1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 9 * Alan Cox <alan@lxorguk.ukuu.org.uk> 10 * 11 * Fixes: 12 * Alan Cox : Split from ip.c , see ip_input.c for history. 13 * David S. Miller : Begin massive cleanup... 14 * Andi Kleen : Add sysctls. 15 * xxxx : Overlapfrag bug. 16 * Ultima : ip_expire() kernel panic. 17 * Bill Hawes : Frag accounting and evictor fixes. 18 * John McDonald : 0 length frag bug. 19 * Alexey Kuznetsov: SMP races, threading, cleanup. 20 * Patrick McHardy : LRU queue of frag heads for evictor. 21 */ 22 23 #include <linux/compiler.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/jiffies.h> 28 #include <linux/skbuff.h> 29 #include <linux/list.h> 30 #include <linux/ip.h> 31 #include <linux/icmp.h> 32 #include <linux/netdevice.h> 33 #include <linux/jhash.h> 34 #include <linux/random.h> 35 #include <linux/slab.h> 36 #include <net/route.h> 37 #include <net/dst.h> 38 #include <net/sock.h> 39 #include <net/ip.h> 40 #include <net/icmp.h> 41 #include <net/checksum.h> 42 #include <net/inetpeer.h> 43 #include <net/inet_frag.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/inet.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <net/inet_ecn.h> 49 50 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 51 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 52 * as well. Or notify me, at least. --ANK 53 */ 54 55 static int sysctl_ipfrag_max_dist __read_mostly = 64; 56 57 struct ipfrag_skb_cb 58 { 59 struct inet_skb_parm h; 60 int offset; 61 }; 62 63 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) 64 65 /* Describe an entry in the "incomplete datagrams" queue. */ 66 struct ipq { 67 struct inet_frag_queue q; 68 69 u32 user; 70 __be32 saddr; 71 __be32 daddr; 72 __be16 id; 73 u8 protocol; 74 u8 ecn; /* RFC3168 support */ 75 int iif; 76 unsigned int rid; 77 struct inet_peer *peer; 78 }; 79 80 #define IPFRAG_ECN_CLEAR 0x01 /* one frag had INET_ECN_NOT_ECT */ 81 #define IPFRAG_ECN_SET_CE 0x04 /* one frag had INET_ECN_CE */ 82 83 static inline u8 ip4_frag_ecn(u8 tos) 84 { 85 tos = (tos & INET_ECN_MASK) + 1; 86 /* 87 * After the last operation we have (in binary): 88 * INET_ECN_NOT_ECT => 001 89 * INET_ECN_ECT_1 => 010 90 * INET_ECN_ECT_0 => 011 91 * INET_ECN_CE => 100 92 */ 93 return (tos & 2) ? 0 : tos; 94 } 95 96 static struct inet_frags ip4_frags; 97 98 int ip_frag_nqueues(struct net *net) 99 { 100 return net->ipv4.frags.nqueues; 101 } 102 103 int ip_frag_mem(struct net *net) 104 { 105 return atomic_read(&net->ipv4.frags.mem); 106 } 107 108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 109 struct net_device *dev); 110 111 struct ip4_create_arg { 112 struct iphdr *iph; 113 u32 user; 114 }; 115 116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 117 { 118 return jhash_3words((__force u32)id << 16 | prot, 119 (__force u32)saddr, (__force u32)daddr, 120 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 121 } 122 123 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 124 { 125 struct ipq *ipq; 126 127 ipq = container_of(q, struct ipq, q); 128 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 129 } 130 131 static int ip4_frag_match(struct inet_frag_queue *q, void *a) 132 { 133 struct ipq *qp; 134 struct ip4_create_arg *arg = a; 135 136 qp = container_of(q, struct ipq, q); 137 return qp->id == arg->iph->id && 138 qp->saddr == arg->iph->saddr && 139 qp->daddr == arg->iph->daddr && 140 qp->protocol == arg->iph->protocol && 141 qp->user == arg->user; 142 } 143 144 /* Memory Tracking Functions. */ 145 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb) 146 { 147 atomic_sub(skb->truesize, &nf->mem); 148 kfree_skb(skb); 149 } 150 151 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 152 { 153 struct ipq *qp = container_of(q, struct ipq, q); 154 struct ip4_create_arg *arg = a; 155 156 qp->protocol = arg->iph->protocol; 157 qp->id = arg->iph->id; 158 qp->ecn = ip4_frag_ecn(arg->iph->tos); 159 qp->saddr = arg->iph->saddr; 160 qp->daddr = arg->iph->daddr; 161 qp->user = arg->user; 162 qp->peer = sysctl_ipfrag_max_dist ? 163 inet_getpeer_v4(arg->iph->saddr, 1) : NULL; 164 } 165 166 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 167 { 168 struct ipq *qp; 169 170 qp = container_of(q, struct ipq, q); 171 if (qp->peer) 172 inet_putpeer(qp->peer); 173 } 174 175 176 /* Destruction primitives. */ 177 178 static __inline__ void ipq_put(struct ipq *ipq) 179 { 180 inet_frag_put(&ipq->q, &ip4_frags); 181 } 182 183 /* Kill ipq entry. It is not destroyed immediately, 184 * because caller (and someone more) holds reference count. 185 */ 186 static void ipq_kill(struct ipq *ipq) 187 { 188 inet_frag_kill(&ipq->q, &ip4_frags); 189 } 190 191 /* Memory limiting on fragments. Evictor trashes the oldest 192 * fragment queue until we are back under the threshold. 193 */ 194 static void ip_evictor(struct net *net) 195 { 196 int evicted; 197 198 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); 199 if (evicted) 200 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted); 201 } 202 203 /* 204 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 205 */ 206 static void ip_expire(unsigned long arg) 207 { 208 struct ipq *qp; 209 struct net *net; 210 211 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 212 net = container_of(qp->q.net, struct net, ipv4.frags); 213 214 spin_lock(&qp->q.lock); 215 216 if (qp->q.last_in & INET_FRAG_COMPLETE) 217 goto out; 218 219 ipq_kill(qp); 220 221 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT); 222 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 223 224 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { 225 struct sk_buff *head = qp->q.fragments; 226 227 rcu_read_lock(); 228 head->dev = dev_get_by_index_rcu(net, qp->iif); 229 if (!head->dev) 230 goto out_rcu_unlock; 231 232 /* 233 * Only search router table for the head fragment, 234 * when defraging timeout at PRE_ROUTING HOOK. 235 */ 236 if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) { 237 const struct iphdr *iph = ip_hdr(head); 238 int err = ip_route_input(head, iph->daddr, iph->saddr, 239 iph->tos, head->dev); 240 if (unlikely(err)) 241 goto out_rcu_unlock; 242 243 /* 244 * Only an end host needs to send an ICMP 245 * "Fragment Reassembly Timeout" message, per RFC792. 246 */ 247 if (skb_rtable(head)->rt_type != RTN_LOCAL) 248 goto out_rcu_unlock; 249 250 } 251 252 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 253 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 254 out_rcu_unlock: 255 rcu_read_unlock(); 256 } 257 out: 258 spin_unlock(&qp->q.lock); 259 ipq_put(qp); 260 } 261 262 /* Find the correct entry in the "incomplete datagrams" queue for 263 * this IP datagram, and create new one, if nothing is found. 264 */ 265 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 266 { 267 struct inet_frag_queue *q; 268 struct ip4_create_arg arg; 269 unsigned int hash; 270 271 arg.iph = iph; 272 arg.user = user; 273 274 read_lock(&ip4_frags.lock); 275 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 276 277 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 278 if (q == NULL) 279 goto out_nomem; 280 281 return container_of(q, struct ipq, q); 282 283 out_nomem: 284 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 285 return NULL; 286 } 287 288 /* Is the fragment too far ahead to be part of ipq? */ 289 static inline int ip_frag_too_far(struct ipq *qp) 290 { 291 struct inet_peer *peer = qp->peer; 292 unsigned int max = sysctl_ipfrag_max_dist; 293 unsigned int start, end; 294 295 int rc; 296 297 if (!peer || !max) 298 return 0; 299 300 start = qp->rid; 301 end = atomic_inc_return(&peer->rid); 302 qp->rid = end; 303 304 rc = qp->q.fragments && (end - start) > max; 305 306 if (rc) { 307 struct net *net; 308 309 net = container_of(qp->q.net, struct net, ipv4.frags); 310 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 311 } 312 313 return rc; 314 } 315 316 static int ip_frag_reinit(struct ipq *qp) 317 { 318 struct sk_buff *fp; 319 320 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 321 atomic_inc(&qp->q.refcnt); 322 return -ETIMEDOUT; 323 } 324 325 fp = qp->q.fragments; 326 do { 327 struct sk_buff *xp = fp->next; 328 frag_kfree_skb(qp->q.net, fp); 329 fp = xp; 330 } while (fp); 331 332 qp->q.last_in = 0; 333 qp->q.len = 0; 334 qp->q.meat = 0; 335 qp->q.fragments = NULL; 336 qp->q.fragments_tail = NULL; 337 qp->iif = 0; 338 qp->ecn = 0; 339 340 return 0; 341 } 342 343 /* Add new segment to existing queue. */ 344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 345 { 346 struct sk_buff *prev, *next; 347 struct net_device *dev; 348 int flags, offset; 349 int ihl, end; 350 int err = -ENOENT; 351 u8 ecn; 352 353 if (qp->q.last_in & INET_FRAG_COMPLETE) 354 goto err; 355 356 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 357 unlikely(ip_frag_too_far(qp)) && 358 unlikely(err = ip_frag_reinit(qp))) { 359 ipq_kill(qp); 360 goto err; 361 } 362 363 ecn = ip4_frag_ecn(ip_hdr(skb)->tos); 364 offset = ntohs(ip_hdr(skb)->frag_off); 365 flags = offset & ~IP_OFFSET; 366 offset &= IP_OFFSET; 367 offset <<= 3; /* offset is in 8-byte chunks */ 368 ihl = ip_hdrlen(skb); 369 370 /* Determine the position of this fragment. */ 371 end = offset + skb->len - ihl; 372 err = -EINVAL; 373 374 /* Is this the final fragment? */ 375 if ((flags & IP_MF) == 0) { 376 /* If we already have some bits beyond end 377 * or have different end, the segment is corrrupted. 378 */ 379 if (end < qp->q.len || 380 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) 381 goto err; 382 qp->q.last_in |= INET_FRAG_LAST_IN; 383 qp->q.len = end; 384 } else { 385 if (end&7) { 386 end &= ~7; 387 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 388 skb->ip_summed = CHECKSUM_NONE; 389 } 390 if (end > qp->q.len) { 391 /* Some bits beyond end -> corruption. */ 392 if (qp->q.last_in & INET_FRAG_LAST_IN) 393 goto err; 394 qp->q.len = end; 395 } 396 } 397 if (end == offset) 398 goto err; 399 400 err = -ENOMEM; 401 if (pskb_pull(skb, ihl) == NULL) 402 goto err; 403 404 err = pskb_trim_rcsum(skb, end - offset); 405 if (err) 406 goto err; 407 408 /* Find out which fragments are in front and at the back of us 409 * in the chain of fragments so far. We must know where to put 410 * this fragment, right? 411 */ 412 prev = qp->q.fragments_tail; 413 if (!prev || FRAG_CB(prev)->offset < offset) { 414 next = NULL; 415 goto found; 416 } 417 prev = NULL; 418 for (next = qp->q.fragments; next != NULL; next = next->next) { 419 if (FRAG_CB(next)->offset >= offset) 420 break; /* bingo! */ 421 prev = next; 422 } 423 424 found: 425 /* We found where to put this one. Check for overlap with 426 * preceding fragment, and, if needed, align things so that 427 * any overlaps are eliminated. 428 */ 429 if (prev) { 430 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 431 432 if (i > 0) { 433 offset += i; 434 err = -EINVAL; 435 if (end <= offset) 436 goto err; 437 err = -ENOMEM; 438 if (!pskb_pull(skb, i)) 439 goto err; 440 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 441 skb->ip_summed = CHECKSUM_NONE; 442 } 443 } 444 445 err = -ENOMEM; 446 447 while (next && FRAG_CB(next)->offset < end) { 448 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 449 450 if (i < next->len) { 451 /* Eat head of the next overlapped fragment 452 * and leave the loop. The next ones cannot overlap. 453 */ 454 if (!pskb_pull(next, i)) 455 goto err; 456 FRAG_CB(next)->offset += i; 457 qp->q.meat -= i; 458 if (next->ip_summed != CHECKSUM_UNNECESSARY) 459 next->ip_summed = CHECKSUM_NONE; 460 break; 461 } else { 462 struct sk_buff *free_it = next; 463 464 /* Old fragment is completely overridden with 465 * new one drop it. 466 */ 467 next = next->next; 468 469 if (prev) 470 prev->next = next; 471 else 472 qp->q.fragments = next; 473 474 qp->q.meat -= free_it->len; 475 frag_kfree_skb(qp->q.net, free_it); 476 } 477 } 478 479 FRAG_CB(skb)->offset = offset; 480 481 /* Insert this fragment in the chain of fragments. */ 482 skb->next = next; 483 if (!next) 484 qp->q.fragments_tail = skb; 485 if (prev) 486 prev->next = skb; 487 else 488 qp->q.fragments = skb; 489 490 dev = skb->dev; 491 if (dev) { 492 qp->iif = dev->ifindex; 493 skb->dev = NULL; 494 } 495 qp->q.stamp = skb->tstamp; 496 qp->q.meat += skb->len; 497 qp->ecn |= ecn; 498 atomic_add(skb->truesize, &qp->q.net->mem); 499 if (offset == 0) 500 qp->q.last_in |= INET_FRAG_FIRST_IN; 501 502 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 503 qp->q.meat == qp->q.len) 504 return ip_frag_reasm(qp, prev, dev); 505 506 write_lock(&ip4_frags.lock); 507 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); 508 write_unlock(&ip4_frags.lock); 509 return -EINPROGRESS; 510 511 err: 512 kfree_skb(skb); 513 return err; 514 } 515 516 517 /* Build a new IP datagram from all its fragments. */ 518 519 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 520 struct net_device *dev) 521 { 522 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 523 struct iphdr *iph; 524 struct sk_buff *fp, *head = qp->q.fragments; 525 int len; 526 int ihlen; 527 int err; 528 529 ipq_kill(qp); 530 531 /* Make the one we just received the head. */ 532 if (prev) { 533 head = prev->next; 534 fp = skb_clone(head, GFP_ATOMIC); 535 if (!fp) 536 goto out_nomem; 537 538 fp->next = head->next; 539 if (!fp->next) 540 qp->q.fragments_tail = fp; 541 prev->next = fp; 542 543 skb_morph(head, qp->q.fragments); 544 head->next = qp->q.fragments->next; 545 546 kfree_skb(qp->q.fragments); 547 qp->q.fragments = head; 548 } 549 550 WARN_ON(head == NULL); 551 WARN_ON(FRAG_CB(head)->offset != 0); 552 553 /* Allocate a new buffer for the datagram. */ 554 ihlen = ip_hdrlen(head); 555 len = ihlen + qp->q.len; 556 557 err = -E2BIG; 558 if (len > 65535) 559 goto out_oversize; 560 561 /* Head of list must not be cloned. */ 562 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 563 goto out_nomem; 564 565 /* If the first fragment is fragmented itself, we split 566 * it to two chunks: the first with data and paged part 567 * and the second, holding only fragments. */ 568 if (skb_has_frag_list(head)) { 569 struct sk_buff *clone; 570 int i, plen = 0; 571 572 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 573 goto out_nomem; 574 clone->next = head->next; 575 head->next = clone; 576 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 577 skb_frag_list_init(head); 578 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 579 plen += skb_shinfo(head)->frags[i].size; 580 clone->len = clone->data_len = head->data_len - plen; 581 head->data_len -= clone->len; 582 head->len -= clone->len; 583 clone->csum = 0; 584 clone->ip_summed = head->ip_summed; 585 atomic_add(clone->truesize, &qp->q.net->mem); 586 } 587 588 skb_shinfo(head)->frag_list = head->next; 589 skb_push(head, head->data - skb_network_header(head)); 590 591 for (fp=head->next; fp; fp = fp->next) { 592 head->data_len += fp->len; 593 head->len += fp->len; 594 if (head->ip_summed != fp->ip_summed) 595 head->ip_summed = CHECKSUM_NONE; 596 else if (head->ip_summed == CHECKSUM_COMPLETE) 597 head->csum = csum_add(head->csum, fp->csum); 598 head->truesize += fp->truesize; 599 } 600 atomic_sub(head->truesize, &qp->q.net->mem); 601 602 head->next = NULL; 603 head->dev = dev; 604 head->tstamp = qp->q.stamp; 605 606 iph = ip_hdr(head); 607 iph->frag_off = 0; 608 iph->tot_len = htons(len); 609 /* RFC3168 5.3 Fragmentation support 610 * If one fragment had INET_ECN_NOT_ECT, 611 * reassembled frame also has INET_ECN_NOT_ECT 612 * Elif one fragment had INET_ECN_CE 613 * reassembled frame also has INET_ECN_CE 614 */ 615 if (qp->ecn & IPFRAG_ECN_CLEAR) 616 iph->tos &= ~INET_ECN_MASK; 617 else if (qp->ecn & IPFRAG_ECN_SET_CE) 618 iph->tos |= INET_ECN_CE; 619 620 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); 621 qp->q.fragments = NULL; 622 qp->q.fragments_tail = NULL; 623 return 0; 624 625 out_nomem: 626 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 627 "queue %p\n", qp); 628 err = -ENOMEM; 629 goto out_fail; 630 out_oversize: 631 if (net_ratelimit()) 632 printk(KERN_INFO "Oversized IP packet from %pI4.\n", 633 &qp->saddr); 634 out_fail: 635 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 636 return err; 637 } 638 639 /* Process an incoming IP datagram fragment. */ 640 int ip_defrag(struct sk_buff *skb, u32 user) 641 { 642 struct ipq *qp; 643 struct net *net; 644 645 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev); 646 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS); 647 648 /* Start by cleaning up the memory. */ 649 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) 650 ip_evictor(net); 651 652 /* Lookup (or create) queue header */ 653 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 654 int ret; 655 656 spin_lock(&qp->q.lock); 657 658 ret = ip_frag_queue(qp, skb); 659 660 spin_unlock(&qp->q.lock); 661 ipq_put(qp); 662 return ret; 663 } 664 665 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 666 kfree_skb(skb); 667 return -ENOMEM; 668 } 669 EXPORT_SYMBOL(ip_defrag); 670 671 #ifdef CONFIG_SYSCTL 672 static int zero; 673 674 static struct ctl_table ip4_frags_ns_ctl_table[] = { 675 { 676 .procname = "ipfrag_high_thresh", 677 .data = &init_net.ipv4.frags.high_thresh, 678 .maxlen = sizeof(int), 679 .mode = 0644, 680 .proc_handler = proc_dointvec 681 }, 682 { 683 .procname = "ipfrag_low_thresh", 684 .data = &init_net.ipv4.frags.low_thresh, 685 .maxlen = sizeof(int), 686 .mode = 0644, 687 .proc_handler = proc_dointvec 688 }, 689 { 690 .procname = "ipfrag_time", 691 .data = &init_net.ipv4.frags.timeout, 692 .maxlen = sizeof(int), 693 .mode = 0644, 694 .proc_handler = proc_dointvec_jiffies, 695 }, 696 { } 697 }; 698 699 static struct ctl_table ip4_frags_ctl_table[] = { 700 { 701 .procname = "ipfrag_secret_interval", 702 .data = &ip4_frags.secret_interval, 703 .maxlen = sizeof(int), 704 .mode = 0644, 705 .proc_handler = proc_dointvec_jiffies, 706 }, 707 { 708 .procname = "ipfrag_max_dist", 709 .data = &sysctl_ipfrag_max_dist, 710 .maxlen = sizeof(int), 711 .mode = 0644, 712 .proc_handler = proc_dointvec_minmax, 713 .extra1 = &zero 714 }, 715 { } 716 }; 717 718 static int __net_init ip4_frags_ns_ctl_register(struct net *net) 719 { 720 struct ctl_table *table; 721 struct ctl_table_header *hdr; 722 723 table = ip4_frags_ns_ctl_table; 724 if (!net_eq(net, &init_net)) { 725 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 726 if (table == NULL) 727 goto err_alloc; 728 729 table[0].data = &net->ipv4.frags.high_thresh; 730 table[1].data = &net->ipv4.frags.low_thresh; 731 table[2].data = &net->ipv4.frags.timeout; 732 } 733 734 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); 735 if (hdr == NULL) 736 goto err_reg; 737 738 net->ipv4.frags_hdr = hdr; 739 return 0; 740 741 err_reg: 742 if (!net_eq(net, &init_net)) 743 kfree(table); 744 err_alloc: 745 return -ENOMEM; 746 } 747 748 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) 749 { 750 struct ctl_table *table; 751 752 table = net->ipv4.frags_hdr->ctl_table_arg; 753 unregister_net_sysctl_table(net->ipv4.frags_hdr); 754 kfree(table); 755 } 756 757 static void ip4_frags_ctl_register(void) 758 { 759 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table); 760 } 761 #else 762 static inline int ip4_frags_ns_ctl_register(struct net *net) 763 { 764 return 0; 765 } 766 767 static inline void ip4_frags_ns_ctl_unregister(struct net *net) 768 { 769 } 770 771 static inline void ip4_frags_ctl_register(void) 772 { 773 } 774 #endif 775 776 static int __net_init ipv4_frags_init_net(struct net *net) 777 { 778 /* 779 * Fragment cache limits. We will commit 256K at one time. Should we 780 * cross that limit we will prune down to 192K. This should cope with 781 * even the most extreme cases without allowing an attacker to 782 * measurably harm machine performance. 783 */ 784 net->ipv4.frags.high_thresh = 256 * 1024; 785 net->ipv4.frags.low_thresh = 192 * 1024; 786 /* 787 * Important NOTE! Fragment queue must be destroyed before MSL expires. 788 * RFC791 is wrong proposing to prolongate timer each fragment arrival 789 * by TTL. 790 */ 791 net->ipv4.frags.timeout = IP_FRAG_TIME; 792 793 inet_frags_init_net(&net->ipv4.frags); 794 795 return ip4_frags_ns_ctl_register(net); 796 } 797 798 static void __net_exit ipv4_frags_exit_net(struct net *net) 799 { 800 ip4_frags_ns_ctl_unregister(net); 801 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 802 } 803 804 static struct pernet_operations ip4_frags_ops = { 805 .init = ipv4_frags_init_net, 806 .exit = ipv4_frags_exit_net, 807 }; 808 809 void __init ipfrag_init(void) 810 { 811 ip4_frags_ctl_register(); 812 register_pernet_subsys(&ip4_frags_ops); 813 ip4_frags.hashfn = ip4_hashfn; 814 ip4_frags.constructor = ip4_frag_init; 815 ip4_frags.destructor = ip4_frag_free; 816 ip4_frags.skb_free = NULL; 817 ip4_frags.qsize = sizeof(struct ipq); 818 ip4_frags.match = ip4_frag_match; 819 ip4_frags.frag_expire = ip_expire; 820 ip4_frags.secret_interval = 10 * 60 * HZ; 821 inet_frags_init(&ip4_frags); 822 } 823