xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 7dd65feb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <net/sock.h>
36 #include <net/ip.h>
37 #include <net/icmp.h>
38 #include <net/checksum.h>
39 #include <net/inetpeer.h>
40 #include <net/inet_frag.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/inet.h>
44 #include <linux/netfilter_ipv4.h>
45 
46 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
47  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
48  * as well. Or notify me, at least. --ANK
49  */
50 
51 static int sysctl_ipfrag_max_dist __read_mostly = 64;
52 
53 struct ipfrag_skb_cb
54 {
55 	struct inet_skb_parm	h;
56 	int			offset;
57 };
58 
59 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
60 
61 /* Describe an entry in the "incomplete datagrams" queue. */
62 struct ipq {
63 	struct inet_frag_queue q;
64 
65 	u32		user;
66 	__be32		saddr;
67 	__be32		daddr;
68 	__be16		id;
69 	u8		protocol;
70 	int             iif;
71 	unsigned int    rid;
72 	struct inet_peer *peer;
73 };
74 
75 static struct inet_frags ip4_frags;
76 
77 int ip_frag_nqueues(struct net *net)
78 {
79 	return net->ipv4.frags.nqueues;
80 }
81 
82 int ip_frag_mem(struct net *net)
83 {
84 	return atomic_read(&net->ipv4.frags.mem);
85 }
86 
87 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
88 			 struct net_device *dev);
89 
90 struct ip4_create_arg {
91 	struct iphdr *iph;
92 	u32 user;
93 };
94 
95 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
96 {
97 	return jhash_3words((__force u32)id << 16 | prot,
98 			    (__force u32)saddr, (__force u32)daddr,
99 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
100 }
101 
102 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
103 {
104 	struct ipq *ipq;
105 
106 	ipq = container_of(q, struct ipq, q);
107 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
108 }
109 
110 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
111 {
112 	struct ipq *qp;
113 	struct ip4_create_arg *arg = a;
114 
115 	qp = container_of(q, struct ipq, q);
116 	return (qp->id == arg->iph->id &&
117 			qp->saddr == arg->iph->saddr &&
118 			qp->daddr == arg->iph->daddr &&
119 			qp->protocol == arg->iph->protocol &&
120 			qp->user == arg->user);
121 }
122 
123 /* Memory Tracking Functions. */
124 static __inline__ void frag_kfree_skb(struct netns_frags *nf,
125 		struct sk_buff *skb, int *work)
126 {
127 	if (work)
128 		*work -= skb->truesize;
129 	atomic_sub(skb->truesize, &nf->mem);
130 	kfree_skb(skb);
131 }
132 
133 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
134 {
135 	struct ipq *qp = container_of(q, struct ipq, q);
136 	struct ip4_create_arg *arg = a;
137 
138 	qp->protocol = arg->iph->protocol;
139 	qp->id = arg->iph->id;
140 	qp->saddr = arg->iph->saddr;
141 	qp->daddr = arg->iph->daddr;
142 	qp->user = arg->user;
143 	qp->peer = sysctl_ipfrag_max_dist ?
144 		inet_getpeer(arg->iph->saddr, 1) : NULL;
145 }
146 
147 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
148 {
149 	struct ipq *qp;
150 
151 	qp = container_of(q, struct ipq, q);
152 	if (qp->peer)
153 		inet_putpeer(qp->peer);
154 }
155 
156 
157 /* Destruction primitives. */
158 
159 static __inline__ void ipq_put(struct ipq *ipq)
160 {
161 	inet_frag_put(&ipq->q, &ip4_frags);
162 }
163 
164 /* Kill ipq entry. It is not destroyed immediately,
165  * because caller (and someone more) holds reference count.
166  */
167 static void ipq_kill(struct ipq *ipq)
168 {
169 	inet_frag_kill(&ipq->q, &ip4_frags);
170 }
171 
172 /* Memory limiting on fragments.  Evictor trashes the oldest
173  * fragment queue until we are back under the threshold.
174  */
175 static void ip_evictor(struct net *net)
176 {
177 	int evicted;
178 
179 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
180 	if (evicted)
181 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
182 }
183 
184 /*
185  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
186  */
187 static void ip_expire(unsigned long arg)
188 {
189 	struct ipq *qp;
190 	struct net *net;
191 
192 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
193 	net = container_of(qp->q.net, struct net, ipv4.frags);
194 
195 	spin_lock(&qp->q.lock);
196 
197 	if (qp->q.last_in & INET_FRAG_COMPLETE)
198 		goto out;
199 
200 	ipq_kill(qp);
201 
202 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
203 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
204 
205 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
206 		struct sk_buff *head = qp->q.fragments;
207 
208 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
209 		rcu_read_lock();
210 		head->dev = dev_get_by_index_rcu(net, qp->iif);
211 		if (head->dev)
212 			icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
213 		rcu_read_unlock();
214 	}
215 out:
216 	spin_unlock(&qp->q.lock);
217 	ipq_put(qp);
218 }
219 
220 /* Find the correct entry in the "incomplete datagrams" queue for
221  * this IP datagram, and create new one, if nothing is found.
222  */
223 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
224 {
225 	struct inet_frag_queue *q;
226 	struct ip4_create_arg arg;
227 	unsigned int hash;
228 
229 	arg.iph = iph;
230 	arg.user = user;
231 
232 	read_lock(&ip4_frags.lock);
233 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
234 
235 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
236 	if (q == NULL)
237 		goto out_nomem;
238 
239 	return container_of(q, struct ipq, q);
240 
241 out_nomem:
242 	LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
243 	return NULL;
244 }
245 
246 /* Is the fragment too far ahead to be part of ipq? */
247 static inline int ip_frag_too_far(struct ipq *qp)
248 {
249 	struct inet_peer *peer = qp->peer;
250 	unsigned int max = sysctl_ipfrag_max_dist;
251 	unsigned int start, end;
252 
253 	int rc;
254 
255 	if (!peer || !max)
256 		return 0;
257 
258 	start = qp->rid;
259 	end = atomic_inc_return(&peer->rid);
260 	qp->rid = end;
261 
262 	rc = qp->q.fragments && (end - start) > max;
263 
264 	if (rc) {
265 		struct net *net;
266 
267 		net = container_of(qp->q.net, struct net, ipv4.frags);
268 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
269 	}
270 
271 	return rc;
272 }
273 
274 static int ip_frag_reinit(struct ipq *qp)
275 {
276 	struct sk_buff *fp;
277 
278 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
279 		atomic_inc(&qp->q.refcnt);
280 		return -ETIMEDOUT;
281 	}
282 
283 	fp = qp->q.fragments;
284 	do {
285 		struct sk_buff *xp = fp->next;
286 		frag_kfree_skb(qp->q.net, fp, NULL);
287 		fp = xp;
288 	} while (fp);
289 
290 	qp->q.last_in = 0;
291 	qp->q.len = 0;
292 	qp->q.meat = 0;
293 	qp->q.fragments = NULL;
294 	qp->iif = 0;
295 
296 	return 0;
297 }
298 
299 /* Add new segment to existing queue. */
300 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
301 {
302 	struct sk_buff *prev, *next;
303 	struct net_device *dev;
304 	int flags, offset;
305 	int ihl, end;
306 	int err = -ENOENT;
307 
308 	if (qp->q.last_in & INET_FRAG_COMPLETE)
309 		goto err;
310 
311 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
312 	    unlikely(ip_frag_too_far(qp)) &&
313 	    unlikely(err = ip_frag_reinit(qp))) {
314 		ipq_kill(qp);
315 		goto err;
316 	}
317 
318 	offset = ntohs(ip_hdr(skb)->frag_off);
319 	flags = offset & ~IP_OFFSET;
320 	offset &= IP_OFFSET;
321 	offset <<= 3;		/* offset is in 8-byte chunks */
322 	ihl = ip_hdrlen(skb);
323 
324 	/* Determine the position of this fragment. */
325 	end = offset + skb->len - ihl;
326 	err = -EINVAL;
327 
328 	/* Is this the final fragment? */
329 	if ((flags & IP_MF) == 0) {
330 		/* If we already have some bits beyond end
331 		 * or have different end, the segment is corrrupted.
332 		 */
333 		if (end < qp->q.len ||
334 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
335 			goto err;
336 		qp->q.last_in |= INET_FRAG_LAST_IN;
337 		qp->q.len = end;
338 	} else {
339 		if (end&7) {
340 			end &= ~7;
341 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
342 				skb->ip_summed = CHECKSUM_NONE;
343 		}
344 		if (end > qp->q.len) {
345 			/* Some bits beyond end -> corruption. */
346 			if (qp->q.last_in & INET_FRAG_LAST_IN)
347 				goto err;
348 			qp->q.len = end;
349 		}
350 	}
351 	if (end == offset)
352 		goto err;
353 
354 	err = -ENOMEM;
355 	if (pskb_pull(skb, ihl) == NULL)
356 		goto err;
357 
358 	err = pskb_trim_rcsum(skb, end - offset);
359 	if (err)
360 		goto err;
361 
362 	/* Find out which fragments are in front and at the back of us
363 	 * in the chain of fragments so far.  We must know where to put
364 	 * this fragment, right?
365 	 */
366 	prev = NULL;
367 	for (next = qp->q.fragments; next != NULL; next = next->next) {
368 		if (FRAG_CB(next)->offset >= offset)
369 			break;	/* bingo! */
370 		prev = next;
371 	}
372 
373 	/* We found where to put this one.  Check for overlap with
374 	 * preceding fragment, and, if needed, align things so that
375 	 * any overlaps are eliminated.
376 	 */
377 	if (prev) {
378 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
379 
380 		if (i > 0) {
381 			offset += i;
382 			err = -EINVAL;
383 			if (end <= offset)
384 				goto err;
385 			err = -ENOMEM;
386 			if (!pskb_pull(skb, i))
387 				goto err;
388 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
389 				skb->ip_summed = CHECKSUM_NONE;
390 		}
391 	}
392 
393 	err = -ENOMEM;
394 
395 	while (next && FRAG_CB(next)->offset < end) {
396 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
397 
398 		if (i < next->len) {
399 			/* Eat head of the next overlapped fragment
400 			 * and leave the loop. The next ones cannot overlap.
401 			 */
402 			if (!pskb_pull(next, i))
403 				goto err;
404 			FRAG_CB(next)->offset += i;
405 			qp->q.meat -= i;
406 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
407 				next->ip_summed = CHECKSUM_NONE;
408 			break;
409 		} else {
410 			struct sk_buff *free_it = next;
411 
412 			/* Old fragment is completely overridden with
413 			 * new one drop it.
414 			 */
415 			next = next->next;
416 
417 			if (prev)
418 				prev->next = next;
419 			else
420 				qp->q.fragments = next;
421 
422 			qp->q.meat -= free_it->len;
423 			frag_kfree_skb(qp->q.net, free_it, NULL);
424 		}
425 	}
426 
427 	FRAG_CB(skb)->offset = offset;
428 
429 	/* Insert this fragment in the chain of fragments. */
430 	skb->next = next;
431 	if (prev)
432 		prev->next = skb;
433 	else
434 		qp->q.fragments = skb;
435 
436 	dev = skb->dev;
437 	if (dev) {
438 		qp->iif = dev->ifindex;
439 		skb->dev = NULL;
440 	}
441 	qp->q.stamp = skb->tstamp;
442 	qp->q.meat += skb->len;
443 	atomic_add(skb->truesize, &qp->q.net->mem);
444 	if (offset == 0)
445 		qp->q.last_in |= INET_FRAG_FIRST_IN;
446 
447 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
448 	    qp->q.meat == qp->q.len)
449 		return ip_frag_reasm(qp, prev, dev);
450 
451 	write_lock(&ip4_frags.lock);
452 	list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
453 	write_unlock(&ip4_frags.lock);
454 	return -EINPROGRESS;
455 
456 err:
457 	kfree_skb(skb);
458 	return err;
459 }
460 
461 
462 /* Build a new IP datagram from all its fragments. */
463 
464 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
465 			 struct net_device *dev)
466 {
467 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
468 	struct iphdr *iph;
469 	struct sk_buff *fp, *head = qp->q.fragments;
470 	int len;
471 	int ihlen;
472 	int err;
473 
474 	ipq_kill(qp);
475 
476 	/* Make the one we just received the head. */
477 	if (prev) {
478 		head = prev->next;
479 		fp = skb_clone(head, GFP_ATOMIC);
480 		if (!fp)
481 			goto out_nomem;
482 
483 		fp->next = head->next;
484 		prev->next = fp;
485 
486 		skb_morph(head, qp->q.fragments);
487 		head->next = qp->q.fragments->next;
488 
489 		kfree_skb(qp->q.fragments);
490 		qp->q.fragments = head;
491 	}
492 
493 	WARN_ON(head == NULL);
494 	WARN_ON(FRAG_CB(head)->offset != 0);
495 
496 	/* Allocate a new buffer for the datagram. */
497 	ihlen = ip_hdrlen(head);
498 	len = ihlen + qp->q.len;
499 
500 	err = -E2BIG;
501 	if (len > 65535)
502 		goto out_oversize;
503 
504 	/* Head of list must not be cloned. */
505 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
506 		goto out_nomem;
507 
508 	/* If the first fragment is fragmented itself, we split
509 	 * it to two chunks: the first with data and paged part
510 	 * and the second, holding only fragments. */
511 	if (skb_has_frags(head)) {
512 		struct sk_buff *clone;
513 		int i, plen = 0;
514 
515 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
516 			goto out_nomem;
517 		clone->next = head->next;
518 		head->next = clone;
519 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
520 		skb_frag_list_init(head);
521 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
522 			plen += skb_shinfo(head)->frags[i].size;
523 		clone->len = clone->data_len = head->data_len - plen;
524 		head->data_len -= clone->len;
525 		head->len -= clone->len;
526 		clone->csum = 0;
527 		clone->ip_summed = head->ip_summed;
528 		atomic_add(clone->truesize, &qp->q.net->mem);
529 	}
530 
531 	skb_shinfo(head)->frag_list = head->next;
532 	skb_push(head, head->data - skb_network_header(head));
533 	atomic_sub(head->truesize, &qp->q.net->mem);
534 
535 	for (fp=head->next; fp; fp = fp->next) {
536 		head->data_len += fp->len;
537 		head->len += fp->len;
538 		if (head->ip_summed != fp->ip_summed)
539 			head->ip_summed = CHECKSUM_NONE;
540 		else if (head->ip_summed == CHECKSUM_COMPLETE)
541 			head->csum = csum_add(head->csum, fp->csum);
542 		head->truesize += fp->truesize;
543 		atomic_sub(fp->truesize, &qp->q.net->mem);
544 	}
545 
546 	head->next = NULL;
547 	head->dev = dev;
548 	head->tstamp = qp->q.stamp;
549 
550 	iph = ip_hdr(head);
551 	iph->frag_off = 0;
552 	iph->tot_len = htons(len);
553 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
554 	qp->q.fragments = NULL;
555 	return 0;
556 
557 out_nomem:
558 	LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
559 			      "queue %p\n", qp);
560 	err = -ENOMEM;
561 	goto out_fail;
562 out_oversize:
563 	if (net_ratelimit())
564 		printk(KERN_INFO "Oversized IP packet from %pI4.\n",
565 			&qp->saddr);
566 out_fail:
567 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
568 	return err;
569 }
570 
571 /* Process an incoming IP datagram fragment. */
572 int ip_defrag(struct sk_buff *skb, u32 user)
573 {
574 	struct ipq *qp;
575 	struct net *net;
576 
577 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
578 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
579 
580 	/* Start by cleaning up the memory. */
581 	if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
582 		ip_evictor(net);
583 
584 	/* Lookup (or create) queue header */
585 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
586 		int ret;
587 
588 		spin_lock(&qp->q.lock);
589 
590 		ret = ip_frag_queue(qp, skb);
591 
592 		spin_unlock(&qp->q.lock);
593 		ipq_put(qp);
594 		return ret;
595 	}
596 
597 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
598 	kfree_skb(skb);
599 	return -ENOMEM;
600 }
601 
602 #ifdef CONFIG_SYSCTL
603 static int zero;
604 
605 static struct ctl_table ip4_frags_ns_ctl_table[] = {
606 	{
607 		.procname	= "ipfrag_high_thresh",
608 		.data		= &init_net.ipv4.frags.high_thresh,
609 		.maxlen		= sizeof(int),
610 		.mode		= 0644,
611 		.proc_handler	= proc_dointvec
612 	},
613 	{
614 		.procname	= "ipfrag_low_thresh",
615 		.data		= &init_net.ipv4.frags.low_thresh,
616 		.maxlen		= sizeof(int),
617 		.mode		= 0644,
618 		.proc_handler	= proc_dointvec
619 	},
620 	{
621 		.procname	= "ipfrag_time",
622 		.data		= &init_net.ipv4.frags.timeout,
623 		.maxlen		= sizeof(int),
624 		.mode		= 0644,
625 		.proc_handler	= proc_dointvec_jiffies,
626 	},
627 	{ }
628 };
629 
630 static struct ctl_table ip4_frags_ctl_table[] = {
631 	{
632 		.procname	= "ipfrag_secret_interval",
633 		.data		= &ip4_frags.secret_interval,
634 		.maxlen		= sizeof(int),
635 		.mode		= 0644,
636 		.proc_handler	= proc_dointvec_jiffies,
637 	},
638 	{
639 		.procname	= "ipfrag_max_dist",
640 		.data		= &sysctl_ipfrag_max_dist,
641 		.maxlen		= sizeof(int),
642 		.mode		= 0644,
643 		.proc_handler	= proc_dointvec_minmax,
644 		.extra1		= &zero
645 	},
646 	{ }
647 };
648 
649 static int ip4_frags_ns_ctl_register(struct net *net)
650 {
651 	struct ctl_table *table;
652 	struct ctl_table_header *hdr;
653 
654 	table = ip4_frags_ns_ctl_table;
655 	if (!net_eq(net, &init_net)) {
656 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
657 		if (table == NULL)
658 			goto err_alloc;
659 
660 		table[0].data = &net->ipv4.frags.high_thresh;
661 		table[1].data = &net->ipv4.frags.low_thresh;
662 		table[2].data = &net->ipv4.frags.timeout;
663 	}
664 
665 	hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
666 	if (hdr == NULL)
667 		goto err_reg;
668 
669 	net->ipv4.frags_hdr = hdr;
670 	return 0;
671 
672 err_reg:
673 	if (!net_eq(net, &init_net))
674 		kfree(table);
675 err_alloc:
676 	return -ENOMEM;
677 }
678 
679 static void ip4_frags_ns_ctl_unregister(struct net *net)
680 {
681 	struct ctl_table *table;
682 
683 	table = net->ipv4.frags_hdr->ctl_table_arg;
684 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
685 	kfree(table);
686 }
687 
688 static void ip4_frags_ctl_register(void)
689 {
690 	register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
691 }
692 #else
693 static inline int ip4_frags_ns_ctl_register(struct net *net)
694 {
695 	return 0;
696 }
697 
698 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
699 {
700 }
701 
702 static inline void ip4_frags_ctl_register(void)
703 {
704 }
705 #endif
706 
707 static int ipv4_frags_init_net(struct net *net)
708 {
709 	/*
710 	 * Fragment cache limits. We will commit 256K at one time. Should we
711 	 * cross that limit we will prune down to 192K. This should cope with
712 	 * even the most extreme cases without allowing an attacker to
713 	 * measurably harm machine performance.
714 	 */
715 	net->ipv4.frags.high_thresh = 256 * 1024;
716 	net->ipv4.frags.low_thresh = 192 * 1024;
717 	/*
718 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
719 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
720 	 * by TTL.
721 	 */
722 	net->ipv4.frags.timeout = IP_FRAG_TIME;
723 
724 	inet_frags_init_net(&net->ipv4.frags);
725 
726 	return ip4_frags_ns_ctl_register(net);
727 }
728 
729 static void ipv4_frags_exit_net(struct net *net)
730 {
731 	ip4_frags_ns_ctl_unregister(net);
732 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
733 }
734 
735 static struct pernet_operations ip4_frags_ops = {
736 	.init = ipv4_frags_init_net,
737 	.exit = ipv4_frags_exit_net,
738 };
739 
740 void __init ipfrag_init(void)
741 {
742 	ip4_frags_ctl_register();
743 	register_pernet_subsys(&ip4_frags_ops);
744 	ip4_frags.hashfn = ip4_hashfn;
745 	ip4_frags.constructor = ip4_frag_init;
746 	ip4_frags.destructor = ip4_frag_free;
747 	ip4_frags.skb_free = NULL;
748 	ip4_frags.qsize = sizeof(struct ipq);
749 	ip4_frags.match = ip4_frag_match;
750 	ip4_frags.frag_expire = ip_expire;
751 	ip4_frags.secret_interval = 10 * 60 * HZ;
752 	inet_frags_init(&ip4_frags);
753 }
754 
755 EXPORT_SYMBOL(ip_defrag);
756