xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 28f65c11)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <net/inet_ecn.h>
49 
50 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
51  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
52  * as well. Or notify me, at least. --ANK
53  */
54 
55 static int sysctl_ipfrag_max_dist __read_mostly = 64;
56 
57 struct ipfrag_skb_cb
58 {
59 	struct inet_skb_parm	h;
60 	int			offset;
61 };
62 
63 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
64 
65 /* Describe an entry in the "incomplete datagrams" queue. */
66 struct ipq {
67 	struct inet_frag_queue q;
68 
69 	u32		user;
70 	__be32		saddr;
71 	__be32		daddr;
72 	__be16		id;
73 	u8		protocol;
74 	u8		ecn; /* RFC3168 support */
75 	int             iif;
76 	unsigned int    rid;
77 	struct inet_peer *peer;
78 };
79 
80 /* RFC 3168 support :
81  * We want to check ECN values of all fragments, do detect invalid combinations.
82  * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value.
83  */
84 #define	IPFRAG_ECN_NOT_ECT	0x01 /* one frag had ECN_NOT_ECT */
85 #define	IPFRAG_ECN_ECT_1	0x02 /* one frag had ECN_ECT_1 */
86 #define	IPFRAG_ECN_ECT_0	0x04 /* one frag had ECN_ECT_0 */
87 #define	IPFRAG_ECN_CE		0x08 /* one frag had ECN_CE */
88 
89 static inline u8 ip4_frag_ecn(u8 tos)
90 {
91 	return 1 << (tos & INET_ECN_MASK);
92 }
93 
94 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
95  * Value : 0xff if frame should be dropped.
96  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
97  */
98 static const u8 ip4_frag_ecn_table[16] = {
99 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
100 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
101 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
102 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
103 
104 	/* invalid combinations : drop frame */
105 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
106 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
107 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
108 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
109 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
110 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
111 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
112 };
113 
114 static struct inet_frags ip4_frags;
115 
116 int ip_frag_nqueues(struct net *net)
117 {
118 	return net->ipv4.frags.nqueues;
119 }
120 
121 int ip_frag_mem(struct net *net)
122 {
123 	return atomic_read(&net->ipv4.frags.mem);
124 }
125 
126 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
127 			 struct net_device *dev);
128 
129 struct ip4_create_arg {
130 	struct iphdr *iph;
131 	u32 user;
132 };
133 
134 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
135 {
136 	return jhash_3words((__force u32)id << 16 | prot,
137 			    (__force u32)saddr, (__force u32)daddr,
138 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
139 }
140 
141 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
142 {
143 	struct ipq *ipq;
144 
145 	ipq = container_of(q, struct ipq, q);
146 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
147 }
148 
149 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
150 {
151 	struct ipq *qp;
152 	struct ip4_create_arg *arg = a;
153 
154 	qp = container_of(q, struct ipq, q);
155 	return	qp->id == arg->iph->id &&
156 			qp->saddr == arg->iph->saddr &&
157 			qp->daddr == arg->iph->daddr &&
158 			qp->protocol == arg->iph->protocol &&
159 			qp->user == arg->user;
160 }
161 
162 /* Memory Tracking Functions. */
163 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb)
164 {
165 	atomic_sub(skb->truesize, &nf->mem);
166 	kfree_skb(skb);
167 }
168 
169 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
170 {
171 	struct ipq *qp = container_of(q, struct ipq, q);
172 	struct ip4_create_arg *arg = a;
173 
174 	qp->protocol = arg->iph->protocol;
175 	qp->id = arg->iph->id;
176 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
177 	qp->saddr = arg->iph->saddr;
178 	qp->daddr = arg->iph->daddr;
179 	qp->user = arg->user;
180 	qp->peer = sysctl_ipfrag_max_dist ?
181 		inet_getpeer_v4(arg->iph->saddr, 1) : NULL;
182 }
183 
184 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
185 {
186 	struct ipq *qp;
187 
188 	qp = container_of(q, struct ipq, q);
189 	if (qp->peer)
190 		inet_putpeer(qp->peer);
191 }
192 
193 
194 /* Destruction primitives. */
195 
196 static __inline__ void ipq_put(struct ipq *ipq)
197 {
198 	inet_frag_put(&ipq->q, &ip4_frags);
199 }
200 
201 /* Kill ipq entry. It is not destroyed immediately,
202  * because caller (and someone more) holds reference count.
203  */
204 static void ipq_kill(struct ipq *ipq)
205 {
206 	inet_frag_kill(&ipq->q, &ip4_frags);
207 }
208 
209 /* Memory limiting on fragments.  Evictor trashes the oldest
210  * fragment queue until we are back under the threshold.
211  */
212 static void ip_evictor(struct net *net)
213 {
214 	int evicted;
215 
216 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
217 	if (evicted)
218 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
219 }
220 
221 /*
222  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
223  */
224 static void ip_expire(unsigned long arg)
225 {
226 	struct ipq *qp;
227 	struct net *net;
228 
229 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
230 	net = container_of(qp->q.net, struct net, ipv4.frags);
231 
232 	spin_lock(&qp->q.lock);
233 
234 	if (qp->q.last_in & INET_FRAG_COMPLETE)
235 		goto out;
236 
237 	ipq_kill(qp);
238 
239 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
240 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
241 
242 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
243 		struct sk_buff *head = qp->q.fragments;
244 		const struct iphdr *iph;
245 		int err;
246 
247 		rcu_read_lock();
248 		head->dev = dev_get_by_index_rcu(net, qp->iif);
249 		if (!head->dev)
250 			goto out_rcu_unlock;
251 
252 		/* skb dst is stale, drop it, and perform route lookup again */
253 		skb_dst_drop(head);
254 		iph = ip_hdr(head);
255 		err = ip_route_input_noref(head, iph->daddr, iph->saddr,
256 					   iph->tos, head->dev);
257 		if (err)
258 			goto out_rcu_unlock;
259 
260 		/*
261 		 * Only an end host needs to send an ICMP
262 		 * "Fragment Reassembly Timeout" message, per RFC792.
263 		 */
264 		if (qp->user == IP_DEFRAG_CONNTRACK_IN &&
265 		    skb_rtable(head)->rt_type != RTN_LOCAL)
266 			goto out_rcu_unlock;
267 
268 
269 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
270 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
271 out_rcu_unlock:
272 		rcu_read_unlock();
273 	}
274 out:
275 	spin_unlock(&qp->q.lock);
276 	ipq_put(qp);
277 }
278 
279 /* Find the correct entry in the "incomplete datagrams" queue for
280  * this IP datagram, and create new one, if nothing is found.
281  */
282 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
283 {
284 	struct inet_frag_queue *q;
285 	struct ip4_create_arg arg;
286 	unsigned int hash;
287 
288 	arg.iph = iph;
289 	arg.user = user;
290 
291 	read_lock(&ip4_frags.lock);
292 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
293 
294 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
295 	if (q == NULL)
296 		goto out_nomem;
297 
298 	return container_of(q, struct ipq, q);
299 
300 out_nomem:
301 	LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
302 	return NULL;
303 }
304 
305 /* Is the fragment too far ahead to be part of ipq? */
306 static inline int ip_frag_too_far(struct ipq *qp)
307 {
308 	struct inet_peer *peer = qp->peer;
309 	unsigned int max = sysctl_ipfrag_max_dist;
310 	unsigned int start, end;
311 
312 	int rc;
313 
314 	if (!peer || !max)
315 		return 0;
316 
317 	start = qp->rid;
318 	end = atomic_inc_return(&peer->rid);
319 	qp->rid = end;
320 
321 	rc = qp->q.fragments && (end - start) > max;
322 
323 	if (rc) {
324 		struct net *net;
325 
326 		net = container_of(qp->q.net, struct net, ipv4.frags);
327 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
328 	}
329 
330 	return rc;
331 }
332 
333 static int ip_frag_reinit(struct ipq *qp)
334 {
335 	struct sk_buff *fp;
336 
337 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
338 		atomic_inc(&qp->q.refcnt);
339 		return -ETIMEDOUT;
340 	}
341 
342 	fp = qp->q.fragments;
343 	do {
344 		struct sk_buff *xp = fp->next;
345 		frag_kfree_skb(qp->q.net, fp);
346 		fp = xp;
347 	} while (fp);
348 
349 	qp->q.last_in = 0;
350 	qp->q.len = 0;
351 	qp->q.meat = 0;
352 	qp->q.fragments = NULL;
353 	qp->q.fragments_tail = NULL;
354 	qp->iif = 0;
355 	qp->ecn = 0;
356 
357 	return 0;
358 }
359 
360 /* Add new segment to existing queue. */
361 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
362 {
363 	struct sk_buff *prev, *next;
364 	struct net_device *dev;
365 	int flags, offset;
366 	int ihl, end;
367 	int err = -ENOENT;
368 	u8 ecn;
369 
370 	if (qp->q.last_in & INET_FRAG_COMPLETE)
371 		goto err;
372 
373 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
374 	    unlikely(ip_frag_too_far(qp)) &&
375 	    unlikely(err = ip_frag_reinit(qp))) {
376 		ipq_kill(qp);
377 		goto err;
378 	}
379 
380 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
381 	offset = ntohs(ip_hdr(skb)->frag_off);
382 	flags = offset & ~IP_OFFSET;
383 	offset &= IP_OFFSET;
384 	offset <<= 3;		/* offset is in 8-byte chunks */
385 	ihl = ip_hdrlen(skb);
386 
387 	/* Determine the position of this fragment. */
388 	end = offset + skb->len - ihl;
389 	err = -EINVAL;
390 
391 	/* Is this the final fragment? */
392 	if ((flags & IP_MF) == 0) {
393 		/* If we already have some bits beyond end
394 		 * or have different end, the segment is corrrupted.
395 		 */
396 		if (end < qp->q.len ||
397 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
398 			goto err;
399 		qp->q.last_in |= INET_FRAG_LAST_IN;
400 		qp->q.len = end;
401 	} else {
402 		if (end&7) {
403 			end &= ~7;
404 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
405 				skb->ip_summed = CHECKSUM_NONE;
406 		}
407 		if (end > qp->q.len) {
408 			/* Some bits beyond end -> corruption. */
409 			if (qp->q.last_in & INET_FRAG_LAST_IN)
410 				goto err;
411 			qp->q.len = end;
412 		}
413 	}
414 	if (end == offset)
415 		goto err;
416 
417 	err = -ENOMEM;
418 	if (pskb_pull(skb, ihl) == NULL)
419 		goto err;
420 
421 	err = pskb_trim_rcsum(skb, end - offset);
422 	if (err)
423 		goto err;
424 
425 	/* Find out which fragments are in front and at the back of us
426 	 * in the chain of fragments so far.  We must know where to put
427 	 * this fragment, right?
428 	 */
429 	prev = qp->q.fragments_tail;
430 	if (!prev || FRAG_CB(prev)->offset < offset) {
431 		next = NULL;
432 		goto found;
433 	}
434 	prev = NULL;
435 	for (next = qp->q.fragments; next != NULL; next = next->next) {
436 		if (FRAG_CB(next)->offset >= offset)
437 			break;	/* bingo! */
438 		prev = next;
439 	}
440 
441 found:
442 	/* We found where to put this one.  Check for overlap with
443 	 * preceding fragment, and, if needed, align things so that
444 	 * any overlaps are eliminated.
445 	 */
446 	if (prev) {
447 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
448 
449 		if (i > 0) {
450 			offset += i;
451 			err = -EINVAL;
452 			if (end <= offset)
453 				goto err;
454 			err = -ENOMEM;
455 			if (!pskb_pull(skb, i))
456 				goto err;
457 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
458 				skb->ip_summed = CHECKSUM_NONE;
459 		}
460 	}
461 
462 	err = -ENOMEM;
463 
464 	while (next && FRAG_CB(next)->offset < end) {
465 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
466 
467 		if (i < next->len) {
468 			/* Eat head of the next overlapped fragment
469 			 * and leave the loop. The next ones cannot overlap.
470 			 */
471 			if (!pskb_pull(next, i))
472 				goto err;
473 			FRAG_CB(next)->offset += i;
474 			qp->q.meat -= i;
475 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
476 				next->ip_summed = CHECKSUM_NONE;
477 			break;
478 		} else {
479 			struct sk_buff *free_it = next;
480 
481 			/* Old fragment is completely overridden with
482 			 * new one drop it.
483 			 */
484 			next = next->next;
485 
486 			if (prev)
487 				prev->next = next;
488 			else
489 				qp->q.fragments = next;
490 
491 			qp->q.meat -= free_it->len;
492 			frag_kfree_skb(qp->q.net, free_it);
493 		}
494 	}
495 
496 	FRAG_CB(skb)->offset = offset;
497 
498 	/* Insert this fragment in the chain of fragments. */
499 	skb->next = next;
500 	if (!next)
501 		qp->q.fragments_tail = skb;
502 	if (prev)
503 		prev->next = skb;
504 	else
505 		qp->q.fragments = skb;
506 
507 	dev = skb->dev;
508 	if (dev) {
509 		qp->iif = dev->ifindex;
510 		skb->dev = NULL;
511 	}
512 	qp->q.stamp = skb->tstamp;
513 	qp->q.meat += skb->len;
514 	qp->ecn |= ecn;
515 	atomic_add(skb->truesize, &qp->q.net->mem);
516 	if (offset == 0)
517 		qp->q.last_in |= INET_FRAG_FIRST_IN;
518 
519 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
520 	    qp->q.meat == qp->q.len)
521 		return ip_frag_reasm(qp, prev, dev);
522 
523 	write_lock(&ip4_frags.lock);
524 	list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
525 	write_unlock(&ip4_frags.lock);
526 	return -EINPROGRESS;
527 
528 err:
529 	kfree_skb(skb);
530 	return err;
531 }
532 
533 
534 /* Build a new IP datagram from all its fragments. */
535 
536 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
537 			 struct net_device *dev)
538 {
539 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
540 	struct iphdr *iph;
541 	struct sk_buff *fp, *head = qp->q.fragments;
542 	int len;
543 	int ihlen;
544 	int err;
545 	u8 ecn;
546 
547 	ipq_kill(qp);
548 
549 	ecn = ip4_frag_ecn_table[qp->ecn];
550 	if (unlikely(ecn == 0xff)) {
551 		err = -EINVAL;
552 		goto out_fail;
553 	}
554 	/* Make the one we just received the head. */
555 	if (prev) {
556 		head = prev->next;
557 		fp = skb_clone(head, GFP_ATOMIC);
558 		if (!fp)
559 			goto out_nomem;
560 
561 		fp->next = head->next;
562 		if (!fp->next)
563 			qp->q.fragments_tail = fp;
564 		prev->next = fp;
565 
566 		skb_morph(head, qp->q.fragments);
567 		head->next = qp->q.fragments->next;
568 
569 		kfree_skb(qp->q.fragments);
570 		qp->q.fragments = head;
571 	}
572 
573 	WARN_ON(head == NULL);
574 	WARN_ON(FRAG_CB(head)->offset != 0);
575 
576 	/* Allocate a new buffer for the datagram. */
577 	ihlen = ip_hdrlen(head);
578 	len = ihlen + qp->q.len;
579 
580 	err = -E2BIG;
581 	if (len > 65535)
582 		goto out_oversize;
583 
584 	/* Head of list must not be cloned. */
585 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
586 		goto out_nomem;
587 
588 	/* If the first fragment is fragmented itself, we split
589 	 * it to two chunks: the first with data and paged part
590 	 * and the second, holding only fragments. */
591 	if (skb_has_frag_list(head)) {
592 		struct sk_buff *clone;
593 		int i, plen = 0;
594 
595 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
596 			goto out_nomem;
597 		clone->next = head->next;
598 		head->next = clone;
599 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
600 		skb_frag_list_init(head);
601 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
602 			plen += skb_shinfo(head)->frags[i].size;
603 		clone->len = clone->data_len = head->data_len - plen;
604 		head->data_len -= clone->len;
605 		head->len -= clone->len;
606 		clone->csum = 0;
607 		clone->ip_summed = head->ip_summed;
608 		atomic_add(clone->truesize, &qp->q.net->mem);
609 	}
610 
611 	skb_shinfo(head)->frag_list = head->next;
612 	skb_push(head, head->data - skb_network_header(head));
613 
614 	for (fp=head->next; fp; fp = fp->next) {
615 		head->data_len += fp->len;
616 		head->len += fp->len;
617 		if (head->ip_summed != fp->ip_summed)
618 			head->ip_summed = CHECKSUM_NONE;
619 		else if (head->ip_summed == CHECKSUM_COMPLETE)
620 			head->csum = csum_add(head->csum, fp->csum);
621 		head->truesize += fp->truesize;
622 	}
623 	atomic_sub(head->truesize, &qp->q.net->mem);
624 
625 	head->next = NULL;
626 	head->dev = dev;
627 	head->tstamp = qp->q.stamp;
628 
629 	iph = ip_hdr(head);
630 	iph->frag_off = 0;
631 	iph->tot_len = htons(len);
632 	iph->tos |= ecn;
633 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
634 	qp->q.fragments = NULL;
635 	qp->q.fragments_tail = NULL;
636 	return 0;
637 
638 out_nomem:
639 	LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
640 			      "queue %p\n", qp);
641 	err = -ENOMEM;
642 	goto out_fail;
643 out_oversize:
644 	if (net_ratelimit())
645 		printk(KERN_INFO "Oversized IP packet from %pI4.\n",
646 			&qp->saddr);
647 out_fail:
648 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
649 	return err;
650 }
651 
652 /* Process an incoming IP datagram fragment. */
653 int ip_defrag(struct sk_buff *skb, u32 user)
654 {
655 	struct ipq *qp;
656 	struct net *net;
657 
658 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
659 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
660 
661 	/* Start by cleaning up the memory. */
662 	if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
663 		ip_evictor(net);
664 
665 	/* Lookup (or create) queue header */
666 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
667 		int ret;
668 
669 		spin_lock(&qp->q.lock);
670 
671 		ret = ip_frag_queue(qp, skb);
672 
673 		spin_unlock(&qp->q.lock);
674 		ipq_put(qp);
675 		return ret;
676 	}
677 
678 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
679 	kfree_skb(skb);
680 	return -ENOMEM;
681 }
682 EXPORT_SYMBOL(ip_defrag);
683 
684 #ifdef CONFIG_SYSCTL
685 static int zero;
686 
687 static struct ctl_table ip4_frags_ns_ctl_table[] = {
688 	{
689 		.procname	= "ipfrag_high_thresh",
690 		.data		= &init_net.ipv4.frags.high_thresh,
691 		.maxlen		= sizeof(int),
692 		.mode		= 0644,
693 		.proc_handler	= proc_dointvec
694 	},
695 	{
696 		.procname	= "ipfrag_low_thresh",
697 		.data		= &init_net.ipv4.frags.low_thresh,
698 		.maxlen		= sizeof(int),
699 		.mode		= 0644,
700 		.proc_handler	= proc_dointvec
701 	},
702 	{
703 		.procname	= "ipfrag_time",
704 		.data		= &init_net.ipv4.frags.timeout,
705 		.maxlen		= sizeof(int),
706 		.mode		= 0644,
707 		.proc_handler	= proc_dointvec_jiffies,
708 	},
709 	{ }
710 };
711 
712 static struct ctl_table ip4_frags_ctl_table[] = {
713 	{
714 		.procname	= "ipfrag_secret_interval",
715 		.data		= &ip4_frags.secret_interval,
716 		.maxlen		= sizeof(int),
717 		.mode		= 0644,
718 		.proc_handler	= proc_dointvec_jiffies,
719 	},
720 	{
721 		.procname	= "ipfrag_max_dist",
722 		.data		= &sysctl_ipfrag_max_dist,
723 		.maxlen		= sizeof(int),
724 		.mode		= 0644,
725 		.proc_handler	= proc_dointvec_minmax,
726 		.extra1		= &zero
727 	},
728 	{ }
729 };
730 
731 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
732 {
733 	struct ctl_table *table;
734 	struct ctl_table_header *hdr;
735 
736 	table = ip4_frags_ns_ctl_table;
737 	if (!net_eq(net, &init_net)) {
738 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
739 		if (table == NULL)
740 			goto err_alloc;
741 
742 		table[0].data = &net->ipv4.frags.high_thresh;
743 		table[1].data = &net->ipv4.frags.low_thresh;
744 		table[2].data = &net->ipv4.frags.timeout;
745 	}
746 
747 	hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
748 	if (hdr == NULL)
749 		goto err_reg;
750 
751 	net->ipv4.frags_hdr = hdr;
752 	return 0;
753 
754 err_reg:
755 	if (!net_eq(net, &init_net))
756 		kfree(table);
757 err_alloc:
758 	return -ENOMEM;
759 }
760 
761 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
762 {
763 	struct ctl_table *table;
764 
765 	table = net->ipv4.frags_hdr->ctl_table_arg;
766 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
767 	kfree(table);
768 }
769 
770 static void ip4_frags_ctl_register(void)
771 {
772 	register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
773 }
774 #else
775 static inline int ip4_frags_ns_ctl_register(struct net *net)
776 {
777 	return 0;
778 }
779 
780 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
781 {
782 }
783 
784 static inline void ip4_frags_ctl_register(void)
785 {
786 }
787 #endif
788 
789 static int __net_init ipv4_frags_init_net(struct net *net)
790 {
791 	/*
792 	 * Fragment cache limits. We will commit 256K at one time. Should we
793 	 * cross that limit we will prune down to 192K. This should cope with
794 	 * even the most extreme cases without allowing an attacker to
795 	 * measurably harm machine performance.
796 	 */
797 	net->ipv4.frags.high_thresh = 256 * 1024;
798 	net->ipv4.frags.low_thresh = 192 * 1024;
799 	/*
800 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
801 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
802 	 * by TTL.
803 	 */
804 	net->ipv4.frags.timeout = IP_FRAG_TIME;
805 
806 	inet_frags_init_net(&net->ipv4.frags);
807 
808 	return ip4_frags_ns_ctl_register(net);
809 }
810 
811 static void __net_exit ipv4_frags_exit_net(struct net *net)
812 {
813 	ip4_frags_ns_ctl_unregister(net);
814 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
815 }
816 
817 static struct pernet_operations ip4_frags_ops = {
818 	.init = ipv4_frags_init_net,
819 	.exit = ipv4_frags_exit_net,
820 };
821 
822 void __init ipfrag_init(void)
823 {
824 	ip4_frags_ctl_register();
825 	register_pernet_subsys(&ip4_frags_ops);
826 	ip4_frags.hashfn = ip4_hashfn;
827 	ip4_frags.constructor = ip4_frag_init;
828 	ip4_frags.destructor = ip4_frag_free;
829 	ip4_frags.skb_free = NULL;
830 	ip4_frags.qsize = sizeof(struct ipq);
831 	ip4_frags.match = ip4_frag_match;
832 	ip4_frags.frag_expire = ip_expire;
833 	ip4_frags.secret_interval = 10 * 60 * HZ;
834 	inet_frags_init(&ip4_frags);
835 }
836