1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $ 9 * 10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox <Alan.Cox@linux.org> 12 * 13 * Fixes: 14 * Alan Cox : Split from ip.c , see ip_input.c for history. 15 * David S. Miller : Begin massive cleanup... 16 * Andi Kleen : Add sysctls. 17 * xxxx : Overlapfrag bug. 18 * Ultima : ip_expire() kernel panic. 19 * Bill Hawes : Frag accounting and evictor fixes. 20 * John McDonald : 0 length frag bug. 21 * Alexey Kuznetsov: SMP races, threading, cleanup. 22 * Patrick McHardy : LRU queue of frag heads for evictor. 23 */ 24 25 #include <linux/compiler.h> 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/mm.h> 29 #include <linux/jiffies.h> 30 #include <linux/skbuff.h> 31 #include <linux/list.h> 32 #include <linux/ip.h> 33 #include <linux/icmp.h> 34 #include <linux/netdevice.h> 35 #include <linux/jhash.h> 36 #include <linux/random.h> 37 #include <net/sock.h> 38 #include <net/ip.h> 39 #include <net/icmp.h> 40 #include <net/checksum.h> 41 #include <net/inetpeer.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/inet.h> 45 #include <linux/netfilter_ipv4.h> 46 47 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 48 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 49 * as well. Or notify me, at least. --ANK 50 */ 51 52 /* Fragment cache limits. We will commit 256K at one time. Should we 53 * cross that limit we will prune down to 192K. This should cope with 54 * even the most extreme cases without allowing an attacker to measurably 55 * harm machine performance. 56 */ 57 int sysctl_ipfrag_high_thresh __read_mostly = 256*1024; 58 int sysctl_ipfrag_low_thresh __read_mostly = 192*1024; 59 60 int sysctl_ipfrag_max_dist __read_mostly = 64; 61 62 /* Important NOTE! Fragment queue must be destroyed before MSL expires. 63 * RFC791 is wrong proposing to prolongate timer each fragment arrival by TTL. 64 */ 65 int sysctl_ipfrag_time __read_mostly = IP_FRAG_TIME; 66 67 struct ipfrag_skb_cb 68 { 69 struct inet_skb_parm h; 70 int offset; 71 }; 72 73 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb)) 74 75 /* Describe an entry in the "incomplete datagrams" queue. */ 76 struct ipq { 77 struct hlist_node list; 78 struct list_head lru_list; /* lru list member */ 79 u32 user; 80 __be32 saddr; 81 __be32 daddr; 82 __be16 id; 83 u8 protocol; 84 u8 last_in; 85 #define COMPLETE 4 86 #define FIRST_IN 2 87 #define LAST_IN 1 88 89 struct sk_buff *fragments; /* linked list of received fragments */ 90 int len; /* total length of original datagram */ 91 int meat; 92 spinlock_t lock; 93 atomic_t refcnt; 94 struct timer_list timer; /* when will this queue expire? */ 95 ktime_t stamp; 96 int iif; 97 unsigned int rid; 98 struct inet_peer *peer; 99 }; 100 101 /* Hash table. */ 102 103 #define IPQ_HASHSZ 64 104 105 /* Per-bucket lock is easy to add now. */ 106 static struct hlist_head ipq_hash[IPQ_HASHSZ]; 107 static DEFINE_RWLOCK(ipfrag_lock); 108 static u32 ipfrag_hash_rnd; 109 static LIST_HEAD(ipq_lru_list); 110 int ip_frag_nqueues = 0; 111 112 static __inline__ void __ipq_unlink(struct ipq *qp) 113 { 114 hlist_del(&qp->list); 115 list_del(&qp->lru_list); 116 ip_frag_nqueues--; 117 } 118 119 static __inline__ void ipq_unlink(struct ipq *ipq) 120 { 121 write_lock(&ipfrag_lock); 122 __ipq_unlink(ipq); 123 write_unlock(&ipfrag_lock); 124 } 125 126 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 127 { 128 return jhash_3words((__force u32)id << 16 | prot, 129 (__force u32)saddr, (__force u32)daddr, 130 ipfrag_hash_rnd) & (IPQ_HASHSZ - 1); 131 } 132 133 static struct timer_list ipfrag_secret_timer; 134 int sysctl_ipfrag_secret_interval __read_mostly = 10 * 60 * HZ; 135 136 static void ipfrag_secret_rebuild(unsigned long dummy) 137 { 138 unsigned long now = jiffies; 139 int i; 140 141 write_lock(&ipfrag_lock); 142 get_random_bytes(&ipfrag_hash_rnd, sizeof(u32)); 143 for (i = 0; i < IPQ_HASHSZ; i++) { 144 struct ipq *q; 145 struct hlist_node *p, *n; 146 147 hlist_for_each_entry_safe(q, p, n, &ipq_hash[i], list) { 148 unsigned int hval = ipqhashfn(q->id, q->saddr, 149 q->daddr, q->protocol); 150 151 if (hval != i) { 152 hlist_del(&q->list); 153 154 /* Relink to new hash chain. */ 155 hlist_add_head(&q->list, &ipq_hash[hval]); 156 } 157 } 158 } 159 write_unlock(&ipfrag_lock); 160 161 mod_timer(&ipfrag_secret_timer, now + sysctl_ipfrag_secret_interval); 162 } 163 164 atomic_t ip_frag_mem = ATOMIC_INIT(0); /* Memory used for fragments */ 165 166 /* Memory Tracking Functions. */ 167 static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work) 168 { 169 if (work) 170 *work -= skb->truesize; 171 atomic_sub(skb->truesize, &ip_frag_mem); 172 kfree_skb(skb); 173 } 174 175 static __inline__ void frag_free_queue(struct ipq *qp, int *work) 176 { 177 if (work) 178 *work -= sizeof(struct ipq); 179 atomic_sub(sizeof(struct ipq), &ip_frag_mem); 180 kfree(qp); 181 } 182 183 static __inline__ struct ipq *frag_alloc_queue(void) 184 { 185 struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC); 186 187 if (!qp) 188 return NULL; 189 atomic_add(sizeof(struct ipq), &ip_frag_mem); 190 return qp; 191 } 192 193 194 /* Destruction primitives. */ 195 196 /* Complete destruction of ipq. */ 197 static void ip_frag_destroy(struct ipq *qp, int *work) 198 { 199 struct sk_buff *fp; 200 201 BUG_TRAP(qp->last_in&COMPLETE); 202 BUG_TRAP(del_timer(&qp->timer) == 0); 203 204 if (qp->peer) 205 inet_putpeer(qp->peer); 206 207 /* Release all fragment data. */ 208 fp = qp->fragments; 209 while (fp) { 210 struct sk_buff *xp = fp->next; 211 212 frag_kfree_skb(fp, work); 213 fp = xp; 214 } 215 216 /* Finally, release the queue descriptor itself. */ 217 frag_free_queue(qp, work); 218 } 219 220 static __inline__ void ipq_put(struct ipq *ipq, int *work) 221 { 222 if (atomic_dec_and_test(&ipq->refcnt)) 223 ip_frag_destroy(ipq, work); 224 } 225 226 /* Kill ipq entry. It is not destroyed immediately, 227 * because caller (and someone more) holds reference count. 228 */ 229 static void ipq_kill(struct ipq *ipq) 230 { 231 if (del_timer(&ipq->timer)) 232 atomic_dec(&ipq->refcnt); 233 234 if (!(ipq->last_in & COMPLETE)) { 235 ipq_unlink(ipq); 236 atomic_dec(&ipq->refcnt); 237 ipq->last_in |= COMPLETE; 238 } 239 } 240 241 /* Memory limiting on fragments. Evictor trashes the oldest 242 * fragment queue until we are back under the threshold. 243 */ 244 static void ip_evictor(void) 245 { 246 struct ipq *qp; 247 struct list_head *tmp; 248 int work; 249 250 work = atomic_read(&ip_frag_mem) - sysctl_ipfrag_low_thresh; 251 if (work <= 0) 252 return; 253 254 while (work > 0) { 255 read_lock(&ipfrag_lock); 256 if (list_empty(&ipq_lru_list)) { 257 read_unlock(&ipfrag_lock); 258 return; 259 } 260 tmp = ipq_lru_list.next; 261 qp = list_entry(tmp, struct ipq, lru_list); 262 atomic_inc(&qp->refcnt); 263 read_unlock(&ipfrag_lock); 264 265 spin_lock(&qp->lock); 266 if (!(qp->last_in&COMPLETE)) 267 ipq_kill(qp); 268 spin_unlock(&qp->lock); 269 270 ipq_put(qp, &work); 271 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 272 } 273 } 274 275 /* 276 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 277 */ 278 static void ip_expire(unsigned long arg) 279 { 280 struct ipq *qp = (struct ipq *) arg; 281 282 spin_lock(&qp->lock); 283 284 if (qp->last_in & COMPLETE) 285 goto out; 286 287 ipq_kill(qp); 288 289 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT); 290 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 291 292 if ((qp->last_in&FIRST_IN) && qp->fragments != NULL) { 293 struct sk_buff *head = qp->fragments; 294 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 295 if ((head->dev = dev_get_by_index(qp->iif)) != NULL) { 296 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 297 dev_put(head->dev); 298 } 299 } 300 out: 301 spin_unlock(&qp->lock); 302 ipq_put(qp, NULL); 303 } 304 305 /* Creation primitives. */ 306 307 static struct ipq *ip_frag_intern(struct ipq *qp_in) 308 { 309 struct ipq *qp; 310 #ifdef CONFIG_SMP 311 struct hlist_node *n; 312 #endif 313 unsigned int hash; 314 315 write_lock(&ipfrag_lock); 316 hash = ipqhashfn(qp_in->id, qp_in->saddr, qp_in->daddr, 317 qp_in->protocol); 318 #ifdef CONFIG_SMP 319 /* With SMP race we have to recheck hash table, because 320 * such entry could be created on other cpu, while we 321 * promoted read lock to write lock. 322 */ 323 hlist_for_each_entry(qp, n, &ipq_hash[hash], list) { 324 if (qp->id == qp_in->id && 325 qp->saddr == qp_in->saddr && 326 qp->daddr == qp_in->daddr && 327 qp->protocol == qp_in->protocol && 328 qp->user == qp_in->user) { 329 atomic_inc(&qp->refcnt); 330 write_unlock(&ipfrag_lock); 331 qp_in->last_in |= COMPLETE; 332 ipq_put(qp_in, NULL); 333 return qp; 334 } 335 } 336 #endif 337 qp = qp_in; 338 339 if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time)) 340 atomic_inc(&qp->refcnt); 341 342 atomic_inc(&qp->refcnt); 343 hlist_add_head(&qp->list, &ipq_hash[hash]); 344 INIT_LIST_HEAD(&qp->lru_list); 345 list_add_tail(&qp->lru_list, &ipq_lru_list); 346 ip_frag_nqueues++; 347 write_unlock(&ipfrag_lock); 348 return qp; 349 } 350 351 /* Add an entry to the 'ipq' queue for a newly received IP datagram. */ 352 static struct ipq *ip_frag_create(struct iphdr *iph, u32 user) 353 { 354 struct ipq *qp; 355 356 if ((qp = frag_alloc_queue()) == NULL) 357 goto out_nomem; 358 359 qp->protocol = iph->protocol; 360 qp->last_in = 0; 361 qp->id = iph->id; 362 qp->saddr = iph->saddr; 363 qp->daddr = iph->daddr; 364 qp->user = user; 365 qp->len = 0; 366 qp->meat = 0; 367 qp->fragments = NULL; 368 qp->iif = 0; 369 qp->peer = sysctl_ipfrag_max_dist ? inet_getpeer(iph->saddr, 1) : NULL; 370 371 /* Initialize a timer for this entry. */ 372 init_timer(&qp->timer); 373 qp->timer.data = (unsigned long) qp; /* pointer to queue */ 374 qp->timer.function = ip_expire; /* expire function */ 375 spin_lock_init(&qp->lock); 376 atomic_set(&qp->refcnt, 1); 377 378 return ip_frag_intern(qp); 379 380 out_nomem: 381 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 382 return NULL; 383 } 384 385 /* Find the correct entry in the "incomplete datagrams" queue for 386 * this IP datagram, and create new one, if nothing is found. 387 */ 388 static inline struct ipq *ip_find(struct iphdr *iph, u32 user) 389 { 390 __be16 id = iph->id; 391 __be32 saddr = iph->saddr; 392 __be32 daddr = iph->daddr; 393 __u8 protocol = iph->protocol; 394 unsigned int hash; 395 struct ipq *qp; 396 struct hlist_node *n; 397 398 read_lock(&ipfrag_lock); 399 hash = ipqhashfn(id, saddr, daddr, protocol); 400 hlist_for_each_entry(qp, n, &ipq_hash[hash], list) { 401 if (qp->id == id && 402 qp->saddr == saddr && 403 qp->daddr == daddr && 404 qp->protocol == protocol && 405 qp->user == user) { 406 atomic_inc(&qp->refcnt); 407 read_unlock(&ipfrag_lock); 408 return qp; 409 } 410 } 411 read_unlock(&ipfrag_lock); 412 413 return ip_frag_create(iph, user); 414 } 415 416 /* Is the fragment too far ahead to be part of ipq? */ 417 static inline int ip_frag_too_far(struct ipq *qp) 418 { 419 struct inet_peer *peer = qp->peer; 420 unsigned int max = sysctl_ipfrag_max_dist; 421 unsigned int start, end; 422 423 int rc; 424 425 if (!peer || !max) 426 return 0; 427 428 start = qp->rid; 429 end = atomic_inc_return(&peer->rid); 430 qp->rid = end; 431 432 rc = qp->fragments && (end - start) > max; 433 434 if (rc) { 435 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 436 } 437 438 return rc; 439 } 440 441 static int ip_frag_reinit(struct ipq *qp) 442 { 443 struct sk_buff *fp; 444 445 if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time)) { 446 atomic_inc(&qp->refcnt); 447 return -ETIMEDOUT; 448 } 449 450 fp = qp->fragments; 451 do { 452 struct sk_buff *xp = fp->next; 453 frag_kfree_skb(fp, NULL); 454 fp = xp; 455 } while (fp); 456 457 qp->last_in = 0; 458 qp->len = 0; 459 qp->meat = 0; 460 qp->fragments = NULL; 461 qp->iif = 0; 462 463 return 0; 464 } 465 466 /* Add new segment to existing queue. */ 467 static void ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 468 { 469 struct sk_buff *prev, *next; 470 int flags, offset; 471 int ihl, end; 472 473 if (qp->last_in & COMPLETE) 474 goto err; 475 476 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 477 unlikely(ip_frag_too_far(qp)) && unlikely(ip_frag_reinit(qp))) { 478 ipq_kill(qp); 479 goto err; 480 } 481 482 offset = ntohs(ip_hdr(skb)->frag_off); 483 flags = offset & ~IP_OFFSET; 484 offset &= IP_OFFSET; 485 offset <<= 3; /* offset is in 8-byte chunks */ 486 ihl = ip_hdrlen(skb); 487 488 /* Determine the position of this fragment. */ 489 end = offset + skb->len - ihl; 490 491 /* Is this the final fragment? */ 492 if ((flags & IP_MF) == 0) { 493 /* If we already have some bits beyond end 494 * or have different end, the segment is corrrupted. 495 */ 496 if (end < qp->len || 497 ((qp->last_in & LAST_IN) && end != qp->len)) 498 goto err; 499 qp->last_in |= LAST_IN; 500 qp->len = end; 501 } else { 502 if (end&7) { 503 end &= ~7; 504 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 505 skb->ip_summed = CHECKSUM_NONE; 506 } 507 if (end > qp->len) { 508 /* Some bits beyond end -> corruption. */ 509 if (qp->last_in & LAST_IN) 510 goto err; 511 qp->len = end; 512 } 513 } 514 if (end == offset) 515 goto err; 516 517 if (pskb_pull(skb, ihl) == NULL) 518 goto err; 519 if (pskb_trim_rcsum(skb, end-offset)) 520 goto err; 521 522 /* Find out which fragments are in front and at the back of us 523 * in the chain of fragments so far. We must know where to put 524 * this fragment, right? 525 */ 526 prev = NULL; 527 for (next = qp->fragments; next != NULL; next = next->next) { 528 if (FRAG_CB(next)->offset >= offset) 529 break; /* bingo! */ 530 prev = next; 531 } 532 533 /* We found where to put this one. Check for overlap with 534 * preceding fragment, and, if needed, align things so that 535 * any overlaps are eliminated. 536 */ 537 if (prev) { 538 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 539 540 if (i > 0) { 541 offset += i; 542 if (end <= offset) 543 goto err; 544 if (!pskb_pull(skb, i)) 545 goto err; 546 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 547 skb->ip_summed = CHECKSUM_NONE; 548 } 549 } 550 551 while (next && FRAG_CB(next)->offset < end) { 552 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 553 554 if (i < next->len) { 555 /* Eat head of the next overlapped fragment 556 * and leave the loop. The next ones cannot overlap. 557 */ 558 if (!pskb_pull(next, i)) 559 goto err; 560 FRAG_CB(next)->offset += i; 561 qp->meat -= i; 562 if (next->ip_summed != CHECKSUM_UNNECESSARY) 563 next->ip_summed = CHECKSUM_NONE; 564 break; 565 } else { 566 struct sk_buff *free_it = next; 567 568 /* Old fragment is completely overridden with 569 * new one drop it. 570 */ 571 next = next->next; 572 573 if (prev) 574 prev->next = next; 575 else 576 qp->fragments = next; 577 578 qp->meat -= free_it->len; 579 frag_kfree_skb(free_it, NULL); 580 } 581 } 582 583 FRAG_CB(skb)->offset = offset; 584 585 /* Insert this fragment in the chain of fragments. */ 586 skb->next = next; 587 if (prev) 588 prev->next = skb; 589 else 590 qp->fragments = skb; 591 592 if (skb->dev) 593 qp->iif = skb->dev->ifindex; 594 skb->dev = NULL; 595 qp->stamp = skb->tstamp; 596 qp->meat += skb->len; 597 atomic_add(skb->truesize, &ip_frag_mem); 598 if (offset == 0) 599 qp->last_in |= FIRST_IN; 600 601 write_lock(&ipfrag_lock); 602 list_move_tail(&qp->lru_list, &ipq_lru_list); 603 write_unlock(&ipfrag_lock); 604 605 return; 606 607 err: 608 kfree_skb(skb); 609 } 610 611 612 /* Build a new IP datagram from all its fragments. */ 613 614 static struct sk_buff *ip_frag_reasm(struct ipq *qp, struct net_device *dev) 615 { 616 struct iphdr *iph; 617 struct sk_buff *fp, *head = qp->fragments; 618 int len; 619 int ihlen; 620 621 ipq_kill(qp); 622 623 BUG_TRAP(head != NULL); 624 BUG_TRAP(FRAG_CB(head)->offset == 0); 625 626 /* Allocate a new buffer for the datagram. */ 627 ihlen = ip_hdrlen(head); 628 len = ihlen + qp->len; 629 630 if (len > 65535) 631 goto out_oversize; 632 633 /* Head of list must not be cloned. */ 634 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 635 goto out_nomem; 636 637 /* If the first fragment is fragmented itself, we split 638 * it to two chunks: the first with data and paged part 639 * and the second, holding only fragments. */ 640 if (skb_shinfo(head)->frag_list) { 641 struct sk_buff *clone; 642 int i, plen = 0; 643 644 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 645 goto out_nomem; 646 clone->next = head->next; 647 head->next = clone; 648 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 649 skb_shinfo(head)->frag_list = NULL; 650 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 651 plen += skb_shinfo(head)->frags[i].size; 652 clone->len = clone->data_len = head->data_len - plen; 653 head->data_len -= clone->len; 654 head->len -= clone->len; 655 clone->csum = 0; 656 clone->ip_summed = head->ip_summed; 657 atomic_add(clone->truesize, &ip_frag_mem); 658 } 659 660 skb_shinfo(head)->frag_list = head->next; 661 skb_push(head, head->data - skb_network_header(head)); 662 atomic_sub(head->truesize, &ip_frag_mem); 663 664 for (fp=head->next; fp; fp = fp->next) { 665 head->data_len += fp->len; 666 head->len += fp->len; 667 if (head->ip_summed != fp->ip_summed) 668 head->ip_summed = CHECKSUM_NONE; 669 else if (head->ip_summed == CHECKSUM_COMPLETE) 670 head->csum = csum_add(head->csum, fp->csum); 671 head->truesize += fp->truesize; 672 atomic_sub(fp->truesize, &ip_frag_mem); 673 } 674 675 head->next = NULL; 676 head->dev = dev; 677 head->tstamp = qp->stamp; 678 679 iph = ip_hdr(head); 680 iph->frag_off = 0; 681 iph->tot_len = htons(len); 682 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS); 683 qp->fragments = NULL; 684 return head; 685 686 out_nomem: 687 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 688 "queue %p\n", qp); 689 goto out_fail; 690 out_oversize: 691 if (net_ratelimit()) 692 printk(KERN_INFO 693 "Oversized IP packet from %d.%d.%d.%d.\n", 694 NIPQUAD(qp->saddr)); 695 out_fail: 696 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 697 return NULL; 698 } 699 700 /* Process an incoming IP datagram fragment. */ 701 struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user) 702 { 703 struct ipq *qp; 704 struct net_device *dev; 705 706 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS); 707 708 /* Start by cleaning up the memory. */ 709 if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh) 710 ip_evictor(); 711 712 dev = skb->dev; 713 714 /* Lookup (or create) queue header */ 715 if ((qp = ip_find(ip_hdr(skb), user)) != NULL) { 716 struct sk_buff *ret = NULL; 717 718 spin_lock(&qp->lock); 719 720 ip_frag_queue(qp, skb); 721 722 if (qp->last_in == (FIRST_IN|LAST_IN) && 723 qp->meat == qp->len) 724 ret = ip_frag_reasm(qp, dev); 725 726 spin_unlock(&qp->lock); 727 ipq_put(qp, NULL); 728 return ret; 729 } 730 731 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 732 kfree_skb(skb); 733 return NULL; 734 } 735 736 void __init ipfrag_init(void) 737 { 738 ipfrag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^ 739 (jiffies ^ (jiffies >> 6))); 740 741 init_timer(&ipfrag_secret_timer); 742 ipfrag_secret_timer.function = ipfrag_secret_rebuild; 743 ipfrag_secret_timer.expires = jiffies + sysctl_ipfrag_secret_interval; 744 add_timer(&ipfrag_secret_timer); 745 } 746 747 EXPORT_SYMBOL(ip_defrag); 748