skb) {
738 			if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) {
739 				kfree_skb(skb);
740 				return NULL;
741 			}
742 			if (pskb_trim_rcsum(skb, netoff + len)) {
743 				kfree_skb(skb);
744 				return NULL;
745 			}
746 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
747 			if (ip_defrag(net, skb, user))
748 				return NULL;
749 			skb_clear_hash(skb);
750 		}
751 	}
752 	return skb;
753 }
754 EXPORT_SYMBOL(ip_check_defrag);
755 
756 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
757 {
758 	struct rb_node *p = rb_first(root);
759 	unsigned int sum = 0;
760 
761 	while (p) {
762 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
763 
764 		p = rb_next(p);
765 		rb_erase(&skb->rbnode, root);
766 		while (skb) {
767 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
768 
769 			sum += skb->truesize;
770 			kfree_skb(skb);
771 			skb = next;
772 		}
773 	}
774 	return sum;
775 }
776 EXPORT_SYMBOL(inet_frag_rbtree_purge);
777 
778 #ifdef CONFIG_SYSCTL
779 static int dist_min;
780 
781 static struct ctl_table ip4_frags_ns_ctl_table[] = {
782 	{
783 		.procname	= "ipfrag_high_thresh",
784 		.data		= &init_net.ipv4.frags.high_thresh,
785 		.maxlen		= sizeof(unsigned long),
786 		.mode		= 0644,
787 		.proc_handler	= proc_doulongvec_minmax,
788 		.extra1		= &init_net.ipv4.frags.low_thresh
789 	},
790 	{
791 		.procname	= "ipfrag_low_thresh",
792 		.data		= &init_net.ipv4.frags.low_thresh,
793 		.maxlen		= sizeof(unsigned long),
794 		.mode		= 0644,
795 		.proc_handler	= proc_doulongvec_minmax,
796 		.extra2		= &init_net.ipv4.frags.high_thresh
797 	},
798 	{
799 		.procname	= "ipfrag_time",
800 		.data		= &init_net.ipv4.frags.timeout,
801 		.maxlen		= sizeof(int),
802 		.mode		= 0644,
803 		.proc_handler	= proc_dointvec_jiffies,
804 	},
805 	{
806 		.procname	= "ipfrag_max_dist",
807 		.data		= &init_net.ipv4.frags.max_dist,
808 		.maxlen		= sizeof(int),
809 		.mode		= 0644,
810 		.proc_handler	= proc_dointvec_minmax,
811 		.extra1		= &dist_min,
812 	},
813 	{ }
814 };
815 
816 /* secret interval has been deprecated */
817 static int ip4_frags_secret_interval_unused;
818 static struct ctl_table ip4_frags_ctl_table[] = {
819 	{
820 		.procname	= "ipfrag_secret_interval",
821 		.data		= &ip4_frags_secret_interval_unused,
822 		.maxlen		= sizeof(int),
823 		.mode		= 0644,
824 		.proc_handler	= proc_dointvec_jiffies,
825 	},
826 	{ }
827 };
828 
829 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
830 {
831 	struct ctl_table *table;
832 	struct ctl_table_header *hdr;
833 
834 	table = ip4_frags_ns_ctl_table;
835 	if (!net_eq(net, &init_net)) {
836 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
837 		if (!table)
838 			goto err_alloc;
839 
840 		table[0].data = &net->ipv4.frags.high_thresh;
841 		table[0].extra1 = &net->ipv4.frags.low_thresh;
842 		table[1].data = &net->ipv4.frags.low_thresh;
843 		table[1].extra2 = &net->ipv4.frags.high_thresh;
844 		table[2].data = &net->ipv4.frags.timeout;
845 		table[3].data = &net->ipv4.frags.max_dist;
846 	}
847 
848 	hdr = register_net_sysctl(net, "net/ipv4", table);
849 	if (!hdr)
850 		goto err_reg;
851 
852 	net->ipv4.frags_hdr = hdr;
853 	return 0;
854 
855 err_reg:
856 	if (!net_eq(net, &init_net))
857 		kfree(table);
858 err_alloc:
859 	return -ENOMEM;
860 }
861 
862 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
863 {
864 	struct ctl_table *table;
865 
866 	table = net->ipv4.frags_hdr->ctl_table_arg;
867 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
868 	kfree(table);
869 }
870 
871 static void __init ip4_frags_ctl_register(void)
872 {
873 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
874 }
875 #else
876 static int ip4_frags_ns_ctl_register(struct net *net)
877 {
878 	return 0;
879 }
880 
881 static void ip4_frags_ns_ctl_unregister(struct net *net)
882 {
883 }
884 
885 static void __init ip4_frags_ctl_register(void)
886 {
887 }
888 #endif
889 
890 static int __net_init ipv4_frags_init_net(struct net *net)
891 {
892 	int res;
893 
894 	/* Fragment cache limits.
895 	 *
896 	 * The fragment memory accounting code, (tries to) account for
897 	 * the real memory usage, by measuring both the size of frag
898 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
899 	 * and the SKB's truesize.
900 	 *
901 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
902 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
903 	 *
904 	 * We will commit 4MB at one time. Should we cross that limit
905 	 * we will prune down to 3MB, making room for approx 8 big 64K
906 	 * fragments 8x128k.
907 	 */
908 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
909 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
910 	/*
911 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
912 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
913 	 * by TTL.
914 	 */
915 	net->ipv4.frags.timeout = IP_FRAG_TIME;
916 
917 	net->ipv4.frags.max_dist = 64;
918 	net->ipv4.frags.f = &ip4_frags;
919 
920 	res = inet_frags_init_net(&net->ipv4.frags);
921 	if (res < 0)
922 		return res;
923 	res = ip4_frags_ns_ctl_register(net);
924 	if (res < 0)
925 		inet_frags_exit_net(&net->ipv4.frags);
926 	return res;
927 }
928 
929 static void __net_exit ipv4_frags_exit_net(struct net *net)
930 {
931 	ip4_frags_ns_ctl_unregister(net);
932 	inet_frags_exit_net(&net->ipv4.frags);
933 }
934 
935 static struct pernet_operations ip4_frags_ops = {
936 	.init = ipv4_frags_init_net,
937 	.exit = ipv4_frags_exit_net,
938 };
939 
940 
941 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed)
942 {
943 	return jhash2(data,
944 		      sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
945 }
946 
947 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed)
948 {
949 	const struct inet_frag_queue *fq = data;
950 
951 	return jhash2((const u32 *)&fq->key.v4,
952 		      sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
953 }
954 
955 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr)
956 {
957 	const struct frag_v4_compare_key *key = arg->key;
958 	const struct inet_frag_queue *fq = ptr;
959 
960 	return !!memcmp(&fq->key, key, sizeof(*key));
961 }
962 
963 static const struct rhashtable_params ip4_rhash_params = {
964 	.head_offset		= offsetof(struct inet_frag_queue, node),
965 	.key_offset		= offsetof(struct inet_frag_queue, key),
966 	.key_len		= sizeof(struct frag_v4_compare_key),
967 	.hashfn			= ip4_key_hashfn,
968 	.obj_hashfn		= ip4_obj_hashfn,
969 	.obj_cmpfn		= ip4_obj_cmpfn,
970 	.automatic_shrinking	= true,
971 };
972 
973 void __init ipfrag_init(void)
974 {
975 	ip4_frags.constructor = ip4_frag_init;
976 	ip4_frags.destructor = ip4_frag_free;
977 	ip4_frags.qsize = sizeof(struct ipq);
978 	ip4_frags.frag_expire = ip_expire;
979 	ip4_frags.frags_cache_name = ip_frag_cache_name;
980 	ip4_frags.rhash_params = ip4_rhash_params;
981 	if (inet_frags_init(&ip4_frags))
982 		panic("IP: failed to allocate ip4_frags cache\n");
983 	ip4_frags_ctl_register();
984 	register_pernet_subsys(&ip4_frags_ops);
985 }
986