xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 9d749629)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #define pr_fmt(fmt) "IPv4: " fmt
24 
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 
52 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
53  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
54  * as well. Or notify me, at least. --ANK
55  */
56 
57 static int sysctl_ipfrag_max_dist __read_mostly = 64;
58 
59 struct ipfrag_skb_cb
60 {
61 	struct inet_skb_parm	h;
62 	int			offset;
63 };
64 
65 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
66 
67 /* Describe an entry in the "incomplete datagrams" queue. */
68 struct ipq {
69 	struct inet_frag_queue q;
70 
71 	u32		user;
72 	__be32		saddr;
73 	__be32		daddr;
74 	__be16		id;
75 	u8		protocol;
76 	u8		ecn; /* RFC3168 support */
77 	int             iif;
78 	unsigned int    rid;
79 	struct inet_peer *peer;
80 };
81 
82 /* RFC 3168 support :
83  * We want to check ECN values of all fragments, do detect invalid combinations.
84  * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value.
85  */
86 #define	IPFRAG_ECN_NOT_ECT	0x01 /* one frag had ECN_NOT_ECT */
87 #define	IPFRAG_ECN_ECT_1	0x02 /* one frag had ECN_ECT_1 */
88 #define	IPFRAG_ECN_ECT_0	0x04 /* one frag had ECN_ECT_0 */
89 #define	IPFRAG_ECN_CE		0x08 /* one frag had ECN_CE */
90 
91 static inline u8 ip4_frag_ecn(u8 tos)
92 {
93 	return 1 << (tos & INET_ECN_MASK);
94 }
95 
96 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
97  * Value : 0xff if frame should be dropped.
98  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
99  */
100 static const u8 ip4_frag_ecn_table[16] = {
101 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
102 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
103 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
104 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
105 
106 	/* invalid combinations : drop frame */
107 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
108 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
109 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
110 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
111 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
112 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
113 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
114 };
115 
116 static struct inet_frags ip4_frags;
117 
118 int ip_frag_nqueues(struct net *net)
119 {
120 	return net->ipv4.frags.nqueues;
121 }
122 
123 int ip_frag_mem(struct net *net)
124 {
125 	return sum_frag_mem_limit(&net->ipv4.frags);
126 }
127 
128 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
129 			 struct net_device *dev);
130 
131 struct ip4_create_arg {
132 	struct iphdr *iph;
133 	u32 user;
134 };
135 
136 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
137 {
138 	return jhash_3words((__force u32)id << 16 | prot,
139 			    (__force u32)saddr, (__force u32)daddr,
140 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
141 }
142 
143 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
144 {
145 	struct ipq *ipq;
146 
147 	ipq = container_of(q, struct ipq, q);
148 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
149 }
150 
151 static bool ip4_frag_match(struct inet_frag_queue *q, void *a)
152 {
153 	struct ipq *qp;
154 	struct ip4_create_arg *arg = a;
155 
156 	qp = container_of(q, struct ipq, q);
157 	return	qp->id == arg->iph->id &&
158 		qp->saddr == arg->iph->saddr &&
159 		qp->daddr == arg->iph->daddr &&
160 		qp->protocol == arg->iph->protocol &&
161 		qp->user == arg->user;
162 }
163 
164 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
165 {
166 	struct ipq *qp = container_of(q, struct ipq, q);
167 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
168 					       frags);
169 	struct net *net = container_of(ipv4, struct net, ipv4);
170 
171 	struct ip4_create_arg *arg = a;
172 
173 	qp->protocol = arg->iph->protocol;
174 	qp->id = arg->iph->id;
175 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
176 	qp->saddr = arg->iph->saddr;
177 	qp->daddr = arg->iph->daddr;
178 	qp->user = arg->user;
179 	qp->peer = sysctl_ipfrag_max_dist ?
180 		inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
181 }
182 
183 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
184 {
185 	struct ipq *qp;
186 
187 	qp = container_of(q, struct ipq, q);
188 	if (qp->peer)
189 		inet_putpeer(qp->peer);
190 }
191 
192 
193 /* Destruction primitives. */
194 
195 static __inline__ void ipq_put(struct ipq *ipq)
196 {
197 	inet_frag_put(&ipq->q, &ip4_frags);
198 }
199 
200 /* Kill ipq entry. It is not destroyed immediately,
201  * because caller (and someone more) holds reference count.
202  */
203 static void ipq_kill(struct ipq *ipq)
204 {
205 	inet_frag_kill(&ipq->q, &ip4_frags);
206 }
207 
208 /* Memory limiting on fragments.  Evictor trashes the oldest
209  * fragment queue until we are back under the threshold.
210  */
211 static void ip_evictor(struct net *net)
212 {
213 	int evicted;
214 
215 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags, false);
216 	if (evicted)
217 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
218 }
219 
220 /*
221  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
222  */
223 static void ip_expire(unsigned long arg)
224 {
225 	struct ipq *qp;
226 	struct net *net;
227 
228 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
229 	net = container_of(qp->q.net, struct net, ipv4.frags);
230 
231 	spin_lock(&qp->q.lock);
232 
233 	if (qp->q.last_in & INET_FRAG_COMPLETE)
234 		goto out;
235 
236 	ipq_kill(qp);
237 
238 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
239 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
240 
241 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
242 		struct sk_buff *head = qp->q.fragments;
243 		const struct iphdr *iph;
244 		int err;
245 
246 		rcu_read_lock();
247 		head->dev = dev_get_by_index_rcu(net, qp->iif);
248 		if (!head->dev)
249 			goto out_rcu_unlock;
250 
251 		/* skb dst is stale, drop it, and perform route lookup again */
252 		skb_dst_drop(head);
253 		iph = ip_hdr(head);
254 		err = ip_route_input_noref(head, iph->daddr, iph->saddr,
255 					   iph->tos, head->dev);
256 		if (err)
257 			goto out_rcu_unlock;
258 
259 		/*
260 		 * Only an end host needs to send an ICMP
261 		 * "Fragment Reassembly Timeout" message, per RFC792.
262 		 */
263 		if (qp->user == IP_DEFRAG_AF_PACKET ||
264 		    (qp->user == IP_DEFRAG_CONNTRACK_IN &&
265 		     skb_rtable(head)->rt_type != RTN_LOCAL))
266 			goto out_rcu_unlock;
267 
268 
269 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
270 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
271 out_rcu_unlock:
272 		rcu_read_unlock();
273 	}
274 out:
275 	spin_unlock(&qp->q.lock);
276 	ipq_put(qp);
277 }
278 
279 /* Find the correct entry in the "incomplete datagrams" queue for
280  * this IP datagram, and create new one, if nothing is found.
281  */
282 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
283 {
284 	struct inet_frag_queue *q;
285 	struct ip4_create_arg arg;
286 	unsigned int hash;
287 
288 	arg.iph = iph;
289 	arg.user = user;
290 
291 	read_lock(&ip4_frags.lock);
292 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
293 
294 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
295 	if (q == NULL)
296 		goto out_nomem;
297 
298 	return container_of(q, struct ipq, q);
299 
300 out_nomem:
301 	LIMIT_NETDEBUG(KERN_ERR pr_fmt("ip_frag_create: no memory left !\n"));
302 	return NULL;
303 }
304 
305 /* Is the fragment too far ahead to be part of ipq? */
306 static inline int ip_frag_too_far(struct ipq *qp)
307 {
308 	struct inet_peer *peer = qp->peer;
309 	unsigned int max = sysctl_ipfrag_max_dist;
310 	unsigned int start, end;
311 
312 	int rc;
313 
314 	if (!peer || !max)
315 		return 0;
316 
317 	start = qp->rid;
318 	end = atomic_inc_return(&peer->rid);
319 	qp->rid = end;
320 
321 	rc = qp->q.fragments && (end - start) > max;
322 
323 	if (rc) {
324 		struct net *net;
325 
326 		net = container_of(qp->q.net, struct net, ipv4.frags);
327 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
328 	}
329 
330 	return rc;
331 }
332 
333 static int ip_frag_reinit(struct ipq *qp)
334 {
335 	struct sk_buff *fp;
336 	unsigned int sum_truesize = 0;
337 
338 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
339 		atomic_inc(&qp->q.refcnt);
340 		return -ETIMEDOUT;
341 	}
342 
343 	fp = qp->q.fragments;
344 	do {
345 		struct sk_buff *xp = fp->next;
346 
347 		sum_truesize += fp->truesize;
348 		kfree_skb(fp);
349 		fp = xp;
350 	} while (fp);
351 	sub_frag_mem_limit(&qp->q, sum_truesize);
352 
353 	qp->q.last_in = 0;
354 	qp->q.len = 0;
355 	qp->q.meat = 0;
356 	qp->q.fragments = NULL;
357 	qp->q.fragments_tail = NULL;
358 	qp->iif = 0;
359 	qp->ecn = 0;
360 
361 	return 0;
362 }
363 
364 /* Add new segment to existing queue. */
365 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
366 {
367 	struct sk_buff *prev, *next;
368 	struct net_device *dev;
369 	int flags, offset;
370 	int ihl, end;
371 	int err = -ENOENT;
372 	u8 ecn;
373 
374 	if (qp->q.last_in & INET_FRAG_COMPLETE)
375 		goto err;
376 
377 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
378 	    unlikely(ip_frag_too_far(qp)) &&
379 	    unlikely(err = ip_frag_reinit(qp))) {
380 		ipq_kill(qp);
381 		goto err;
382 	}
383 
384 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
385 	offset = ntohs(ip_hdr(skb)->frag_off);
386 	flags = offset & ~IP_OFFSET;
387 	offset &= IP_OFFSET;
388 	offset <<= 3;		/* offset is in 8-byte chunks */
389 	ihl = ip_hdrlen(skb);
390 
391 	/* Determine the position of this fragment. */
392 	end = offset + skb->len - ihl;
393 	err = -EINVAL;
394 
395 	/* Is this the final fragment? */
396 	if ((flags & IP_MF) == 0) {
397 		/* If we already have some bits beyond end
398 		 * or have different end, the segment is corrupted.
399 		 */
400 		if (end < qp->q.len ||
401 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
402 			goto err;
403 		qp->q.last_in |= INET_FRAG_LAST_IN;
404 		qp->q.len = end;
405 	} else {
406 		if (end&7) {
407 			end &= ~7;
408 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
409 				skb->ip_summed = CHECKSUM_NONE;
410 		}
411 		if (end > qp->q.len) {
412 			/* Some bits beyond end -> corruption. */
413 			if (qp->q.last_in & INET_FRAG_LAST_IN)
414 				goto err;
415 			qp->q.len = end;
416 		}
417 	}
418 	if (end == offset)
419 		goto err;
420 
421 	err = -ENOMEM;
422 	if (pskb_pull(skb, ihl) == NULL)
423 		goto err;
424 
425 	err = pskb_trim_rcsum(skb, end - offset);
426 	if (err)
427 		goto err;
428 
429 	/* Find out which fragments are in front and at the back of us
430 	 * in the chain of fragments so far.  We must know where to put
431 	 * this fragment, right?
432 	 */
433 	prev = qp->q.fragments_tail;
434 	if (!prev || FRAG_CB(prev)->offset < offset) {
435 		next = NULL;
436 		goto found;
437 	}
438 	prev = NULL;
439 	for (next = qp->q.fragments; next != NULL; next = next->next) {
440 		if (FRAG_CB(next)->offset >= offset)
441 			break;	/* bingo! */
442 		prev = next;
443 	}
444 
445 found:
446 	/* We found where to put this one.  Check for overlap with
447 	 * preceding fragment, and, if needed, align things so that
448 	 * any overlaps are eliminated.
449 	 */
450 	if (prev) {
451 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
452 
453 		if (i > 0) {
454 			offset += i;
455 			err = -EINVAL;
456 			if (end <= offset)
457 				goto err;
458 			err = -ENOMEM;
459 			if (!pskb_pull(skb, i))
460 				goto err;
461 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
462 				skb->ip_summed = CHECKSUM_NONE;
463 		}
464 	}
465 
466 	err = -ENOMEM;
467 
468 	while (next && FRAG_CB(next)->offset < end) {
469 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
470 
471 		if (i < next->len) {
472 			/* Eat head of the next overlapped fragment
473 			 * and leave the loop. The next ones cannot overlap.
474 			 */
475 			if (!pskb_pull(next, i))
476 				goto err;
477 			FRAG_CB(next)->offset += i;
478 			qp->q.meat -= i;
479 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
480 				next->ip_summed = CHECKSUM_NONE;
481 			break;
482 		} else {
483 			struct sk_buff *free_it = next;
484 
485 			/* Old fragment is completely overridden with
486 			 * new one drop it.
487 			 */
488 			next = next->next;
489 
490 			if (prev)
491 				prev->next = next;
492 			else
493 				qp->q.fragments = next;
494 
495 			qp->q.meat -= free_it->len;
496 			sub_frag_mem_limit(&qp->q, free_it->truesize);
497 			kfree_skb(free_it);
498 		}
499 	}
500 
501 	FRAG_CB(skb)->offset = offset;
502 
503 	/* Insert this fragment in the chain of fragments. */
504 	skb->next = next;
505 	if (!next)
506 		qp->q.fragments_tail = skb;
507 	if (prev)
508 		prev->next = skb;
509 	else
510 		qp->q.fragments = skb;
511 
512 	dev = skb->dev;
513 	if (dev) {
514 		qp->iif = dev->ifindex;
515 		skb->dev = NULL;
516 	}
517 	qp->q.stamp = skb->tstamp;
518 	qp->q.meat += skb->len;
519 	qp->ecn |= ecn;
520 	add_frag_mem_limit(&qp->q, skb->truesize);
521 	if (offset == 0)
522 		qp->q.last_in |= INET_FRAG_FIRST_IN;
523 
524 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
525 	    skb->len + ihl > qp->q.max_size)
526 		qp->q.max_size = skb->len + ihl;
527 
528 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
529 	    qp->q.meat == qp->q.len)
530 		return ip_frag_reasm(qp, prev, dev);
531 
532 	inet_frag_lru_move(&qp->q);
533 	return -EINPROGRESS;
534 
535 err:
536 	kfree_skb(skb);
537 	return err;
538 }
539 
540 
541 /* Build a new IP datagram from all its fragments. */
542 
543 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
544 			 struct net_device *dev)
545 {
546 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
547 	struct iphdr *iph;
548 	struct sk_buff *fp, *head = qp->q.fragments;
549 	int len;
550 	int ihlen;
551 	int err;
552 	int sum_truesize;
553 	u8 ecn;
554 
555 	ipq_kill(qp);
556 
557 	ecn = ip4_frag_ecn_table[qp->ecn];
558 	if (unlikely(ecn == 0xff)) {
559 		err = -EINVAL;
560 		goto out_fail;
561 	}
562 	/* Make the one we just received the head. */
563 	if (prev) {
564 		head = prev->next;
565 		fp = skb_clone(head, GFP_ATOMIC);
566 		if (!fp)
567 			goto out_nomem;
568 
569 		fp->next = head->next;
570 		if (!fp->next)
571 			qp->q.fragments_tail = fp;
572 		prev->next = fp;
573 
574 		skb_morph(head, qp->q.fragments);
575 		head->next = qp->q.fragments->next;
576 
577 		consume_skb(qp->q.fragments);
578 		qp->q.fragments = head;
579 	}
580 
581 	WARN_ON(head == NULL);
582 	WARN_ON(FRAG_CB(head)->offset != 0);
583 
584 	/* Allocate a new buffer for the datagram. */
585 	ihlen = ip_hdrlen(head);
586 	len = ihlen + qp->q.len;
587 
588 	err = -E2BIG;
589 	if (len > 65535)
590 		goto out_oversize;
591 
592 	/* Head of list must not be cloned. */
593 	if (skb_unclone(head, GFP_ATOMIC))
594 		goto out_nomem;
595 
596 	/* If the first fragment is fragmented itself, we split
597 	 * it to two chunks: the first with data and paged part
598 	 * and the second, holding only fragments. */
599 	if (skb_has_frag_list(head)) {
600 		struct sk_buff *clone;
601 		int i, plen = 0;
602 
603 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
604 			goto out_nomem;
605 		clone->next = head->next;
606 		head->next = clone;
607 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
608 		skb_frag_list_init(head);
609 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
610 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
611 		clone->len = clone->data_len = head->data_len - plen;
612 		head->data_len -= clone->len;
613 		head->len -= clone->len;
614 		clone->csum = 0;
615 		clone->ip_summed = head->ip_summed;
616 		add_frag_mem_limit(&qp->q, clone->truesize);
617 	}
618 
619 	skb_push(head, head->data - skb_network_header(head));
620 
621 	sum_truesize = head->truesize;
622 	for (fp = head->next; fp;) {
623 		bool headstolen;
624 		int delta;
625 		struct sk_buff *next = fp->next;
626 
627 		sum_truesize += fp->truesize;
628 		if (head->ip_summed != fp->ip_summed)
629 			head->ip_summed = CHECKSUM_NONE;
630 		else if (head->ip_summed == CHECKSUM_COMPLETE)
631 			head->csum = csum_add(head->csum, fp->csum);
632 
633 		if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
634 			kfree_skb_partial(fp, headstolen);
635 		} else {
636 			if (!skb_shinfo(head)->frag_list)
637 				skb_shinfo(head)->frag_list = fp;
638 			head->data_len += fp->len;
639 			head->len += fp->len;
640 			head->truesize += fp->truesize;
641 		}
642 		fp = next;
643 	}
644 	sub_frag_mem_limit(&qp->q, sum_truesize);
645 
646 	head->next = NULL;
647 	head->dev = dev;
648 	head->tstamp = qp->q.stamp;
649 	IPCB(head)->frag_max_size = qp->q.max_size;
650 
651 	iph = ip_hdr(head);
652 	/* max_size != 0 implies at least one fragment had IP_DF set */
653 	iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0;
654 	iph->tot_len = htons(len);
655 	iph->tos |= ecn;
656 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
657 	qp->q.fragments = NULL;
658 	qp->q.fragments_tail = NULL;
659 	return 0;
660 
661 out_nomem:
662 	LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"),
663 		       qp);
664 	err = -ENOMEM;
665 	goto out_fail;
666 out_oversize:
667 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
668 out_fail:
669 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
670 	return err;
671 }
672 
673 /* Process an incoming IP datagram fragment. */
674 int ip_defrag(struct sk_buff *skb, u32 user)
675 {
676 	struct ipq *qp;
677 	struct net *net;
678 
679 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
680 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
681 
682 	/* Start by cleaning up the memory. */
683 	ip_evictor(net);
684 
685 	/* Lookup (or create) queue header */
686 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
687 		int ret;
688 
689 		spin_lock(&qp->q.lock);
690 
691 		ret = ip_frag_queue(qp, skb);
692 
693 		spin_unlock(&qp->q.lock);
694 		ipq_put(qp);
695 		return ret;
696 	}
697 
698 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
699 	kfree_skb(skb);
700 	return -ENOMEM;
701 }
702 EXPORT_SYMBOL(ip_defrag);
703 
704 struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
705 {
706 	struct iphdr iph;
707 	u32 len;
708 
709 	if (skb->protocol != htons(ETH_P_IP))
710 		return skb;
711 
712 	if (!skb_copy_bits(skb, 0, &iph, sizeof(iph)))
713 		return skb;
714 
715 	if (iph.ihl < 5 || iph.version != 4)
716 		return skb;
717 
718 	len = ntohs(iph.tot_len);
719 	if (skb->len < len || len < (iph.ihl * 4))
720 		return skb;
721 
722 	if (ip_is_fragment(&iph)) {
723 		skb = skb_share_check(skb, GFP_ATOMIC);
724 		if (skb) {
725 			if (!pskb_may_pull(skb, iph.ihl*4))
726 				return skb;
727 			if (pskb_trim_rcsum(skb, len))
728 				return skb;
729 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
730 			if (ip_defrag(skb, user))
731 				return NULL;
732 			skb->rxhash = 0;
733 		}
734 	}
735 	return skb;
736 }
737 EXPORT_SYMBOL(ip_check_defrag);
738 
739 #ifdef CONFIG_SYSCTL
740 static int zero;
741 
742 static struct ctl_table ip4_frags_ns_ctl_table[] = {
743 	{
744 		.procname	= "ipfrag_high_thresh",
745 		.data		= &init_net.ipv4.frags.high_thresh,
746 		.maxlen		= sizeof(int),
747 		.mode		= 0644,
748 		.proc_handler	= proc_dointvec
749 	},
750 	{
751 		.procname	= "ipfrag_low_thresh",
752 		.data		= &init_net.ipv4.frags.low_thresh,
753 		.maxlen		= sizeof(int),
754 		.mode		= 0644,
755 		.proc_handler	= proc_dointvec
756 	},
757 	{
758 		.procname	= "ipfrag_time",
759 		.data		= &init_net.ipv4.frags.timeout,
760 		.maxlen		= sizeof(int),
761 		.mode		= 0644,
762 		.proc_handler	= proc_dointvec_jiffies,
763 	},
764 	{ }
765 };
766 
767 static struct ctl_table ip4_frags_ctl_table[] = {
768 	{
769 		.procname	= "ipfrag_secret_interval",
770 		.data		= &ip4_frags.secret_interval,
771 		.maxlen		= sizeof(int),
772 		.mode		= 0644,
773 		.proc_handler	= proc_dointvec_jiffies,
774 	},
775 	{
776 		.procname	= "ipfrag_max_dist",
777 		.data		= &sysctl_ipfrag_max_dist,
778 		.maxlen		= sizeof(int),
779 		.mode		= 0644,
780 		.proc_handler	= proc_dointvec_minmax,
781 		.extra1		= &zero
782 	},
783 	{ }
784 };
785 
786 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
787 {
788 	struct ctl_table *table;
789 	struct ctl_table_header *hdr;
790 
791 	table = ip4_frags_ns_ctl_table;
792 	if (!net_eq(net, &init_net)) {
793 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
794 		if (table == NULL)
795 			goto err_alloc;
796 
797 		table[0].data = &net->ipv4.frags.high_thresh;
798 		table[1].data = &net->ipv4.frags.low_thresh;
799 		table[2].data = &net->ipv4.frags.timeout;
800 
801 		/* Don't export sysctls to unprivileged users */
802 		if (net->user_ns != &init_user_ns)
803 			table[0].procname = NULL;
804 	}
805 
806 	hdr = register_net_sysctl(net, "net/ipv4", table);
807 	if (hdr == NULL)
808 		goto err_reg;
809 
810 	net->ipv4.frags_hdr = hdr;
811 	return 0;
812 
813 err_reg:
814 	if (!net_eq(net, &init_net))
815 		kfree(table);
816 err_alloc:
817 	return -ENOMEM;
818 }
819 
820 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
821 {
822 	struct ctl_table *table;
823 
824 	table = net->ipv4.frags_hdr->ctl_table_arg;
825 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
826 	kfree(table);
827 }
828 
829 static void ip4_frags_ctl_register(void)
830 {
831 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
832 }
833 #else
834 static inline int ip4_frags_ns_ctl_register(struct net *net)
835 {
836 	return 0;
837 }
838 
839 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
840 {
841 }
842 
843 static inline void ip4_frags_ctl_register(void)
844 {
845 }
846 #endif
847 
848 static int __net_init ipv4_frags_init_net(struct net *net)
849 {
850 	/* Fragment cache limits.
851 	 *
852 	 * The fragment memory accounting code, (tries to) account for
853 	 * the real memory usage, by measuring both the size of frag
854 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
855 	 * and the SKB's truesize.
856 	 *
857 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
858 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
859 	 *
860 	 * We will commit 4MB at one time. Should we cross that limit
861 	 * we will prune down to 3MB, making room for approx 8 big 64K
862 	 * fragments 8x128k.
863 	 */
864 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
865 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
866 	/*
867 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
868 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
869 	 * by TTL.
870 	 */
871 	net->ipv4.frags.timeout = IP_FRAG_TIME;
872 
873 	inet_frags_init_net(&net->ipv4.frags);
874 
875 	return ip4_frags_ns_ctl_register(net);
876 }
877 
878 static void __net_exit ipv4_frags_exit_net(struct net *net)
879 {
880 	ip4_frags_ns_ctl_unregister(net);
881 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
882 }
883 
884 static struct pernet_operations ip4_frags_ops = {
885 	.init = ipv4_frags_init_net,
886 	.exit = ipv4_frags_exit_net,
887 };
888 
889 void __init ipfrag_init(void)
890 {
891 	ip4_frags_ctl_register();
892 	register_pernet_subsys(&ip4_frags_ops);
893 	ip4_frags.hashfn = ip4_hashfn;
894 	ip4_frags.constructor = ip4_frag_init;
895 	ip4_frags.destructor = ip4_frag_free;
896 	ip4_frags.skb_free = NULL;
897 	ip4_frags.qsize = sizeof(struct ipq);
898 	ip4_frags.match = ip4_frag_match;
899 	ip4_frags.frag_expire = ip_expire;
900 	ip4_frags.secret_interval = 10 * 60 * HZ;
901 	inet_frags_init(&ip4_frags);
902 }
903