xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <net/inet_ecn.h>
49 
50 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
51  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
52  * as well. Or notify me, at least. --ANK
53  */
54 
55 static int sysctl_ipfrag_max_dist __read_mostly = 64;
56 
57 struct ipfrag_skb_cb
58 {
59 	struct inet_skb_parm	h;
60 	int			offset;
61 };
62 
63 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
64 
65 /* Describe an entry in the "incomplete datagrams" queue. */
66 struct ipq {
67 	struct inet_frag_queue q;
68 
69 	u32		user;
70 	__be32		saddr;
71 	__be32		daddr;
72 	__be16		id;
73 	u8		protocol;
74 	u8		ecn; /* RFC3168 support */
75 	int             iif;
76 	unsigned int    rid;
77 	struct inet_peer *peer;
78 };
79 
80 #define IPFRAG_ECN_CLEAR  0x01 /* one frag had INET_ECN_NOT_ECT */
81 #define IPFRAG_ECN_SET_CE 0x04 /* one frag had INET_ECN_CE */
82 
83 static inline u8 ip4_frag_ecn(u8 tos)
84 {
85 	tos = (tos & INET_ECN_MASK) + 1;
86 	/*
87 	 * After the last operation we have (in binary):
88 	 * INET_ECN_NOT_ECT => 001
89 	 * INET_ECN_ECT_1   => 010
90 	 * INET_ECN_ECT_0   => 011
91 	 * INET_ECN_CE      => 100
92 	 */
93 	return (tos & 2) ? 0 : tos;
94 }
95 
96 static struct inet_frags ip4_frags;
97 
98 int ip_frag_nqueues(struct net *net)
99 {
100 	return net->ipv4.frags.nqueues;
101 }
102 
103 int ip_frag_mem(struct net *net)
104 {
105 	return atomic_read(&net->ipv4.frags.mem);
106 }
107 
108 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
109 			 struct net_device *dev);
110 
111 struct ip4_create_arg {
112 	struct iphdr *iph;
113 	u32 user;
114 };
115 
116 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
117 {
118 	return jhash_3words((__force u32)id << 16 | prot,
119 			    (__force u32)saddr, (__force u32)daddr,
120 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
121 }
122 
123 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
124 {
125 	struct ipq *ipq;
126 
127 	ipq = container_of(q, struct ipq, q);
128 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
129 }
130 
131 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
132 {
133 	struct ipq *qp;
134 	struct ip4_create_arg *arg = a;
135 
136 	qp = container_of(q, struct ipq, q);
137 	return	qp->id == arg->iph->id &&
138 			qp->saddr == arg->iph->saddr &&
139 			qp->daddr == arg->iph->daddr &&
140 			qp->protocol == arg->iph->protocol &&
141 			qp->user == arg->user;
142 }
143 
144 /* Memory Tracking Functions. */
145 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
146 {
147 	atomic_sub(skb->truesize, &nf->mem);
148 	kfree_skb(skb);
149 }
150 
151 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
152 {
153 	struct ipq *qp = container_of(q, struct ipq, q);
154 	struct ip4_create_arg *arg = a;
155 
156 	qp->protocol = arg->iph->protocol;
157 	qp->id = arg->iph->id;
158 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
159 	qp->saddr = arg->iph->saddr;
160 	qp->daddr = arg->iph->daddr;
161 	qp->user = arg->user;
162 	qp->peer = sysctl_ipfrag_max_dist ?
163 		inet_getpeer_v4(arg->iph->saddr, 1) : NULL;
164 }
165 
166 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
167 {
168 	struct ipq *qp;
169 
170 	qp = container_of(q, struct ipq, q);
171 	if (qp->peer)
172 		inet_putpeer(qp->peer);
173 }
174 
175 
176 /* Destruction primitives. */
177 
178 static __inline__ void ipq_put(struct ipq *ipq)
179 {
180 	inet_frag_put(&ipq->q, &ip4_frags);
181 }
182 
183 /* Kill ipq entry. It is not destroyed immediately,
184  * because caller (and someone more) holds reference count.
185  */
186 static void ipq_kill(struct ipq *ipq)
187 {
188 	inet_frag_kill(&ipq->q, &ip4_frags);
189 }
190 
191 /* Memory limiting on fragments.  Evictor trashes the oldest
192  * fragment queue until we are back under the threshold.
193  */
194 static void ip_evictor(struct net *net)
195 {
196 	int evicted;
197 
198 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
199 	if (evicted)
200 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
201 }
202 
203 /*
204  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
205  */
206 static void ip_expire(unsigned long arg)
207 {
208 	struct ipq *qp;
209 	struct net *net;
210 
211 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
212 	net = container_of(qp->q.net, struct net, ipv4.frags);
213 
214 	spin_lock(&qp->q.lock);
215 
216 	if (qp->q.last_in & INET_FRAG_COMPLETE)
217 		goto out;
218 
219 	ipq_kill(qp);
220 
221 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
222 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
223 
224 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
225 		struct sk_buff *head = qp->q.fragments;
226 
227 		rcu_read_lock();
228 		head->dev = dev_get_by_index_rcu(net, qp->iif);
229 		if (!head->dev)
230 			goto out_rcu_unlock;
231 
232 		/*
233 		 * Only search router table for the head fragment,
234 		 * when defraging timeout at PRE_ROUTING HOOK.
235 		 */
236 		if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
237 			const struct iphdr *iph = ip_hdr(head);
238 			int err = ip_route_input(head, iph->daddr, iph->saddr,
239 						 iph->tos, head->dev);
240 			if (unlikely(err))
241 				goto out_rcu_unlock;
242 
243 			/*
244 			 * Only an end host needs to send an ICMP
245 			 * "Fragment Reassembly Timeout" message, per RFC792.
246 			 */
247 			if (skb_rtable(head)->rt_type != RTN_LOCAL)
248 				goto out_rcu_unlock;
249 
250 		}
251 
252 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
253 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
254 out_rcu_unlock:
255 		rcu_read_unlock();
256 	}
257 out:
258 	spin_unlock(&qp->q.lock);
259 	ipq_put(qp);
260 }
261 
262 /* Find the correct entry in the "incomplete datagrams" queue for
263  * this IP datagram, and create new one, if nothing is found.
264  */
265 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
266 {
267 	struct inet_frag_queue *q;
268 	struct ip4_create_arg arg;
269 	unsigned int hash;
270 
271 	arg.iph = iph;
272 	arg.user = user;
273 
274 	read_lock(&ip4_frags.lock);
275 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
276 
277 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
278 	if (q == NULL)
279 		goto out_nomem;
280 
281 	return container_of(q, struct ipq, q);
282 
283 out_nomem:
284 	LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
285 	return NULL;
286 }
287 
288 /* Is the fragment too far ahead to be part of ipq? */
289 static inline int ip_frag_too_far(struct ipq *qp)
290 {
291 	struct inet_peer *peer = qp->peer;
292 	unsigned int max = sysctl_ipfrag_max_dist;
293 	unsigned int start, end;
294 
295 	int rc;
296 
297 	if (!peer || !max)
298 		return 0;
299 
300 	start = qp->rid;
301 	end = atomic_inc_return(&peer->rid);
302 	qp->rid = end;
303 
304 	rc = qp->q.fragments && (end - start) > max;
305 
306 	if (rc) {
307 		struct net *net;
308 
309 		net = container_of(qp->q.net, struct net, ipv4.frags);
310 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
311 	}
312 
313 	return rc;
314 }
315 
316 static int ip_frag_reinit(struct ipq *qp)
317 {
318 	struct sk_buff *fp;
319 
320 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
321 		atomic_inc(&qp->q.refcnt);
322 		return -ETIMEDOUT;
323 	}
324 
325 	fp = qp->q.fragments;
326 	do {
327 		struct sk_buff *xp = fp->next;
328 		frag_kfree_skb(qp->q.net, fp);
329 		fp = xp;
330 	} while (fp);
331 
332 	qp->q.last_in = 0;
333 	qp->q.len = 0;
334 	qp->q.meat = 0;
335 	qp->q.fragments = NULL;
336 	qp->q.fragments_tail = NULL;
337 	qp->iif = 0;
338 	qp->ecn = 0;
339 
340 	return 0;
341 }
342 
343 /* Add new segment to existing queue. */
344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
345 {
346 	struct sk_buff *prev, *next;
347 	struct net_device *dev;
348 	int flags, offset;
349 	int ihl, end;
350 	int err = -ENOENT;
351 	u8 ecn;
352 
353 	if (qp->q.last_in & INET_FRAG_COMPLETE)
354 		goto err;
355 
356 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
357 	    unlikely(ip_frag_too_far(qp)) &&
358 	    unlikely(err = ip_frag_reinit(qp))) {
359 		ipq_kill(qp);
360 		goto err;
361 	}
362 
363 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
364 	offset = ntohs(ip_hdr(skb)->frag_off);
365 	flags = offset & ~IP_OFFSET;
366 	offset &= IP_OFFSET;
367 	offset <<= 3;		/* offset is in 8-byte chunks */
368 	ihl = ip_hdrlen(skb);
369 
370 	/* Determine the position of this fragment. */
371 	end = offset + skb->len - ihl;
372 	err = -EINVAL;
373 
374 	/* Is this the final fragment? */
375 	if ((flags & IP_MF) == 0) {
376 		/* If we already have some bits beyond end
377 		 * or have different end, the segment is corrrupted.
378 		 */
379 		if (end < qp->q.len ||
380 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
381 			goto err;
382 		qp->q.last_in |= INET_FRAG_LAST_IN;
383 		qp->q.len = end;
384 	} else {
385 		if (end&7) {
386 			end &= ~7;
387 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
388 				skb->ip_summed = CHECKSUM_NONE;
389 		}
390 		if (end > qp->q.len) {
391 			/* Some bits beyond end -> corruption. */
392 			if (qp->q.last_in & INET_FRAG_LAST_IN)
393 				goto err;
394 			qp->q.len = end;
395 		}
396 	}
397 	if (end == offset)
398 		goto err;
399 
400 	err = -ENOMEM;
401 	if (pskb_pull(skb, ihl) == NULL)
402 		goto err;
403 
404 	err = pskb_trim_rcsum(skb, end - offset);
405 	if (err)
406 		goto err;
407 
408 	/* Find out which fragments are in front and at the back of us
409 	 * in the chain of fragments so far.  We must know where to put
410 	 * this fragment, right?
411 	 */
412 	prev = qp->q.fragments_tail;
413 	if (!prev || FRAG_CB(prev)->offset < offset) {
414 		next = NULL;
415 		goto found;
416 	}
417 	prev = NULL;
418 	for (next = qp->q.fragments; next != NULL; next = next->next) {
419 		if (FRAG_CB(next)->offset >= offset)
420 			break;	/* bingo! */
421 		prev = next;
422 	}
423 
424 found:
425 	/* We found where to put this one.  Check for overlap with
426 	 * preceding fragment, and, if needed, align things so that
427 	 * any overlaps are eliminated.
428 	 */
429 	if (prev) {
430 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
431 
432 		if (i > 0) {
433 			offset += i;
434 			err = -EINVAL;
435 			if (end <= offset)
436 				goto err;
437 			err = -ENOMEM;
438 			if (!pskb_pull(skb, i))
439 				goto err;
440 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
441 				skb->ip_summed = CHECKSUM_NONE;
442 		}
443 	}
444 
445 	err = -ENOMEM;
446 
447 	while (next && FRAG_CB(next)->offset < end) {
448 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
449 
450 		if (i < next->len) {
451 			/* Eat head of the next overlapped fragment
452 			 * and leave the loop. The next ones cannot overlap.
453 			 */
454 			if (!pskb_pull(next, i))
455 				goto err;
456 			FRAG_CB(next)->offset += i;
457 			qp->q.meat -= i;
458 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
459 				next->ip_summed = CHECKSUM_NONE;
460 			break;
461 		} else {
462 			struct sk_buff *free_it = next;
463 
464 			/* Old fragment is completely overridden with
465 			 * new one drop it.
466 			 */
467 			next = next->next;
468 
469 			if (prev)
470 				prev->next = next;
471 			else
472 				qp->q.fragments = next;
473 
474 			qp->q.meat -= free_it->len;
475 			frag_kfree_skb(qp->q.net, free_it);
476 		}
477 	}
478 
479 	FRAG_CB(skb)->offset = offset;
480 
481 	/* Insert this fragment in the chain of fragments. */
482 	skb->next = next;
483 	if (!next)
484 		qp->q.fragments_tail = skb;
485 	if (prev)
486 		prev->next = skb;
487 	else
488 		qp->q.fragments = skb;
489 
490 	dev = skb->dev;
491 	if (dev) {
492 		qp->iif = dev->ifindex;
493 		skb->dev = NULL;
494 	}
495 	qp->q.stamp = skb->tstamp;
496 	qp->q.meat += skb->len;
497 	qp->ecn |= ecn;
498 	atomic_add(skb->truesize, &qp->q.net->mem);
499 	if (offset == 0)
500 		qp->q.last_in |= INET_FRAG_FIRST_IN;
501 
502 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
503 	    qp->q.meat == qp->q.len)
504 		return ip_frag_reasm(qp, prev, dev);
505 
506 	write_lock(&ip4_frags.lock);
507 	list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
508 	write_unlock(&ip4_frags.lock);
509 	return -EINPROGRESS;
510 
511 err:
512 	kfree_skb(skb);
513 	return err;
514 }
515 
516 
517 /* Build a new IP datagram from all its fragments. */
518 
519 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
520 			 struct net_device *dev)
521 {
522 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
523 	struct iphdr *iph;
524 	struct sk_buff *fp, *head = qp->q.fragments;
525 	int len;
526 	int ihlen;
527 	int err;
528 
529 	ipq_kill(qp);
530 
531 	/* Make the one we just received the head. */
532 	if (prev) {
533 		head = prev->next;
534 		fp = skb_clone(head, GFP_ATOMIC);
535 		if (!fp)
536 			goto out_nomem;
537 
538 		fp->next = head->next;
539 		if (!fp->next)
540 			qp->q.fragments_tail = fp;
541 		prev->next = fp;
542 
543 		skb_morph(head, qp->q.fragments);
544 		head->next = qp->q.fragments->next;
545 
546 		kfree_skb(qp->q.fragments);
547 		qp->q.fragments = head;
548 	}
549 
550 	WARN_ON(head == NULL);
551 	WARN_ON(FRAG_CB(head)->offset != 0);
552 
553 	/* Allocate a new buffer for the datagram. */
554 	ihlen = ip_hdrlen(head);
555 	len = ihlen + qp->q.len;
556 
557 	err = -E2BIG;
558 	if (len > 65535)
559 		goto out_oversize;
560 
561 	/* Head of list must not be cloned. */
562 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
563 		goto out_nomem;
564 
565 	/* If the first fragment is fragmented itself, we split
566 	 * it to two chunks: the first with data and paged part
567 	 * and the second, holding only fragments. */
568 	if (skb_has_frag_list(head)) {
569 		struct sk_buff *clone;
570 		int i, plen = 0;
571 
572 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
573 			goto out_nomem;
574 		clone->next = head->next;
575 		head->next = clone;
576 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
577 		skb_frag_list_init(head);
578 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
579 			plen += skb_shinfo(head)->frags[i].size;
580 		clone->len = clone->data_len = head->data_len - plen;
581 		head->data_len -= clone->len;
582 		head->len -= clone->len;
583 		clone->csum = 0;
584 		clone->ip_summed = head->ip_summed;
585 		atomic_add(clone->truesize, &qp->q.net->mem);
586 	}
587 
588 	skb_shinfo(head)->frag_list = head->next;
589 	skb_push(head, head->data - skb_network_header(head));
590 
591 	for (fp=head->next; fp; fp = fp->next) {
592 		head->data_len += fp->len;
593 		head->len += fp->len;
594 		if (head->ip_summed != fp->ip_summed)
595 			head->ip_summed = CHECKSUM_NONE;
596 		else if (head->ip_summed == CHECKSUM_COMPLETE)
597 			head->csum = csum_add(head->csum, fp->csum);
598 		head->truesize += fp->truesize;
599 	}
600 	atomic_sub(head->truesize, &qp->q.net->mem);
601 
602 	head->next = NULL;
603 	head->dev = dev;
604 	head->tstamp = qp->q.stamp;
605 
606 	iph = ip_hdr(head);
607 	iph->frag_off = 0;
608 	iph->tot_len = htons(len);
609 	/* RFC3168 5.3 Fragmentation support
610 	 * If one fragment had INET_ECN_NOT_ECT,
611 	 *	reassembled frame also has INET_ECN_NOT_ECT
612 	 * Elif one fragment had INET_ECN_CE
613 	 *	reassembled frame also has INET_ECN_CE
614 	 */
615 	if (qp->ecn & IPFRAG_ECN_CLEAR)
616 		iph->tos &= ~INET_ECN_MASK;
617 	else if (qp->ecn & IPFRAG_ECN_SET_CE)
618 		iph->tos |= INET_ECN_CE;
619 
620 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
621 	qp->q.fragments = NULL;
622 	qp->q.fragments_tail = NULL;
623 	return 0;
624 
625 out_nomem:
626 	LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
627 			      "queue %p\n", qp);
628 	err = -ENOMEM;
629 	goto out_fail;
630 out_oversize:
631 	if (net_ratelimit())
632 		printk(KERN_INFO "Oversized IP packet from %pI4.\n",
633 			&qp->saddr);
634 out_fail:
635 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
636 	return err;
637 }
638 
639 /* Process an incoming IP datagram fragment. */
640 int ip_defrag(struct sk_buff *skb, u32 user)
641 {
642 	struct ipq *qp;
643 	struct net *net;
644 
645 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
646 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
647 
648 	/* Start by cleaning up the memory. */
649 	if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
650 		ip_evictor(net);
651 
652 	/* Lookup (or create) queue header */
653 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
654 		int ret;
655 
656 		spin_lock(&qp->q.lock);
657 
658 		ret = ip_frag_queue(qp, skb);
659 
660 		spin_unlock(&qp->q.lock);
661 		ipq_put(qp);
662 		return ret;
663 	}
664 
665 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
666 	kfree_skb(skb);
667 	return -ENOMEM;
668 }
669 EXPORT_SYMBOL(ip_defrag);
670 
671 #ifdef CONFIG_SYSCTL
672 static int zero;
673 
674 static struct ctl_table ip4_frags_ns_ctl_table[] = {
675 	{
676 		.procname	= "ipfrag_high_thresh",
677 		.data		= &init_net.ipv4.frags.high_thresh,
678 		.maxlen		= sizeof(int),
679 		.mode		= 0644,
680 		.proc_handler	= proc_dointvec
681 	},
682 	{
683 		.procname	= "ipfrag_low_thresh",
684 		.data		= &init_net.ipv4.frags.low_thresh,
685 		.maxlen		= sizeof(int),
686 		.mode		= 0644,
687 		.proc_handler	= proc_dointvec
688 	},
689 	{
690 		.procname	= "ipfrag_time",
691 		.data		= &init_net.ipv4.frags.timeout,
692 		.maxlen		= sizeof(int),
693 		.mode		= 0644,
694 		.proc_handler	= proc_dointvec_jiffies,
695 	},
696 	{ }
697 };
698 
699 static struct ctl_table ip4_frags_ctl_table[] = {
700 	{
701 		.procname	= "ipfrag_secret_interval",
702 		.data		= &ip4_frags.secret_interval,
703 		.maxlen		= sizeof(int),
704 		.mode		= 0644,
705 		.proc_handler	= proc_dointvec_jiffies,
706 	},
707 	{
708 		.procname	= "ipfrag_max_dist",
709 		.data		= &sysctl_ipfrag_max_dist,
710 		.maxlen		= sizeof(int),
711 		.mode		= 0644,
712 		.proc_handler	= proc_dointvec_minmax,
713 		.extra1		= &zero
714 	},
715 	{ }
716 };
717 
718 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
719 {
720 	struct ctl_table *table;
721 	struct ctl_table_header *hdr;
722 
723 	table = ip4_frags_ns_ctl_table;
724 	if (!net_eq(net, &init_net)) {
725 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
726 		if (table == NULL)
727 			goto err_alloc;
728 
729 		table[0].data = &net->ipv4.frags.high_thresh;
730 		table[1].data = &net->ipv4.frags.low_thresh;
731 		table[2].data = &net->ipv4.frags.timeout;
732 	}
733 
734 	hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
735 	if (hdr == NULL)
736 		goto err_reg;
737 
738 	net->ipv4.frags_hdr = hdr;
739 	return 0;
740 
741 err_reg:
742 	if (!net_eq(net, &init_net))
743 		kfree(table);
744 err_alloc:
745 	return -ENOMEM;
746 }
747 
748 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
749 {
750 	struct ctl_table *table;
751 
752 	table = net->ipv4.frags_hdr->ctl_table_arg;
753 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
754 	kfree(table);
755 }
756 
757 static void ip4_frags_ctl_register(void)
758 {
759 	register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
760 }
761 #else
762 static inline int ip4_frags_ns_ctl_register(struct net *net)
763 {
764 	return 0;
765 }
766 
767 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
768 {
769 }
770 
771 static inline void ip4_frags_ctl_register(void)
772 {
773 }
774 #endif
775 
776 static int __net_init ipv4_frags_init_net(struct net *net)
777 {
778 	/*
779 	 * Fragment cache limits. We will commit 256K at one time. Should we
780 	 * cross that limit we will prune down to 192K. This should cope with
781 	 * even the most extreme cases without allowing an attacker to
782 	 * measurably harm machine performance.
783 	 */
784 	net->ipv4.frags.high_thresh = 256 * 1024;
785 	net->ipv4.frags.low_thresh = 192 * 1024;
786 	/*
787 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
788 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
789 	 * by TTL.
790 	 */
791 	net->ipv4.frags.timeout = IP_FRAG_TIME;
792 
793 	inet_frags_init_net(&net->ipv4.frags);
794 
795 	return ip4_frags_ns_ctl_register(net);
796 }
797 
798 static void __net_exit ipv4_frags_exit_net(struct net *net)
799 {
800 	ip4_frags_ns_ctl_unregister(net);
801 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
802 }
803 
804 static struct pernet_operations ip4_frags_ops = {
805 	.init = ipv4_frags_init_net,
806 	.exit = ipv4_frags_exit_net,
807 };
808 
809 void __init ipfrag_init(void)
810 {
811 	ip4_frags_ctl_register();
812 	register_pernet_subsys(&ip4_frags_ops);
813 	ip4_frags.hashfn = ip4_hashfn;
814 	ip4_frags.constructor = ip4_frag_init;
815 	ip4_frags.destructor = ip4_frag_free;
816 	ip4_frags.skb_free = NULL;
817 	ip4_frags.qsize = sizeof(struct ipq);
818 	ip4_frags.match = ip4_frag_match;
819 	ip4_frags.frag_expire = ip_expire;
820 	ip4_frags.secret_interval = 10 * 60 * HZ;
821 	inet_frags_init(&ip4_frags);
822 }
823