1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $ 9 * 10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox <Alan.Cox@linux.org> 12 * 13 * Fixes: 14 * Alan Cox : Split from ip.c , see ip_input.c for history. 15 * David S. Miller : Begin massive cleanup... 16 * Andi Kleen : Add sysctls. 17 * xxxx : Overlapfrag bug. 18 * Ultima : ip_expire() kernel panic. 19 * Bill Hawes : Frag accounting and evictor fixes. 20 * John McDonald : 0 length frag bug. 21 * Alexey Kuznetsov: SMP races, threading, cleanup. 22 * Patrick McHardy : LRU queue of frag heads for evictor. 23 */ 24 25 #include <linux/compiler.h> 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/mm.h> 29 #include <linux/jiffies.h> 30 #include <linux/skbuff.h> 31 #include <linux/list.h> 32 #include <linux/ip.h> 33 #include <linux/icmp.h> 34 #include <linux/netdevice.h> 35 #include <linux/jhash.h> 36 #include <linux/random.h> 37 #include <net/sock.h> 38 #include <net/ip.h> 39 #include <net/icmp.h> 40 #include <net/checksum.h> 41 #include <net/inetpeer.h> 42 #include <net/inet_frag.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/inet.h> 46 #include <linux/netfilter_ipv4.h> 47 48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 50 * as well. Or notify me, at least. --ANK 51 */ 52 53 static int sysctl_ipfrag_max_dist __read_mostly = 64; 54 55 struct ipfrag_skb_cb 56 { 57 struct inet_skb_parm h; 58 int offset; 59 }; 60 61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb)) 62 63 /* Describe an entry in the "incomplete datagrams" queue. */ 64 struct ipq { 65 struct inet_frag_queue q; 66 67 u32 user; 68 __be32 saddr; 69 __be32 daddr; 70 __be16 id; 71 u8 protocol; 72 int iif; 73 unsigned int rid; 74 struct inet_peer *peer; 75 }; 76 77 static struct inet_frags ip4_frags; 78 79 int ip_frag_nqueues(struct net *net) 80 { 81 return net->ipv4.frags.nqueues; 82 } 83 84 int ip_frag_mem(struct net *net) 85 { 86 return atomic_read(&net->ipv4.frags.mem); 87 } 88 89 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 90 struct net_device *dev); 91 92 struct ip4_create_arg { 93 struct iphdr *iph; 94 u32 user; 95 }; 96 97 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 98 { 99 return jhash_3words((__force u32)id << 16 | prot, 100 (__force u32)saddr, (__force u32)daddr, 101 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 102 } 103 104 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 105 { 106 struct ipq *ipq; 107 108 ipq = container_of(q, struct ipq, q); 109 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 110 } 111 112 static int ip4_frag_match(struct inet_frag_queue *q, void *a) 113 { 114 struct ipq *qp; 115 struct ip4_create_arg *arg = a; 116 117 qp = container_of(q, struct ipq, q); 118 return (qp->id == arg->iph->id && 119 qp->saddr == arg->iph->saddr && 120 qp->daddr == arg->iph->daddr && 121 qp->protocol == arg->iph->protocol && 122 qp->user == arg->user); 123 } 124 125 /* Memory Tracking Functions. */ 126 static __inline__ void frag_kfree_skb(struct netns_frags *nf, 127 struct sk_buff *skb, int *work) 128 { 129 if (work) 130 *work -= skb->truesize; 131 atomic_sub(skb->truesize, &nf->mem); 132 kfree_skb(skb); 133 } 134 135 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 136 { 137 struct ipq *qp = container_of(q, struct ipq, q); 138 struct ip4_create_arg *arg = a; 139 140 qp->protocol = arg->iph->protocol; 141 qp->id = arg->iph->id; 142 qp->saddr = arg->iph->saddr; 143 qp->daddr = arg->iph->daddr; 144 qp->user = arg->user; 145 qp->peer = sysctl_ipfrag_max_dist ? 146 inet_getpeer(arg->iph->saddr, 1) : NULL; 147 } 148 149 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 150 { 151 struct ipq *qp; 152 153 qp = container_of(q, struct ipq, q); 154 if (qp->peer) 155 inet_putpeer(qp->peer); 156 } 157 158 159 /* Destruction primitives. */ 160 161 static __inline__ void ipq_put(struct ipq *ipq) 162 { 163 inet_frag_put(&ipq->q, &ip4_frags); 164 } 165 166 /* Kill ipq entry. It is not destroyed immediately, 167 * because caller (and someone more) holds reference count. 168 */ 169 static void ipq_kill(struct ipq *ipq) 170 { 171 inet_frag_kill(&ipq->q, &ip4_frags); 172 } 173 174 /* Memory limiting on fragments. Evictor trashes the oldest 175 * fragment queue until we are back under the threshold. 176 */ 177 static void ip_evictor(struct net *net) 178 { 179 int evicted; 180 181 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); 182 if (evicted) 183 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted); 184 } 185 186 /* 187 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 188 */ 189 static void ip_expire(unsigned long arg) 190 { 191 struct ipq *qp; 192 193 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 194 195 spin_lock(&qp->q.lock); 196 197 if (qp->q.last_in & COMPLETE) 198 goto out; 199 200 ipq_kill(qp); 201 202 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT); 203 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 204 205 if ((qp->q.last_in&FIRST_IN) && qp->q.fragments != NULL) { 206 struct sk_buff *head = qp->q.fragments; 207 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 208 if ((head->dev = dev_get_by_index(&init_net, qp->iif)) != NULL) { 209 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 210 dev_put(head->dev); 211 } 212 } 213 out: 214 spin_unlock(&qp->q.lock); 215 ipq_put(qp); 216 } 217 218 /* Find the correct entry in the "incomplete datagrams" queue for 219 * this IP datagram, and create new one, if nothing is found. 220 */ 221 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 222 { 223 struct inet_frag_queue *q; 224 struct ip4_create_arg arg; 225 unsigned int hash; 226 227 arg.iph = iph; 228 arg.user = user; 229 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 230 231 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 232 if (q == NULL) 233 goto out_nomem; 234 235 return container_of(q, struct ipq, q); 236 237 out_nomem: 238 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 239 return NULL; 240 } 241 242 /* Is the fragment too far ahead to be part of ipq? */ 243 static inline int ip_frag_too_far(struct ipq *qp) 244 { 245 struct inet_peer *peer = qp->peer; 246 unsigned int max = sysctl_ipfrag_max_dist; 247 unsigned int start, end; 248 249 int rc; 250 251 if (!peer || !max) 252 return 0; 253 254 start = qp->rid; 255 end = atomic_inc_return(&peer->rid); 256 qp->rid = end; 257 258 rc = qp->q.fragments && (end - start) > max; 259 260 if (rc) { 261 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 262 } 263 264 return rc; 265 } 266 267 static int ip_frag_reinit(struct ipq *qp) 268 { 269 struct sk_buff *fp; 270 271 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 272 atomic_inc(&qp->q.refcnt); 273 return -ETIMEDOUT; 274 } 275 276 fp = qp->q.fragments; 277 do { 278 struct sk_buff *xp = fp->next; 279 frag_kfree_skb(qp->q.net, fp, NULL); 280 fp = xp; 281 } while (fp); 282 283 qp->q.last_in = 0; 284 qp->q.len = 0; 285 qp->q.meat = 0; 286 qp->q.fragments = NULL; 287 qp->iif = 0; 288 289 return 0; 290 } 291 292 /* Add new segment to existing queue. */ 293 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 294 { 295 struct sk_buff *prev, *next; 296 struct net_device *dev; 297 int flags, offset; 298 int ihl, end; 299 int err = -ENOENT; 300 301 if (qp->q.last_in & COMPLETE) 302 goto err; 303 304 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 305 unlikely(ip_frag_too_far(qp)) && 306 unlikely(err = ip_frag_reinit(qp))) { 307 ipq_kill(qp); 308 goto err; 309 } 310 311 offset = ntohs(ip_hdr(skb)->frag_off); 312 flags = offset & ~IP_OFFSET; 313 offset &= IP_OFFSET; 314 offset <<= 3; /* offset is in 8-byte chunks */ 315 ihl = ip_hdrlen(skb); 316 317 /* Determine the position of this fragment. */ 318 end = offset + skb->len - ihl; 319 err = -EINVAL; 320 321 /* Is this the final fragment? */ 322 if ((flags & IP_MF) == 0) { 323 /* If we already have some bits beyond end 324 * or have different end, the segment is corrrupted. 325 */ 326 if (end < qp->q.len || 327 ((qp->q.last_in & LAST_IN) && end != qp->q.len)) 328 goto err; 329 qp->q.last_in |= LAST_IN; 330 qp->q.len = end; 331 } else { 332 if (end&7) { 333 end &= ~7; 334 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 335 skb->ip_summed = CHECKSUM_NONE; 336 } 337 if (end > qp->q.len) { 338 /* Some bits beyond end -> corruption. */ 339 if (qp->q.last_in & LAST_IN) 340 goto err; 341 qp->q.len = end; 342 } 343 } 344 if (end == offset) 345 goto err; 346 347 err = -ENOMEM; 348 if (pskb_pull(skb, ihl) == NULL) 349 goto err; 350 351 err = pskb_trim_rcsum(skb, end - offset); 352 if (err) 353 goto err; 354 355 /* Find out which fragments are in front and at the back of us 356 * in the chain of fragments so far. We must know where to put 357 * this fragment, right? 358 */ 359 prev = NULL; 360 for (next = qp->q.fragments; next != NULL; next = next->next) { 361 if (FRAG_CB(next)->offset >= offset) 362 break; /* bingo! */ 363 prev = next; 364 } 365 366 /* We found where to put this one. Check for overlap with 367 * preceding fragment, and, if needed, align things so that 368 * any overlaps are eliminated. 369 */ 370 if (prev) { 371 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 372 373 if (i > 0) { 374 offset += i; 375 err = -EINVAL; 376 if (end <= offset) 377 goto err; 378 err = -ENOMEM; 379 if (!pskb_pull(skb, i)) 380 goto err; 381 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 382 skb->ip_summed = CHECKSUM_NONE; 383 } 384 } 385 386 err = -ENOMEM; 387 388 while (next && FRAG_CB(next)->offset < end) { 389 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 390 391 if (i < next->len) { 392 /* Eat head of the next overlapped fragment 393 * and leave the loop. The next ones cannot overlap. 394 */ 395 if (!pskb_pull(next, i)) 396 goto err; 397 FRAG_CB(next)->offset += i; 398 qp->q.meat -= i; 399 if (next->ip_summed != CHECKSUM_UNNECESSARY) 400 next->ip_summed = CHECKSUM_NONE; 401 break; 402 } else { 403 struct sk_buff *free_it = next; 404 405 /* Old fragment is completely overridden with 406 * new one drop it. 407 */ 408 next = next->next; 409 410 if (prev) 411 prev->next = next; 412 else 413 qp->q.fragments = next; 414 415 qp->q.meat -= free_it->len; 416 frag_kfree_skb(qp->q.net, free_it, NULL); 417 } 418 } 419 420 FRAG_CB(skb)->offset = offset; 421 422 /* Insert this fragment in the chain of fragments. */ 423 skb->next = next; 424 if (prev) 425 prev->next = skb; 426 else 427 qp->q.fragments = skb; 428 429 dev = skb->dev; 430 if (dev) { 431 qp->iif = dev->ifindex; 432 skb->dev = NULL; 433 } 434 qp->q.stamp = skb->tstamp; 435 qp->q.meat += skb->len; 436 atomic_add(skb->truesize, &qp->q.net->mem); 437 if (offset == 0) 438 qp->q.last_in |= FIRST_IN; 439 440 if (qp->q.last_in == (FIRST_IN | LAST_IN) && qp->q.meat == qp->q.len) 441 return ip_frag_reasm(qp, prev, dev); 442 443 write_lock(&ip4_frags.lock); 444 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); 445 write_unlock(&ip4_frags.lock); 446 return -EINPROGRESS; 447 448 err: 449 kfree_skb(skb); 450 return err; 451 } 452 453 454 /* Build a new IP datagram from all its fragments. */ 455 456 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 457 struct net_device *dev) 458 { 459 struct iphdr *iph; 460 struct sk_buff *fp, *head = qp->q.fragments; 461 int len; 462 int ihlen; 463 int err; 464 465 ipq_kill(qp); 466 467 /* Make the one we just received the head. */ 468 if (prev) { 469 head = prev->next; 470 fp = skb_clone(head, GFP_ATOMIC); 471 if (!fp) 472 goto out_nomem; 473 474 fp->next = head->next; 475 prev->next = fp; 476 477 skb_morph(head, qp->q.fragments); 478 head->next = qp->q.fragments->next; 479 480 kfree_skb(qp->q.fragments); 481 qp->q.fragments = head; 482 } 483 484 BUG_TRAP(head != NULL); 485 BUG_TRAP(FRAG_CB(head)->offset == 0); 486 487 /* Allocate a new buffer for the datagram. */ 488 ihlen = ip_hdrlen(head); 489 len = ihlen + qp->q.len; 490 491 err = -E2BIG; 492 if (len > 65535) 493 goto out_oversize; 494 495 /* Head of list must not be cloned. */ 496 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 497 goto out_nomem; 498 499 /* If the first fragment is fragmented itself, we split 500 * it to two chunks: the first with data and paged part 501 * and the second, holding only fragments. */ 502 if (skb_shinfo(head)->frag_list) { 503 struct sk_buff *clone; 504 int i, plen = 0; 505 506 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 507 goto out_nomem; 508 clone->next = head->next; 509 head->next = clone; 510 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 511 skb_shinfo(head)->frag_list = NULL; 512 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 513 plen += skb_shinfo(head)->frags[i].size; 514 clone->len = clone->data_len = head->data_len - plen; 515 head->data_len -= clone->len; 516 head->len -= clone->len; 517 clone->csum = 0; 518 clone->ip_summed = head->ip_summed; 519 atomic_add(clone->truesize, &qp->q.net->mem); 520 } 521 522 skb_shinfo(head)->frag_list = head->next; 523 skb_push(head, head->data - skb_network_header(head)); 524 atomic_sub(head->truesize, &qp->q.net->mem); 525 526 for (fp=head->next; fp; fp = fp->next) { 527 head->data_len += fp->len; 528 head->len += fp->len; 529 if (head->ip_summed != fp->ip_summed) 530 head->ip_summed = CHECKSUM_NONE; 531 else if (head->ip_summed == CHECKSUM_COMPLETE) 532 head->csum = csum_add(head->csum, fp->csum); 533 head->truesize += fp->truesize; 534 atomic_sub(fp->truesize, &qp->q.net->mem); 535 } 536 537 head->next = NULL; 538 head->dev = dev; 539 head->tstamp = qp->q.stamp; 540 541 iph = ip_hdr(head); 542 iph->frag_off = 0; 543 iph->tot_len = htons(len); 544 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS); 545 qp->q.fragments = NULL; 546 return 0; 547 548 out_nomem: 549 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 550 "queue %p\n", qp); 551 err = -ENOMEM; 552 goto out_fail; 553 out_oversize: 554 if (net_ratelimit()) 555 printk(KERN_INFO 556 "Oversized IP packet from %d.%d.%d.%d.\n", 557 NIPQUAD(qp->saddr)); 558 out_fail: 559 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 560 return err; 561 } 562 563 /* Process an incoming IP datagram fragment. */ 564 int ip_defrag(struct sk_buff *skb, u32 user) 565 { 566 struct ipq *qp; 567 struct net *net; 568 569 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS); 570 571 net = skb->dev ? skb->dev->nd_net : skb->dst->dev->nd_net; 572 /* Start by cleaning up the memory. */ 573 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) 574 ip_evictor(net); 575 576 /* Lookup (or create) queue header */ 577 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 578 int ret; 579 580 spin_lock(&qp->q.lock); 581 582 ret = ip_frag_queue(qp, skb); 583 584 spin_unlock(&qp->q.lock); 585 ipq_put(qp); 586 return ret; 587 } 588 589 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 590 kfree_skb(skb); 591 return -ENOMEM; 592 } 593 594 #ifdef CONFIG_SYSCTL 595 static int zero; 596 597 static struct ctl_table ip4_frags_ctl_table[] = { 598 { 599 .ctl_name = NET_IPV4_IPFRAG_HIGH_THRESH, 600 .procname = "ipfrag_high_thresh", 601 .data = &init_net.ipv4.frags.high_thresh, 602 .maxlen = sizeof(int), 603 .mode = 0644, 604 .proc_handler = &proc_dointvec 605 }, 606 { 607 .ctl_name = NET_IPV4_IPFRAG_LOW_THRESH, 608 .procname = "ipfrag_low_thresh", 609 .data = &init_net.ipv4.frags.low_thresh, 610 .maxlen = sizeof(int), 611 .mode = 0644, 612 .proc_handler = &proc_dointvec 613 }, 614 { 615 .ctl_name = NET_IPV4_IPFRAG_TIME, 616 .procname = "ipfrag_time", 617 .data = &init_net.ipv4.frags.timeout, 618 .maxlen = sizeof(int), 619 .mode = 0644, 620 .proc_handler = &proc_dointvec_jiffies, 621 .strategy = &sysctl_jiffies 622 }, 623 { 624 .ctl_name = NET_IPV4_IPFRAG_SECRET_INTERVAL, 625 .procname = "ipfrag_secret_interval", 626 .data = &ip4_frags.secret_interval, 627 .maxlen = sizeof(int), 628 .mode = 0644, 629 .proc_handler = &proc_dointvec_jiffies, 630 .strategy = &sysctl_jiffies 631 }, 632 { 633 .procname = "ipfrag_max_dist", 634 .data = &sysctl_ipfrag_max_dist, 635 .maxlen = sizeof(int), 636 .mode = 0644, 637 .proc_handler = &proc_dointvec_minmax, 638 .extra1 = &zero 639 }, 640 { } 641 }; 642 643 static int ip4_frags_ctl_register(struct net *net) 644 { 645 struct ctl_table *table; 646 struct ctl_table_header *hdr; 647 648 table = ip4_frags_ctl_table; 649 if (net != &init_net) { 650 table = kmemdup(table, sizeof(ip4_frags_ctl_table), GFP_KERNEL); 651 if (table == NULL) 652 goto err_alloc; 653 654 table[0].data = &net->ipv4.frags.high_thresh; 655 table[1].data = &net->ipv4.frags.low_thresh; 656 table[2].data = &net->ipv4.frags.timeout; 657 table[3].mode &= ~0222; 658 table[4].mode &= ~0222; 659 } 660 661 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); 662 if (hdr == NULL) 663 goto err_reg; 664 665 net->ipv4.frags_hdr = hdr; 666 return 0; 667 668 err_reg: 669 if (net != &init_net) 670 kfree(table); 671 err_alloc: 672 return -ENOMEM; 673 } 674 675 static void ip4_frags_ctl_unregister(struct net *net) 676 { 677 struct ctl_table *table; 678 679 table = net->ipv4.frags_hdr->ctl_table_arg; 680 unregister_net_sysctl_table(net->ipv4.frags_hdr); 681 kfree(table); 682 } 683 #else 684 static inline int ip4_frags_ctl_register(struct net *net) 685 { 686 return 0; 687 } 688 689 static inline void ip4_frags_ctl_unregister(struct net *net) 690 { 691 } 692 #endif 693 694 static int ipv4_frags_init_net(struct net *net) 695 { 696 /* 697 * Fragment cache limits. We will commit 256K at one time. Should we 698 * cross that limit we will prune down to 192K. This should cope with 699 * even the most extreme cases without allowing an attacker to 700 * measurably harm machine performance. 701 */ 702 net->ipv4.frags.high_thresh = 256 * 1024; 703 net->ipv4.frags.low_thresh = 192 * 1024; 704 /* 705 * Important NOTE! Fragment queue must be destroyed before MSL expires. 706 * RFC791 is wrong proposing to prolongate timer each fragment arrival 707 * by TTL. 708 */ 709 net->ipv4.frags.timeout = IP_FRAG_TIME; 710 711 inet_frags_init_net(&net->ipv4.frags); 712 713 return ip4_frags_ctl_register(net); 714 } 715 716 static void ipv4_frags_exit_net(struct net *net) 717 { 718 ip4_frags_ctl_unregister(net); 719 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 720 } 721 722 static struct pernet_operations ip4_frags_ops = { 723 .init = ipv4_frags_init_net, 724 .exit = ipv4_frags_exit_net, 725 }; 726 727 void __init ipfrag_init(void) 728 { 729 register_pernet_subsys(&ip4_frags_ops); 730 ip4_frags.hashfn = ip4_hashfn; 731 ip4_frags.constructor = ip4_frag_init; 732 ip4_frags.destructor = ip4_frag_free; 733 ip4_frags.skb_free = NULL; 734 ip4_frags.qsize = sizeof(struct ipq); 735 ip4_frags.match = ip4_frag_match; 736 ip4_frags.frag_expire = ip_expire; 737 ip4_frags.secret_interval = 10 * 60 * HZ; 738 inet_frags_init(&ip4_frags); 739 } 740 741 EXPORT_SYMBOL(ip_defrag); 742