1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 9 * Alan Cox <alan@lxorguk.ukuu.org.uk> 10 * 11 * Fixes: 12 * Alan Cox : Split from ip.c , see ip_input.c for history. 13 * David S. Miller : Begin massive cleanup... 14 * Andi Kleen : Add sysctls. 15 * xxxx : Overlapfrag bug. 16 * Ultima : ip_expire() kernel panic. 17 * Bill Hawes : Frag accounting and evictor fixes. 18 * John McDonald : 0 length frag bug. 19 * Alexey Kuznetsov: SMP races, threading, cleanup. 20 * Patrick McHardy : LRU queue of frag heads for evictor. 21 */ 22 23 #include <linux/compiler.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/jiffies.h> 28 #include <linux/skbuff.h> 29 #include <linux/list.h> 30 #include <linux/ip.h> 31 #include <linux/icmp.h> 32 #include <linux/netdevice.h> 33 #include <linux/jhash.h> 34 #include <linux/random.h> 35 #include <net/sock.h> 36 #include <net/ip.h> 37 #include <net/icmp.h> 38 #include <net/checksum.h> 39 #include <net/inetpeer.h> 40 #include <net/inet_frag.h> 41 #include <linux/tcp.h> 42 #include <linux/udp.h> 43 #include <linux/inet.h> 44 #include <linux/netfilter_ipv4.h> 45 46 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 47 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 48 * as well. Or notify me, at least. --ANK 49 */ 50 51 static int sysctl_ipfrag_max_dist __read_mostly = 64; 52 53 struct ipfrag_skb_cb 54 { 55 struct inet_skb_parm h; 56 int offset; 57 }; 58 59 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) 60 61 /* Describe an entry in the "incomplete datagrams" queue. */ 62 struct ipq { 63 struct inet_frag_queue q; 64 65 u32 user; 66 __be32 saddr; 67 __be32 daddr; 68 __be16 id; 69 u8 protocol; 70 int iif; 71 unsigned int rid; 72 struct inet_peer *peer; 73 }; 74 75 static struct inet_frags ip4_frags; 76 77 int ip_frag_nqueues(struct net *net) 78 { 79 return net->ipv4.frags.nqueues; 80 } 81 82 int ip_frag_mem(struct net *net) 83 { 84 return atomic_read(&net->ipv4.frags.mem); 85 } 86 87 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 88 struct net_device *dev); 89 90 struct ip4_create_arg { 91 struct iphdr *iph; 92 u32 user; 93 }; 94 95 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 96 { 97 return jhash_3words((__force u32)id << 16 | prot, 98 (__force u32)saddr, (__force u32)daddr, 99 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 100 } 101 102 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 103 { 104 struct ipq *ipq; 105 106 ipq = container_of(q, struct ipq, q); 107 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 108 } 109 110 static int ip4_frag_match(struct inet_frag_queue *q, void *a) 111 { 112 struct ipq *qp; 113 struct ip4_create_arg *arg = a; 114 115 qp = container_of(q, struct ipq, q); 116 return (qp->id == arg->iph->id && 117 qp->saddr == arg->iph->saddr && 118 qp->daddr == arg->iph->daddr && 119 qp->protocol == arg->iph->protocol && 120 qp->user == arg->user); 121 } 122 123 /* Memory Tracking Functions. */ 124 static __inline__ void frag_kfree_skb(struct netns_frags *nf, 125 struct sk_buff *skb, int *work) 126 { 127 if (work) 128 *work -= skb->truesize; 129 atomic_sub(skb->truesize, &nf->mem); 130 kfree_skb(skb); 131 } 132 133 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 134 { 135 struct ipq *qp = container_of(q, struct ipq, q); 136 struct ip4_create_arg *arg = a; 137 138 qp->protocol = arg->iph->protocol; 139 qp->id = arg->iph->id; 140 qp->saddr = arg->iph->saddr; 141 qp->daddr = arg->iph->daddr; 142 qp->user = arg->user; 143 qp->peer = sysctl_ipfrag_max_dist ? 144 inet_getpeer(arg->iph->saddr, 1) : NULL; 145 } 146 147 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 148 { 149 struct ipq *qp; 150 151 qp = container_of(q, struct ipq, q); 152 if (qp->peer) 153 inet_putpeer(qp->peer); 154 } 155 156 157 /* Destruction primitives. */ 158 159 static __inline__ void ipq_put(struct ipq *ipq) 160 { 161 inet_frag_put(&ipq->q, &ip4_frags); 162 } 163 164 /* Kill ipq entry. It is not destroyed immediately, 165 * because caller (and someone more) holds reference count. 166 */ 167 static void ipq_kill(struct ipq *ipq) 168 { 169 inet_frag_kill(&ipq->q, &ip4_frags); 170 } 171 172 /* Memory limiting on fragments. Evictor trashes the oldest 173 * fragment queue until we are back under the threshold. 174 */ 175 static void ip_evictor(struct net *net) 176 { 177 int evicted; 178 179 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); 180 if (evicted) 181 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted); 182 } 183 184 /* 185 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 186 */ 187 static void ip_expire(unsigned long arg) 188 { 189 struct ipq *qp; 190 struct net *net; 191 192 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 193 net = container_of(qp->q.net, struct net, ipv4.frags); 194 195 spin_lock(&qp->q.lock); 196 197 if (qp->q.last_in & INET_FRAG_COMPLETE) 198 goto out; 199 200 ipq_kill(qp); 201 202 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT); 203 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 204 205 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { 206 struct sk_buff *head = qp->q.fragments; 207 208 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 209 rcu_read_lock(); 210 head->dev = dev_get_by_index_rcu(net, qp->iif); 211 if (head->dev) 212 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 213 rcu_read_unlock(); 214 } 215 out: 216 spin_unlock(&qp->q.lock); 217 ipq_put(qp); 218 } 219 220 /* Find the correct entry in the "incomplete datagrams" queue for 221 * this IP datagram, and create new one, if nothing is found. 222 */ 223 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 224 { 225 struct inet_frag_queue *q; 226 struct ip4_create_arg arg; 227 unsigned int hash; 228 229 arg.iph = iph; 230 arg.user = user; 231 232 read_lock(&ip4_frags.lock); 233 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 234 235 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 236 if (q == NULL) 237 goto out_nomem; 238 239 return container_of(q, struct ipq, q); 240 241 out_nomem: 242 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 243 return NULL; 244 } 245 246 /* Is the fragment too far ahead to be part of ipq? */ 247 static inline int ip_frag_too_far(struct ipq *qp) 248 { 249 struct inet_peer *peer = qp->peer; 250 unsigned int max = sysctl_ipfrag_max_dist; 251 unsigned int start, end; 252 253 int rc; 254 255 if (!peer || !max) 256 return 0; 257 258 start = qp->rid; 259 end = atomic_inc_return(&peer->rid); 260 qp->rid = end; 261 262 rc = qp->q.fragments && (end - start) > max; 263 264 if (rc) { 265 struct net *net; 266 267 net = container_of(qp->q.net, struct net, ipv4.frags); 268 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 269 } 270 271 return rc; 272 } 273 274 static int ip_frag_reinit(struct ipq *qp) 275 { 276 struct sk_buff *fp; 277 278 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 279 atomic_inc(&qp->q.refcnt); 280 return -ETIMEDOUT; 281 } 282 283 fp = qp->q.fragments; 284 do { 285 struct sk_buff *xp = fp->next; 286 frag_kfree_skb(qp->q.net, fp, NULL); 287 fp = xp; 288 } while (fp); 289 290 qp->q.last_in = 0; 291 qp->q.len = 0; 292 qp->q.meat = 0; 293 qp->q.fragments = NULL; 294 qp->iif = 0; 295 296 return 0; 297 } 298 299 /* Add new segment to existing queue. */ 300 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 301 { 302 struct sk_buff *prev, *next; 303 struct net_device *dev; 304 int flags, offset; 305 int ihl, end; 306 int err = -ENOENT; 307 308 if (qp->q.last_in & INET_FRAG_COMPLETE) 309 goto err; 310 311 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 312 unlikely(ip_frag_too_far(qp)) && 313 unlikely(err = ip_frag_reinit(qp))) { 314 ipq_kill(qp); 315 goto err; 316 } 317 318 offset = ntohs(ip_hdr(skb)->frag_off); 319 flags = offset & ~IP_OFFSET; 320 offset &= IP_OFFSET; 321 offset <<= 3; /* offset is in 8-byte chunks */ 322 ihl = ip_hdrlen(skb); 323 324 /* Determine the position of this fragment. */ 325 end = offset + skb->len - ihl; 326 err = -EINVAL; 327 328 /* Is this the final fragment? */ 329 if ((flags & IP_MF) == 0) { 330 /* If we already have some bits beyond end 331 * or have different end, the segment is corrrupted. 332 */ 333 if (end < qp->q.len || 334 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) 335 goto err; 336 qp->q.last_in |= INET_FRAG_LAST_IN; 337 qp->q.len = end; 338 } else { 339 if (end&7) { 340 end &= ~7; 341 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 342 skb->ip_summed = CHECKSUM_NONE; 343 } 344 if (end > qp->q.len) { 345 /* Some bits beyond end -> corruption. */ 346 if (qp->q.last_in & INET_FRAG_LAST_IN) 347 goto err; 348 qp->q.len = end; 349 } 350 } 351 if (end == offset) 352 goto err; 353 354 err = -ENOMEM; 355 if (pskb_pull(skb, ihl) == NULL) 356 goto err; 357 358 err = pskb_trim_rcsum(skb, end - offset); 359 if (err) 360 goto err; 361 362 /* Find out which fragments are in front and at the back of us 363 * in the chain of fragments so far. We must know where to put 364 * this fragment, right? 365 */ 366 prev = NULL; 367 for (next = qp->q.fragments; next != NULL; next = next->next) { 368 if (FRAG_CB(next)->offset >= offset) 369 break; /* bingo! */ 370 prev = next; 371 } 372 373 /* We found where to put this one. Check for overlap with 374 * preceding fragment, and, if needed, align things so that 375 * any overlaps are eliminated. 376 */ 377 if (prev) { 378 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 379 380 if (i > 0) { 381 offset += i; 382 err = -EINVAL; 383 if (end <= offset) 384 goto err; 385 err = -ENOMEM; 386 if (!pskb_pull(skb, i)) 387 goto err; 388 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 389 skb->ip_summed = CHECKSUM_NONE; 390 } 391 } 392 393 err = -ENOMEM; 394 395 while (next && FRAG_CB(next)->offset < end) { 396 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 397 398 if (i < next->len) { 399 /* Eat head of the next overlapped fragment 400 * and leave the loop. The next ones cannot overlap. 401 */ 402 if (!pskb_pull(next, i)) 403 goto err; 404 FRAG_CB(next)->offset += i; 405 qp->q.meat -= i; 406 if (next->ip_summed != CHECKSUM_UNNECESSARY) 407 next->ip_summed = CHECKSUM_NONE; 408 break; 409 } else { 410 struct sk_buff *free_it = next; 411 412 /* Old fragment is completely overridden with 413 * new one drop it. 414 */ 415 next = next->next; 416 417 if (prev) 418 prev->next = next; 419 else 420 qp->q.fragments = next; 421 422 qp->q.meat -= free_it->len; 423 frag_kfree_skb(qp->q.net, free_it, NULL); 424 } 425 } 426 427 FRAG_CB(skb)->offset = offset; 428 429 /* Insert this fragment in the chain of fragments. */ 430 skb->next = next; 431 if (prev) 432 prev->next = skb; 433 else 434 qp->q.fragments = skb; 435 436 dev = skb->dev; 437 if (dev) { 438 qp->iif = dev->ifindex; 439 skb->dev = NULL; 440 } 441 qp->q.stamp = skb->tstamp; 442 qp->q.meat += skb->len; 443 atomic_add(skb->truesize, &qp->q.net->mem); 444 if (offset == 0) 445 qp->q.last_in |= INET_FRAG_FIRST_IN; 446 447 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 448 qp->q.meat == qp->q.len) 449 return ip_frag_reasm(qp, prev, dev); 450 451 write_lock(&ip4_frags.lock); 452 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); 453 write_unlock(&ip4_frags.lock); 454 return -EINPROGRESS; 455 456 err: 457 kfree_skb(skb); 458 return err; 459 } 460 461 462 /* Build a new IP datagram from all its fragments. */ 463 464 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 465 struct net_device *dev) 466 { 467 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 468 struct iphdr *iph; 469 struct sk_buff *fp, *head = qp->q.fragments; 470 int len; 471 int ihlen; 472 int err; 473 474 ipq_kill(qp); 475 476 /* Make the one we just received the head. */ 477 if (prev) { 478 head = prev->next; 479 fp = skb_clone(head, GFP_ATOMIC); 480 if (!fp) 481 goto out_nomem; 482 483 fp->next = head->next; 484 prev->next = fp; 485 486 skb_morph(head, qp->q.fragments); 487 head->next = qp->q.fragments->next; 488 489 kfree_skb(qp->q.fragments); 490 qp->q.fragments = head; 491 } 492 493 WARN_ON(head == NULL); 494 WARN_ON(FRAG_CB(head)->offset != 0); 495 496 /* Allocate a new buffer for the datagram. */ 497 ihlen = ip_hdrlen(head); 498 len = ihlen + qp->q.len; 499 500 err = -E2BIG; 501 if (len > 65535) 502 goto out_oversize; 503 504 /* Head of list must not be cloned. */ 505 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 506 goto out_nomem; 507 508 /* If the first fragment is fragmented itself, we split 509 * it to two chunks: the first with data and paged part 510 * and the second, holding only fragments. */ 511 if (skb_has_frags(head)) { 512 struct sk_buff *clone; 513 int i, plen = 0; 514 515 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 516 goto out_nomem; 517 clone->next = head->next; 518 head->next = clone; 519 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 520 skb_frag_list_init(head); 521 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 522 plen += skb_shinfo(head)->frags[i].size; 523 clone->len = clone->data_len = head->data_len - plen; 524 head->data_len -= clone->len; 525 head->len -= clone->len; 526 clone->csum = 0; 527 clone->ip_summed = head->ip_summed; 528 atomic_add(clone->truesize, &qp->q.net->mem); 529 } 530 531 skb_shinfo(head)->frag_list = head->next; 532 skb_push(head, head->data - skb_network_header(head)); 533 atomic_sub(head->truesize, &qp->q.net->mem); 534 535 for (fp=head->next; fp; fp = fp->next) { 536 head->data_len += fp->len; 537 head->len += fp->len; 538 if (head->ip_summed != fp->ip_summed) 539 head->ip_summed = CHECKSUM_NONE; 540 else if (head->ip_summed == CHECKSUM_COMPLETE) 541 head->csum = csum_add(head->csum, fp->csum); 542 head->truesize += fp->truesize; 543 atomic_sub(fp->truesize, &qp->q.net->mem); 544 } 545 546 head->next = NULL; 547 head->dev = dev; 548 head->tstamp = qp->q.stamp; 549 550 iph = ip_hdr(head); 551 iph->frag_off = 0; 552 iph->tot_len = htons(len); 553 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); 554 qp->q.fragments = NULL; 555 return 0; 556 557 out_nomem: 558 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 559 "queue %p\n", qp); 560 err = -ENOMEM; 561 goto out_fail; 562 out_oversize: 563 if (net_ratelimit()) 564 printk(KERN_INFO "Oversized IP packet from %pI4.\n", 565 &qp->saddr); 566 out_fail: 567 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 568 return err; 569 } 570 571 /* Process an incoming IP datagram fragment. */ 572 int ip_defrag(struct sk_buff *skb, u32 user) 573 { 574 struct ipq *qp; 575 struct net *net; 576 577 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev); 578 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS); 579 580 /* Start by cleaning up the memory. */ 581 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) 582 ip_evictor(net); 583 584 /* Lookup (or create) queue header */ 585 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 586 int ret; 587 588 spin_lock(&qp->q.lock); 589 590 ret = ip_frag_queue(qp, skb); 591 592 spin_unlock(&qp->q.lock); 593 ipq_put(qp); 594 return ret; 595 } 596 597 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 598 kfree_skb(skb); 599 return -ENOMEM; 600 } 601 602 #ifdef CONFIG_SYSCTL 603 static int zero; 604 605 static struct ctl_table ip4_frags_ns_ctl_table[] = { 606 { 607 .procname = "ipfrag_high_thresh", 608 .data = &init_net.ipv4.frags.high_thresh, 609 .maxlen = sizeof(int), 610 .mode = 0644, 611 .proc_handler = proc_dointvec 612 }, 613 { 614 .procname = "ipfrag_low_thresh", 615 .data = &init_net.ipv4.frags.low_thresh, 616 .maxlen = sizeof(int), 617 .mode = 0644, 618 .proc_handler = proc_dointvec 619 }, 620 { 621 .procname = "ipfrag_time", 622 .data = &init_net.ipv4.frags.timeout, 623 .maxlen = sizeof(int), 624 .mode = 0644, 625 .proc_handler = proc_dointvec_jiffies, 626 }, 627 { } 628 }; 629 630 static struct ctl_table ip4_frags_ctl_table[] = { 631 { 632 .procname = "ipfrag_secret_interval", 633 .data = &ip4_frags.secret_interval, 634 .maxlen = sizeof(int), 635 .mode = 0644, 636 .proc_handler = proc_dointvec_jiffies, 637 }, 638 { 639 .procname = "ipfrag_max_dist", 640 .data = &sysctl_ipfrag_max_dist, 641 .maxlen = sizeof(int), 642 .mode = 0644, 643 .proc_handler = proc_dointvec_minmax, 644 .extra1 = &zero 645 }, 646 { } 647 }; 648 649 static int ip4_frags_ns_ctl_register(struct net *net) 650 { 651 struct ctl_table *table; 652 struct ctl_table_header *hdr; 653 654 table = ip4_frags_ns_ctl_table; 655 if (!net_eq(net, &init_net)) { 656 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 657 if (table == NULL) 658 goto err_alloc; 659 660 table[0].data = &net->ipv4.frags.high_thresh; 661 table[1].data = &net->ipv4.frags.low_thresh; 662 table[2].data = &net->ipv4.frags.timeout; 663 } 664 665 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); 666 if (hdr == NULL) 667 goto err_reg; 668 669 net->ipv4.frags_hdr = hdr; 670 return 0; 671 672 err_reg: 673 if (!net_eq(net, &init_net)) 674 kfree(table); 675 err_alloc: 676 return -ENOMEM; 677 } 678 679 static void ip4_frags_ns_ctl_unregister(struct net *net) 680 { 681 struct ctl_table *table; 682 683 table = net->ipv4.frags_hdr->ctl_table_arg; 684 unregister_net_sysctl_table(net->ipv4.frags_hdr); 685 kfree(table); 686 } 687 688 static void ip4_frags_ctl_register(void) 689 { 690 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table); 691 } 692 #else 693 static inline int ip4_frags_ns_ctl_register(struct net *net) 694 { 695 return 0; 696 } 697 698 static inline void ip4_frags_ns_ctl_unregister(struct net *net) 699 { 700 } 701 702 static inline void ip4_frags_ctl_register(void) 703 { 704 } 705 #endif 706 707 static int ipv4_frags_init_net(struct net *net) 708 { 709 /* 710 * Fragment cache limits. We will commit 256K at one time. Should we 711 * cross that limit we will prune down to 192K. This should cope with 712 * even the most extreme cases without allowing an attacker to 713 * measurably harm machine performance. 714 */ 715 net->ipv4.frags.high_thresh = 256 * 1024; 716 net->ipv4.frags.low_thresh = 192 * 1024; 717 /* 718 * Important NOTE! Fragment queue must be destroyed before MSL expires. 719 * RFC791 is wrong proposing to prolongate timer each fragment arrival 720 * by TTL. 721 */ 722 net->ipv4.frags.timeout = IP_FRAG_TIME; 723 724 inet_frags_init_net(&net->ipv4.frags); 725 726 return ip4_frags_ns_ctl_register(net); 727 } 728 729 static void ipv4_frags_exit_net(struct net *net) 730 { 731 ip4_frags_ns_ctl_unregister(net); 732 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 733 } 734 735 static struct pernet_operations ip4_frags_ops = { 736 .init = ipv4_frags_init_net, 737 .exit = ipv4_frags_exit_net, 738 }; 739 740 void __init ipfrag_init(void) 741 { 742 ip4_frags_ctl_register(); 743 register_pernet_subsys(&ip4_frags_ops); 744 ip4_frags.hashfn = ip4_hashfn; 745 ip4_frags.constructor = ip4_frag_init; 746 ip4_frags.destructor = ip4_frag_free; 747 ip4_frags.skb_free = NULL; 748 ip4_frags.qsize = sizeof(struct ipq); 749 ip4_frags.match = ip4_frag_match; 750 ip4_frags.frag_expire = ip_expire; 751 ip4_frags.secret_interval = 10 * 60 * HZ; 752 inet_frags_init(&ip4_frags); 753 } 754 755 EXPORT_SYMBOL(ip_defrag); 756