xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 84d517f3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #define pr_fmt(fmt) "IPv4: " fmt
24 
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 
52 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
53  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
54  * as well. Or notify me, at least. --ANK
55  */
56 
57 static int sysctl_ipfrag_max_dist __read_mostly = 64;
58 
59 struct ipfrag_skb_cb
60 {
61 	struct inet_skb_parm	h;
62 	int			offset;
63 };
64 
65 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
66 
67 /* Describe an entry in the "incomplete datagrams" queue. */
68 struct ipq {
69 	struct inet_frag_queue q;
70 
71 	u32		user;
72 	__be32		saddr;
73 	__be32		daddr;
74 	__be16		id;
75 	u8		protocol;
76 	u8		ecn; /* RFC3168 support */
77 	int             iif;
78 	unsigned int    rid;
79 	struct inet_peer *peer;
80 };
81 
82 static inline u8 ip4_frag_ecn(u8 tos)
83 {
84 	return 1 << (tos & INET_ECN_MASK);
85 }
86 
87 static struct inet_frags ip4_frags;
88 
89 int ip_frag_nqueues(struct net *net)
90 {
91 	return net->ipv4.frags.nqueues;
92 }
93 
94 int ip_frag_mem(struct net *net)
95 {
96 	return sum_frag_mem_limit(&net->ipv4.frags);
97 }
98 
99 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
100 			 struct net_device *dev);
101 
102 struct ip4_create_arg {
103 	struct iphdr *iph;
104 	u32 user;
105 };
106 
107 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
108 {
109 	net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
110 	return jhash_3words((__force u32)id << 16 | prot,
111 			    (__force u32)saddr, (__force u32)daddr,
112 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
113 }
114 
115 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
116 {
117 	struct ipq *ipq;
118 
119 	ipq = container_of(q, struct ipq, q);
120 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
121 }
122 
123 static bool ip4_frag_match(struct inet_frag_queue *q, void *a)
124 {
125 	struct ipq *qp;
126 	struct ip4_create_arg *arg = a;
127 
128 	qp = container_of(q, struct ipq, q);
129 	return	qp->id == arg->iph->id &&
130 		qp->saddr == arg->iph->saddr &&
131 		qp->daddr == arg->iph->daddr &&
132 		qp->protocol == arg->iph->protocol &&
133 		qp->user == arg->user;
134 }
135 
136 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
137 {
138 	struct ipq *qp = container_of(q, struct ipq, q);
139 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
140 					       frags);
141 	struct net *net = container_of(ipv4, struct net, ipv4);
142 
143 	struct ip4_create_arg *arg = a;
144 
145 	qp->protocol = arg->iph->protocol;
146 	qp->id = arg->iph->id;
147 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
148 	qp->saddr = arg->iph->saddr;
149 	qp->daddr = arg->iph->daddr;
150 	qp->user = arg->user;
151 	qp->peer = sysctl_ipfrag_max_dist ?
152 		inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
153 }
154 
155 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
156 {
157 	struct ipq *qp;
158 
159 	qp = container_of(q, struct ipq, q);
160 	if (qp->peer)
161 		inet_putpeer(qp->peer);
162 }
163 
164 
165 /* Destruction primitives. */
166 
167 static __inline__ void ipq_put(struct ipq *ipq)
168 {
169 	inet_frag_put(&ipq->q, &ip4_frags);
170 }
171 
172 /* Kill ipq entry. It is not destroyed immediately,
173  * because caller (and someone more) holds reference count.
174  */
175 static void ipq_kill(struct ipq *ipq)
176 {
177 	inet_frag_kill(&ipq->q, &ip4_frags);
178 }
179 
180 /* Memory limiting on fragments.  Evictor trashes the oldest
181  * fragment queue until we are back under the threshold.
182  */
183 static void ip_evictor(struct net *net)
184 {
185 	int evicted;
186 
187 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags, false);
188 	if (evicted)
189 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
190 }
191 
192 /*
193  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
194  */
195 static void ip_expire(unsigned long arg)
196 {
197 	struct ipq *qp;
198 	struct net *net;
199 
200 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
201 	net = container_of(qp->q.net, struct net, ipv4.frags);
202 
203 	spin_lock(&qp->q.lock);
204 
205 	if (qp->q.last_in & INET_FRAG_COMPLETE)
206 		goto out;
207 
208 	ipq_kill(qp);
209 
210 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
211 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
212 
213 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
214 		struct sk_buff *head = qp->q.fragments;
215 		const struct iphdr *iph;
216 		int err;
217 
218 		rcu_read_lock();
219 		head->dev = dev_get_by_index_rcu(net, qp->iif);
220 		if (!head->dev)
221 			goto out_rcu_unlock;
222 
223 		/* skb has no dst, perform route lookup again */
224 		iph = ip_hdr(head);
225 		err = ip_route_input_noref(head, iph->daddr, iph->saddr,
226 					   iph->tos, head->dev);
227 		if (err)
228 			goto out_rcu_unlock;
229 
230 		/*
231 		 * Only an end host needs to send an ICMP
232 		 * "Fragment Reassembly Timeout" message, per RFC792.
233 		 */
234 		if (qp->user == IP_DEFRAG_AF_PACKET ||
235 		    ((qp->user >= IP_DEFRAG_CONNTRACK_IN) &&
236 		     (qp->user <= __IP_DEFRAG_CONNTRACK_IN_END) &&
237 		     (skb_rtable(head)->rt_type != RTN_LOCAL)))
238 			goto out_rcu_unlock;
239 
240 
241 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
242 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
243 out_rcu_unlock:
244 		rcu_read_unlock();
245 	}
246 out:
247 	spin_unlock(&qp->q.lock);
248 	ipq_put(qp);
249 }
250 
251 /* Find the correct entry in the "incomplete datagrams" queue for
252  * this IP datagram, and create new one, if nothing is found.
253  */
254 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
255 {
256 	struct inet_frag_queue *q;
257 	struct ip4_create_arg arg;
258 	unsigned int hash;
259 
260 	arg.iph = iph;
261 	arg.user = user;
262 
263 	read_lock(&ip4_frags.lock);
264 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
265 
266 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
267 	if (IS_ERR_OR_NULL(q)) {
268 		inet_frag_maybe_warn_overflow(q, pr_fmt());
269 		return NULL;
270 	}
271 	return container_of(q, struct ipq, q);
272 }
273 
274 /* Is the fragment too far ahead to be part of ipq? */
275 static inline int ip_frag_too_far(struct ipq *qp)
276 {
277 	struct inet_peer *peer = qp->peer;
278 	unsigned int max = sysctl_ipfrag_max_dist;
279 	unsigned int start, end;
280 
281 	int rc;
282 
283 	if (!peer || !max)
284 		return 0;
285 
286 	start = qp->rid;
287 	end = atomic_inc_return(&peer->rid);
288 	qp->rid = end;
289 
290 	rc = qp->q.fragments && (end - start) > max;
291 
292 	if (rc) {
293 		struct net *net;
294 
295 		net = container_of(qp->q.net, struct net, ipv4.frags);
296 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
297 	}
298 
299 	return rc;
300 }
301 
302 static int ip_frag_reinit(struct ipq *qp)
303 {
304 	struct sk_buff *fp;
305 	unsigned int sum_truesize = 0;
306 
307 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
308 		atomic_inc(&qp->q.refcnt);
309 		return -ETIMEDOUT;
310 	}
311 
312 	fp = qp->q.fragments;
313 	do {
314 		struct sk_buff *xp = fp->next;
315 
316 		sum_truesize += fp->truesize;
317 		kfree_skb(fp);
318 		fp = xp;
319 	} while (fp);
320 	sub_frag_mem_limit(&qp->q, sum_truesize);
321 
322 	qp->q.last_in = 0;
323 	qp->q.len = 0;
324 	qp->q.meat = 0;
325 	qp->q.fragments = NULL;
326 	qp->q.fragments_tail = NULL;
327 	qp->iif = 0;
328 	qp->ecn = 0;
329 
330 	return 0;
331 }
332 
333 /* Add new segment to existing queue. */
334 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
335 {
336 	struct sk_buff *prev, *next;
337 	struct net_device *dev;
338 	int flags, offset;
339 	int ihl, end;
340 	int err = -ENOENT;
341 	u8 ecn;
342 
343 	if (qp->q.last_in & INET_FRAG_COMPLETE)
344 		goto err;
345 
346 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
347 	    unlikely(ip_frag_too_far(qp)) &&
348 	    unlikely(err = ip_frag_reinit(qp))) {
349 		ipq_kill(qp);
350 		goto err;
351 	}
352 
353 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
354 	offset = ntohs(ip_hdr(skb)->frag_off);
355 	flags = offset & ~IP_OFFSET;
356 	offset &= IP_OFFSET;
357 	offset <<= 3;		/* offset is in 8-byte chunks */
358 	ihl = ip_hdrlen(skb);
359 
360 	/* Determine the position of this fragment. */
361 	end = offset + skb->len - ihl;
362 	err = -EINVAL;
363 
364 	/* Is this the final fragment? */
365 	if ((flags & IP_MF) == 0) {
366 		/* If we already have some bits beyond end
367 		 * or have different end, the segment is corrupted.
368 		 */
369 		if (end < qp->q.len ||
370 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
371 			goto err;
372 		qp->q.last_in |= INET_FRAG_LAST_IN;
373 		qp->q.len = end;
374 	} else {
375 		if (end&7) {
376 			end &= ~7;
377 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
378 				skb->ip_summed = CHECKSUM_NONE;
379 		}
380 		if (end > qp->q.len) {
381 			/* Some bits beyond end -> corruption. */
382 			if (qp->q.last_in & INET_FRAG_LAST_IN)
383 				goto err;
384 			qp->q.len = end;
385 		}
386 	}
387 	if (end == offset)
388 		goto err;
389 
390 	err = -ENOMEM;
391 	if (pskb_pull(skb, ihl) == NULL)
392 		goto err;
393 
394 	err = pskb_trim_rcsum(skb, end - offset);
395 	if (err)
396 		goto err;
397 
398 	/* Find out which fragments are in front and at the back of us
399 	 * in the chain of fragments so far.  We must know where to put
400 	 * this fragment, right?
401 	 */
402 	prev = qp->q.fragments_tail;
403 	if (!prev || FRAG_CB(prev)->offset < offset) {
404 		next = NULL;
405 		goto found;
406 	}
407 	prev = NULL;
408 	for (next = qp->q.fragments; next != NULL; next = next->next) {
409 		if (FRAG_CB(next)->offset >= offset)
410 			break;	/* bingo! */
411 		prev = next;
412 	}
413 
414 found:
415 	/* We found where to put this one.  Check for overlap with
416 	 * preceding fragment, and, if needed, align things so that
417 	 * any overlaps are eliminated.
418 	 */
419 	if (prev) {
420 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
421 
422 		if (i > 0) {
423 			offset += i;
424 			err = -EINVAL;
425 			if (end <= offset)
426 				goto err;
427 			err = -ENOMEM;
428 			if (!pskb_pull(skb, i))
429 				goto err;
430 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
431 				skb->ip_summed = CHECKSUM_NONE;
432 		}
433 	}
434 
435 	err = -ENOMEM;
436 
437 	while (next && FRAG_CB(next)->offset < end) {
438 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
439 
440 		if (i < next->len) {
441 			/* Eat head of the next overlapped fragment
442 			 * and leave the loop. The next ones cannot overlap.
443 			 */
444 			if (!pskb_pull(next, i))
445 				goto err;
446 			FRAG_CB(next)->offset += i;
447 			qp->q.meat -= i;
448 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
449 				next->ip_summed = CHECKSUM_NONE;
450 			break;
451 		} else {
452 			struct sk_buff *free_it = next;
453 
454 			/* Old fragment is completely overridden with
455 			 * new one drop it.
456 			 */
457 			next = next->next;
458 
459 			if (prev)
460 				prev->next = next;
461 			else
462 				qp->q.fragments = next;
463 
464 			qp->q.meat -= free_it->len;
465 			sub_frag_mem_limit(&qp->q, free_it->truesize);
466 			kfree_skb(free_it);
467 		}
468 	}
469 
470 	FRAG_CB(skb)->offset = offset;
471 
472 	/* Insert this fragment in the chain of fragments. */
473 	skb->next = next;
474 	if (!next)
475 		qp->q.fragments_tail = skb;
476 	if (prev)
477 		prev->next = skb;
478 	else
479 		qp->q.fragments = skb;
480 
481 	dev = skb->dev;
482 	if (dev) {
483 		qp->iif = dev->ifindex;
484 		skb->dev = NULL;
485 	}
486 	qp->q.stamp = skb->tstamp;
487 	qp->q.meat += skb->len;
488 	qp->ecn |= ecn;
489 	add_frag_mem_limit(&qp->q, skb->truesize);
490 	if (offset == 0)
491 		qp->q.last_in |= INET_FRAG_FIRST_IN;
492 
493 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
494 	    skb->len + ihl > qp->q.max_size)
495 		qp->q.max_size = skb->len + ihl;
496 
497 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
498 	    qp->q.meat == qp->q.len) {
499 		unsigned long orefdst = skb->_skb_refdst;
500 
501 		skb->_skb_refdst = 0UL;
502 		err = ip_frag_reasm(qp, prev, dev);
503 		skb->_skb_refdst = orefdst;
504 		return err;
505 	}
506 
507 	skb_dst_drop(skb);
508 	inet_frag_lru_move(&qp->q);
509 	return -EINPROGRESS;
510 
511 err:
512 	kfree_skb(skb);
513 	return err;
514 }
515 
516 
517 /* Build a new IP datagram from all its fragments. */
518 
519 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
520 			 struct net_device *dev)
521 {
522 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
523 	struct iphdr *iph;
524 	struct sk_buff *fp, *head = qp->q.fragments;
525 	int len;
526 	int ihlen;
527 	int err;
528 	int sum_truesize;
529 	u8 ecn;
530 
531 	ipq_kill(qp);
532 
533 	ecn = ip_frag_ecn_table[qp->ecn];
534 	if (unlikely(ecn == 0xff)) {
535 		err = -EINVAL;
536 		goto out_fail;
537 	}
538 	/* Make the one we just received the head. */
539 	if (prev) {
540 		head = prev->next;
541 		fp = skb_clone(head, GFP_ATOMIC);
542 		if (!fp)
543 			goto out_nomem;
544 
545 		fp->next = head->next;
546 		if (!fp->next)
547 			qp->q.fragments_tail = fp;
548 		prev->next = fp;
549 
550 		skb_morph(head, qp->q.fragments);
551 		head->next = qp->q.fragments->next;
552 
553 		consume_skb(qp->q.fragments);
554 		qp->q.fragments = head;
555 	}
556 
557 	WARN_ON(head == NULL);
558 	WARN_ON(FRAG_CB(head)->offset != 0);
559 
560 	/* Allocate a new buffer for the datagram. */
561 	ihlen = ip_hdrlen(head);
562 	len = ihlen + qp->q.len;
563 
564 	err = -E2BIG;
565 	if (len > 65535)
566 		goto out_oversize;
567 
568 	/* Head of list must not be cloned. */
569 	if (skb_unclone(head, GFP_ATOMIC))
570 		goto out_nomem;
571 
572 	/* If the first fragment is fragmented itself, we split
573 	 * it to two chunks: the first with data and paged part
574 	 * and the second, holding only fragments. */
575 	if (skb_has_frag_list(head)) {
576 		struct sk_buff *clone;
577 		int i, plen = 0;
578 
579 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
580 			goto out_nomem;
581 		clone->next = head->next;
582 		head->next = clone;
583 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
584 		skb_frag_list_init(head);
585 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
586 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
587 		clone->len = clone->data_len = head->data_len - plen;
588 		head->data_len -= clone->len;
589 		head->len -= clone->len;
590 		clone->csum = 0;
591 		clone->ip_summed = head->ip_summed;
592 		add_frag_mem_limit(&qp->q, clone->truesize);
593 	}
594 
595 	skb_push(head, head->data - skb_network_header(head));
596 
597 	sum_truesize = head->truesize;
598 	for (fp = head->next; fp;) {
599 		bool headstolen;
600 		int delta;
601 		struct sk_buff *next = fp->next;
602 
603 		sum_truesize += fp->truesize;
604 		if (head->ip_summed != fp->ip_summed)
605 			head->ip_summed = CHECKSUM_NONE;
606 		else if (head->ip_summed == CHECKSUM_COMPLETE)
607 			head->csum = csum_add(head->csum, fp->csum);
608 
609 		if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
610 			kfree_skb_partial(fp, headstolen);
611 		} else {
612 			if (!skb_shinfo(head)->frag_list)
613 				skb_shinfo(head)->frag_list = fp;
614 			head->data_len += fp->len;
615 			head->len += fp->len;
616 			head->truesize += fp->truesize;
617 		}
618 		fp = next;
619 	}
620 	sub_frag_mem_limit(&qp->q, sum_truesize);
621 
622 	head->next = NULL;
623 	head->dev = dev;
624 	head->tstamp = qp->q.stamp;
625 	IPCB(head)->frag_max_size = qp->q.max_size;
626 
627 	iph = ip_hdr(head);
628 	/* max_size != 0 implies at least one fragment had IP_DF set */
629 	iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0;
630 	iph->tot_len = htons(len);
631 	iph->tos |= ecn;
632 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
633 	qp->q.fragments = NULL;
634 	qp->q.fragments_tail = NULL;
635 	return 0;
636 
637 out_nomem:
638 	LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"),
639 		       qp);
640 	err = -ENOMEM;
641 	goto out_fail;
642 out_oversize:
643 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
644 out_fail:
645 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
646 	return err;
647 }
648 
649 /* Process an incoming IP datagram fragment. */
650 int ip_defrag(struct sk_buff *skb, u32 user)
651 {
652 	struct ipq *qp;
653 	struct net *net;
654 
655 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
656 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
657 
658 	/* Start by cleaning up the memory. */
659 	ip_evictor(net);
660 
661 	/* Lookup (or create) queue header */
662 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
663 		int ret;
664 
665 		spin_lock(&qp->q.lock);
666 
667 		ret = ip_frag_queue(qp, skb);
668 
669 		spin_unlock(&qp->q.lock);
670 		ipq_put(qp);
671 		return ret;
672 	}
673 
674 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
675 	kfree_skb(skb);
676 	return -ENOMEM;
677 }
678 EXPORT_SYMBOL(ip_defrag);
679 
680 struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
681 {
682 	struct iphdr iph;
683 	u32 len;
684 
685 	if (skb->protocol != htons(ETH_P_IP))
686 		return skb;
687 
688 	if (!skb_copy_bits(skb, 0, &iph, sizeof(iph)))
689 		return skb;
690 
691 	if (iph.ihl < 5 || iph.version != 4)
692 		return skb;
693 
694 	len = ntohs(iph.tot_len);
695 	if (skb->len < len || len < (iph.ihl * 4))
696 		return skb;
697 
698 	if (ip_is_fragment(&iph)) {
699 		skb = skb_share_check(skb, GFP_ATOMIC);
700 		if (skb) {
701 			if (!pskb_may_pull(skb, iph.ihl*4))
702 				return skb;
703 			if (pskb_trim_rcsum(skb, len))
704 				return skb;
705 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
706 			if (ip_defrag(skb, user))
707 				return NULL;
708 			skb_clear_hash(skb);
709 		}
710 	}
711 	return skb;
712 }
713 EXPORT_SYMBOL(ip_check_defrag);
714 
715 #ifdef CONFIG_SYSCTL
716 static int zero;
717 
718 static struct ctl_table ip4_frags_ns_ctl_table[] = {
719 	{
720 		.procname	= "ipfrag_high_thresh",
721 		.data		= &init_net.ipv4.frags.high_thresh,
722 		.maxlen		= sizeof(int),
723 		.mode		= 0644,
724 		.proc_handler	= proc_dointvec
725 	},
726 	{
727 		.procname	= "ipfrag_low_thresh",
728 		.data		= &init_net.ipv4.frags.low_thresh,
729 		.maxlen		= sizeof(int),
730 		.mode		= 0644,
731 		.proc_handler	= proc_dointvec
732 	},
733 	{
734 		.procname	= "ipfrag_time",
735 		.data		= &init_net.ipv4.frags.timeout,
736 		.maxlen		= sizeof(int),
737 		.mode		= 0644,
738 		.proc_handler	= proc_dointvec_jiffies,
739 	},
740 	{ }
741 };
742 
743 static struct ctl_table ip4_frags_ctl_table[] = {
744 	{
745 		.procname	= "ipfrag_secret_interval",
746 		.data		= &ip4_frags.secret_interval,
747 		.maxlen		= sizeof(int),
748 		.mode		= 0644,
749 		.proc_handler	= proc_dointvec_jiffies,
750 	},
751 	{
752 		.procname	= "ipfrag_max_dist",
753 		.data		= &sysctl_ipfrag_max_dist,
754 		.maxlen		= sizeof(int),
755 		.mode		= 0644,
756 		.proc_handler	= proc_dointvec_minmax,
757 		.extra1		= &zero
758 	},
759 	{ }
760 };
761 
762 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
763 {
764 	struct ctl_table *table;
765 	struct ctl_table_header *hdr;
766 
767 	table = ip4_frags_ns_ctl_table;
768 	if (!net_eq(net, &init_net)) {
769 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
770 		if (table == NULL)
771 			goto err_alloc;
772 
773 		table[0].data = &net->ipv4.frags.high_thresh;
774 		table[1].data = &net->ipv4.frags.low_thresh;
775 		table[2].data = &net->ipv4.frags.timeout;
776 
777 		/* Don't export sysctls to unprivileged users */
778 		if (net->user_ns != &init_user_ns)
779 			table[0].procname = NULL;
780 	}
781 
782 	hdr = register_net_sysctl(net, "net/ipv4", table);
783 	if (hdr == NULL)
784 		goto err_reg;
785 
786 	net->ipv4.frags_hdr = hdr;
787 	return 0;
788 
789 err_reg:
790 	if (!net_eq(net, &init_net))
791 		kfree(table);
792 err_alloc:
793 	return -ENOMEM;
794 }
795 
796 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
797 {
798 	struct ctl_table *table;
799 
800 	table = net->ipv4.frags_hdr->ctl_table_arg;
801 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
802 	kfree(table);
803 }
804 
805 static void ip4_frags_ctl_register(void)
806 {
807 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
808 }
809 #else
810 static inline int ip4_frags_ns_ctl_register(struct net *net)
811 {
812 	return 0;
813 }
814 
815 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
816 {
817 }
818 
819 static inline void ip4_frags_ctl_register(void)
820 {
821 }
822 #endif
823 
824 static int __net_init ipv4_frags_init_net(struct net *net)
825 {
826 	/* Fragment cache limits.
827 	 *
828 	 * The fragment memory accounting code, (tries to) account for
829 	 * the real memory usage, by measuring both the size of frag
830 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
831 	 * and the SKB's truesize.
832 	 *
833 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
834 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
835 	 *
836 	 * We will commit 4MB at one time. Should we cross that limit
837 	 * we will prune down to 3MB, making room for approx 8 big 64K
838 	 * fragments 8x128k.
839 	 */
840 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
841 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
842 	/*
843 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
844 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
845 	 * by TTL.
846 	 */
847 	net->ipv4.frags.timeout = IP_FRAG_TIME;
848 
849 	inet_frags_init_net(&net->ipv4.frags);
850 
851 	return ip4_frags_ns_ctl_register(net);
852 }
853 
854 static void __net_exit ipv4_frags_exit_net(struct net *net)
855 {
856 	ip4_frags_ns_ctl_unregister(net);
857 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
858 }
859 
860 static struct pernet_operations ip4_frags_ops = {
861 	.init = ipv4_frags_init_net,
862 	.exit = ipv4_frags_exit_net,
863 };
864 
865 void __init ipfrag_init(void)
866 {
867 	ip4_frags_ctl_register();
868 	register_pernet_subsys(&ip4_frags_ops);
869 	ip4_frags.hashfn = ip4_hashfn;
870 	ip4_frags.constructor = ip4_frag_init;
871 	ip4_frags.destructor = ip4_frag_free;
872 	ip4_frags.skb_free = NULL;
873 	ip4_frags.qsize = sizeof(struct ipq);
874 	ip4_frags.match = ip4_frag_match;
875 	ip4_frags.frag_expire = ip_expire;
876 	ip4_frags.secret_interval = 10 * 60 * HZ;
877 	inet_frags_init(&ip4_frags);
878 }
879