1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 9 * Alan Cox <alan@lxorguk.ukuu.org.uk> 10 * 11 * Fixes: 12 * Alan Cox : Split from ip.c , see ip_input.c for history. 13 * David S. Miller : Begin massive cleanup... 14 * Andi Kleen : Add sysctls. 15 * xxxx : Overlapfrag bug. 16 * Ultima : ip_expire() kernel panic. 17 * Bill Hawes : Frag accounting and evictor fixes. 18 * John McDonald : 0 length frag bug. 19 * Alexey Kuznetsov: SMP races, threading, cleanup. 20 * Patrick McHardy : LRU queue of frag heads for evictor. 21 */ 22 23 #include <linux/compiler.h> 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/mm.h> 27 #include <linux/jiffies.h> 28 #include <linux/skbuff.h> 29 #include <linux/list.h> 30 #include <linux/ip.h> 31 #include <linux/icmp.h> 32 #include <linux/netdevice.h> 33 #include <linux/jhash.h> 34 #include <linux/random.h> 35 #include <linux/slab.h> 36 #include <net/route.h> 37 #include <net/dst.h> 38 #include <net/sock.h> 39 #include <net/ip.h> 40 #include <net/icmp.h> 41 #include <net/checksum.h> 42 #include <net/inetpeer.h> 43 #include <net/inet_frag.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/inet.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <net/inet_ecn.h> 49 50 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 51 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 52 * as well. Or notify me, at least. --ANK 53 */ 54 55 static int sysctl_ipfrag_max_dist __read_mostly = 64; 56 57 struct ipfrag_skb_cb 58 { 59 struct inet_skb_parm h; 60 int offset; 61 }; 62 63 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) 64 65 /* Describe an entry in the "incomplete datagrams" queue. */ 66 struct ipq { 67 struct inet_frag_queue q; 68 69 u32 user; 70 __be32 saddr; 71 __be32 daddr; 72 __be16 id; 73 u8 protocol; 74 u8 ecn; /* RFC3168 support */ 75 int iif; 76 unsigned int rid; 77 struct inet_peer *peer; 78 }; 79 80 /* RFC 3168 support : 81 * We want to check ECN values of all fragments, do detect invalid combinations. 82 * In ipq->ecn, we store the OR value of each ip4_frag_ecn() fragment value. 83 */ 84 #define IPFRAG_ECN_NOT_ECT 0x01 /* one frag had ECN_NOT_ECT */ 85 #define IPFRAG_ECN_ECT_1 0x02 /* one frag had ECN_ECT_1 */ 86 #define IPFRAG_ECN_ECT_0 0x04 /* one frag had ECN_ECT_0 */ 87 #define IPFRAG_ECN_CE 0x08 /* one frag had ECN_CE */ 88 89 static inline u8 ip4_frag_ecn(u8 tos) 90 { 91 return 1 << (tos & INET_ECN_MASK); 92 } 93 94 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements 95 * Value : 0xff if frame should be dropped. 96 * 0 or INET_ECN_CE value, to be ORed in to final iph->tos field 97 */ 98 static const u8 ip4_frag_ecn_table[16] = { 99 /* at least one fragment had CE, and others ECT_0 or ECT_1 */ 100 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = INET_ECN_CE, 101 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = INET_ECN_CE, 102 [IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = INET_ECN_CE, 103 104 /* invalid combinations : drop frame */ 105 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff, 106 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff, 107 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff, 108 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, 109 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff, 110 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff, 111 [IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff, 112 }; 113 114 static struct inet_frags ip4_frags; 115 116 int ip_frag_nqueues(struct net *net) 117 { 118 return net->ipv4.frags.nqueues; 119 } 120 121 int ip_frag_mem(struct net *net) 122 { 123 return atomic_read(&net->ipv4.frags.mem); 124 } 125 126 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 127 struct net_device *dev); 128 129 struct ip4_create_arg { 130 struct iphdr *iph; 131 u32 user; 132 }; 133 134 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 135 { 136 return jhash_3words((__force u32)id << 16 | prot, 137 (__force u32)saddr, (__force u32)daddr, 138 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 139 } 140 141 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 142 { 143 struct ipq *ipq; 144 145 ipq = container_of(q, struct ipq, q); 146 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 147 } 148 149 static int ip4_frag_match(struct inet_frag_queue *q, void *a) 150 { 151 struct ipq *qp; 152 struct ip4_create_arg *arg = a; 153 154 qp = container_of(q, struct ipq, q); 155 return qp->id == arg->iph->id && 156 qp->saddr == arg->iph->saddr && 157 qp->daddr == arg->iph->daddr && 158 qp->protocol == arg->iph->protocol && 159 qp->user == arg->user; 160 } 161 162 /* Memory Tracking Functions. */ 163 static void frag_kfree_skb(struct netns_frags *nf, struct sk_buff *skb) 164 { 165 atomic_sub(skb->truesize, &nf->mem); 166 kfree_skb(skb); 167 } 168 169 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 170 { 171 struct ipq *qp = container_of(q, struct ipq, q); 172 struct ip4_create_arg *arg = a; 173 174 qp->protocol = arg->iph->protocol; 175 qp->id = arg->iph->id; 176 qp->ecn = ip4_frag_ecn(arg->iph->tos); 177 qp->saddr = arg->iph->saddr; 178 qp->daddr = arg->iph->daddr; 179 qp->user = arg->user; 180 qp->peer = sysctl_ipfrag_max_dist ? 181 inet_getpeer_v4(arg->iph->saddr, 1) : NULL; 182 } 183 184 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 185 { 186 struct ipq *qp; 187 188 qp = container_of(q, struct ipq, q); 189 if (qp->peer) 190 inet_putpeer(qp->peer); 191 } 192 193 194 /* Destruction primitives. */ 195 196 static __inline__ void ipq_put(struct ipq *ipq) 197 { 198 inet_frag_put(&ipq->q, &ip4_frags); 199 } 200 201 /* Kill ipq entry. It is not destroyed immediately, 202 * because caller (and someone more) holds reference count. 203 */ 204 static void ipq_kill(struct ipq *ipq) 205 { 206 inet_frag_kill(&ipq->q, &ip4_frags); 207 } 208 209 /* Memory limiting on fragments. Evictor trashes the oldest 210 * fragment queue until we are back under the threshold. 211 */ 212 static void ip_evictor(struct net *net) 213 { 214 int evicted; 215 216 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); 217 if (evicted) 218 IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted); 219 } 220 221 /* 222 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 223 */ 224 static void ip_expire(unsigned long arg) 225 { 226 struct ipq *qp; 227 struct net *net; 228 229 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 230 net = container_of(qp->q.net, struct net, ipv4.frags); 231 232 spin_lock(&qp->q.lock); 233 234 if (qp->q.last_in & INET_FRAG_COMPLETE) 235 goto out; 236 237 ipq_kill(qp); 238 239 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT); 240 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 241 242 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { 243 struct sk_buff *head = qp->q.fragments; 244 const struct iphdr *iph; 245 int err; 246 247 rcu_read_lock(); 248 head->dev = dev_get_by_index_rcu(net, qp->iif); 249 if (!head->dev) 250 goto out_rcu_unlock; 251 252 /* skb dst is stale, drop it, and perform route lookup again */ 253 skb_dst_drop(head); 254 iph = ip_hdr(head); 255 err = ip_route_input_noref(head, iph->daddr, iph->saddr, 256 iph->tos, head->dev); 257 if (err) 258 goto out_rcu_unlock; 259 260 /* 261 * Only an end host needs to send an ICMP 262 * "Fragment Reassembly Timeout" message, per RFC792. 263 */ 264 if (qp->user == IP_DEFRAG_CONNTRACK_IN && 265 skb_rtable(head)->rt_type != RTN_LOCAL) 266 goto out_rcu_unlock; 267 268 269 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 270 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 271 out_rcu_unlock: 272 rcu_read_unlock(); 273 } 274 out: 275 spin_unlock(&qp->q.lock); 276 ipq_put(qp); 277 } 278 279 /* Find the correct entry in the "incomplete datagrams" queue for 280 * this IP datagram, and create new one, if nothing is found. 281 */ 282 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 283 { 284 struct inet_frag_queue *q; 285 struct ip4_create_arg arg; 286 unsigned int hash; 287 288 arg.iph = iph; 289 arg.user = user; 290 291 read_lock(&ip4_frags.lock); 292 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 293 294 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 295 if (q == NULL) 296 goto out_nomem; 297 298 return container_of(q, struct ipq, q); 299 300 out_nomem: 301 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 302 return NULL; 303 } 304 305 /* Is the fragment too far ahead to be part of ipq? */ 306 static inline int ip_frag_too_far(struct ipq *qp) 307 { 308 struct inet_peer *peer = qp->peer; 309 unsigned int max = sysctl_ipfrag_max_dist; 310 unsigned int start, end; 311 312 int rc; 313 314 if (!peer || !max) 315 return 0; 316 317 start = qp->rid; 318 end = atomic_inc_return(&peer->rid); 319 qp->rid = end; 320 321 rc = qp->q.fragments && (end - start) > max; 322 323 if (rc) { 324 struct net *net; 325 326 net = container_of(qp->q.net, struct net, ipv4.frags); 327 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 328 } 329 330 return rc; 331 } 332 333 static int ip_frag_reinit(struct ipq *qp) 334 { 335 struct sk_buff *fp; 336 337 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 338 atomic_inc(&qp->q.refcnt); 339 return -ETIMEDOUT; 340 } 341 342 fp = qp->q.fragments; 343 do { 344 struct sk_buff *xp = fp->next; 345 frag_kfree_skb(qp->q.net, fp); 346 fp = xp; 347 } while (fp); 348 349 qp->q.last_in = 0; 350 qp->q.len = 0; 351 qp->q.meat = 0; 352 qp->q.fragments = NULL; 353 qp->q.fragments_tail = NULL; 354 qp->iif = 0; 355 qp->ecn = 0; 356 357 return 0; 358 } 359 360 /* Add new segment to existing queue. */ 361 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 362 { 363 struct sk_buff *prev, *next; 364 struct net_device *dev; 365 int flags, offset; 366 int ihl, end; 367 int err = -ENOENT; 368 u8 ecn; 369 370 if (qp->q.last_in & INET_FRAG_COMPLETE) 371 goto err; 372 373 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 374 unlikely(ip_frag_too_far(qp)) && 375 unlikely(err = ip_frag_reinit(qp))) { 376 ipq_kill(qp); 377 goto err; 378 } 379 380 ecn = ip4_frag_ecn(ip_hdr(skb)->tos); 381 offset = ntohs(ip_hdr(skb)->frag_off); 382 flags = offset & ~IP_OFFSET; 383 offset &= IP_OFFSET; 384 offset <<= 3; /* offset is in 8-byte chunks */ 385 ihl = ip_hdrlen(skb); 386 387 /* Determine the position of this fragment. */ 388 end = offset + skb->len - ihl; 389 err = -EINVAL; 390 391 /* Is this the final fragment? */ 392 if ((flags & IP_MF) == 0) { 393 /* If we already have some bits beyond end 394 * or have different end, the segment is corrrupted. 395 */ 396 if (end < qp->q.len || 397 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) 398 goto err; 399 qp->q.last_in |= INET_FRAG_LAST_IN; 400 qp->q.len = end; 401 } else { 402 if (end&7) { 403 end &= ~7; 404 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 405 skb->ip_summed = CHECKSUM_NONE; 406 } 407 if (end > qp->q.len) { 408 /* Some bits beyond end -> corruption. */ 409 if (qp->q.last_in & INET_FRAG_LAST_IN) 410 goto err; 411 qp->q.len = end; 412 } 413 } 414 if (end == offset) 415 goto err; 416 417 err = -ENOMEM; 418 if (pskb_pull(skb, ihl) == NULL) 419 goto err; 420 421 err = pskb_trim_rcsum(skb, end - offset); 422 if (err) 423 goto err; 424 425 /* Find out which fragments are in front and at the back of us 426 * in the chain of fragments so far. We must know where to put 427 * this fragment, right? 428 */ 429 prev = qp->q.fragments_tail; 430 if (!prev || FRAG_CB(prev)->offset < offset) { 431 next = NULL; 432 goto found; 433 } 434 prev = NULL; 435 for (next = qp->q.fragments; next != NULL; next = next->next) { 436 if (FRAG_CB(next)->offset >= offset) 437 break; /* bingo! */ 438 prev = next; 439 } 440 441 found: 442 /* We found where to put this one. Check for overlap with 443 * preceding fragment, and, if needed, align things so that 444 * any overlaps are eliminated. 445 */ 446 if (prev) { 447 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 448 449 if (i > 0) { 450 offset += i; 451 err = -EINVAL; 452 if (end <= offset) 453 goto err; 454 err = -ENOMEM; 455 if (!pskb_pull(skb, i)) 456 goto err; 457 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 458 skb->ip_summed = CHECKSUM_NONE; 459 } 460 } 461 462 err = -ENOMEM; 463 464 while (next && FRAG_CB(next)->offset < end) { 465 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 466 467 if (i < next->len) { 468 /* Eat head of the next overlapped fragment 469 * and leave the loop. The next ones cannot overlap. 470 */ 471 if (!pskb_pull(next, i)) 472 goto err; 473 FRAG_CB(next)->offset += i; 474 qp->q.meat -= i; 475 if (next->ip_summed != CHECKSUM_UNNECESSARY) 476 next->ip_summed = CHECKSUM_NONE; 477 break; 478 } else { 479 struct sk_buff *free_it = next; 480 481 /* Old fragment is completely overridden with 482 * new one drop it. 483 */ 484 next = next->next; 485 486 if (prev) 487 prev->next = next; 488 else 489 qp->q.fragments = next; 490 491 qp->q.meat -= free_it->len; 492 frag_kfree_skb(qp->q.net, free_it); 493 } 494 } 495 496 FRAG_CB(skb)->offset = offset; 497 498 /* Insert this fragment in the chain of fragments. */ 499 skb->next = next; 500 if (!next) 501 qp->q.fragments_tail = skb; 502 if (prev) 503 prev->next = skb; 504 else 505 qp->q.fragments = skb; 506 507 dev = skb->dev; 508 if (dev) { 509 qp->iif = dev->ifindex; 510 skb->dev = NULL; 511 } 512 qp->q.stamp = skb->tstamp; 513 qp->q.meat += skb->len; 514 qp->ecn |= ecn; 515 atomic_add(skb->truesize, &qp->q.net->mem); 516 if (offset == 0) 517 qp->q.last_in |= INET_FRAG_FIRST_IN; 518 519 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 520 qp->q.meat == qp->q.len) 521 return ip_frag_reasm(qp, prev, dev); 522 523 write_lock(&ip4_frags.lock); 524 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); 525 write_unlock(&ip4_frags.lock); 526 return -EINPROGRESS; 527 528 err: 529 kfree_skb(skb); 530 return err; 531 } 532 533 534 /* Build a new IP datagram from all its fragments. */ 535 536 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 537 struct net_device *dev) 538 { 539 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 540 struct iphdr *iph; 541 struct sk_buff *fp, *head = qp->q.fragments; 542 int len; 543 int ihlen; 544 int err; 545 u8 ecn; 546 547 ipq_kill(qp); 548 549 ecn = ip4_frag_ecn_table[qp->ecn]; 550 if (unlikely(ecn == 0xff)) { 551 err = -EINVAL; 552 goto out_fail; 553 } 554 /* Make the one we just received the head. */ 555 if (prev) { 556 head = prev->next; 557 fp = skb_clone(head, GFP_ATOMIC); 558 if (!fp) 559 goto out_nomem; 560 561 fp->next = head->next; 562 if (!fp->next) 563 qp->q.fragments_tail = fp; 564 prev->next = fp; 565 566 skb_morph(head, qp->q.fragments); 567 head->next = qp->q.fragments->next; 568 569 kfree_skb(qp->q.fragments); 570 qp->q.fragments = head; 571 } 572 573 WARN_ON(head == NULL); 574 WARN_ON(FRAG_CB(head)->offset != 0); 575 576 /* Allocate a new buffer for the datagram. */ 577 ihlen = ip_hdrlen(head); 578 len = ihlen + qp->q.len; 579 580 err = -E2BIG; 581 if (len > 65535) 582 goto out_oversize; 583 584 /* Head of list must not be cloned. */ 585 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 586 goto out_nomem; 587 588 /* If the first fragment is fragmented itself, we split 589 * it to two chunks: the first with data and paged part 590 * and the second, holding only fragments. */ 591 if (skb_has_frag_list(head)) { 592 struct sk_buff *clone; 593 int i, plen = 0; 594 595 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 596 goto out_nomem; 597 clone->next = head->next; 598 head->next = clone; 599 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 600 skb_frag_list_init(head); 601 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 602 plen += skb_shinfo(head)->frags[i].size; 603 clone->len = clone->data_len = head->data_len - plen; 604 head->data_len -= clone->len; 605 head->len -= clone->len; 606 clone->csum = 0; 607 clone->ip_summed = head->ip_summed; 608 atomic_add(clone->truesize, &qp->q.net->mem); 609 } 610 611 skb_shinfo(head)->frag_list = head->next; 612 skb_push(head, head->data - skb_network_header(head)); 613 614 for (fp=head->next; fp; fp = fp->next) { 615 head->data_len += fp->len; 616 head->len += fp->len; 617 if (head->ip_summed != fp->ip_summed) 618 head->ip_summed = CHECKSUM_NONE; 619 else if (head->ip_summed == CHECKSUM_COMPLETE) 620 head->csum = csum_add(head->csum, fp->csum); 621 head->truesize += fp->truesize; 622 } 623 atomic_sub(head->truesize, &qp->q.net->mem); 624 625 head->next = NULL; 626 head->dev = dev; 627 head->tstamp = qp->q.stamp; 628 629 iph = ip_hdr(head); 630 iph->frag_off = 0; 631 iph->tot_len = htons(len); 632 iph->tos |= ecn; 633 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS); 634 qp->q.fragments = NULL; 635 qp->q.fragments_tail = NULL; 636 return 0; 637 638 out_nomem: 639 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 640 "queue %p\n", qp); 641 err = -ENOMEM; 642 goto out_fail; 643 out_oversize: 644 if (net_ratelimit()) 645 printk(KERN_INFO "Oversized IP packet from %pI4.\n", 646 &qp->saddr); 647 out_fail: 648 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 649 return err; 650 } 651 652 /* Process an incoming IP datagram fragment. */ 653 int ip_defrag(struct sk_buff *skb, u32 user) 654 { 655 struct ipq *qp; 656 struct net *net; 657 658 net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev); 659 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS); 660 661 /* Start by cleaning up the memory. */ 662 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) 663 ip_evictor(net); 664 665 /* Lookup (or create) queue header */ 666 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 667 int ret; 668 669 spin_lock(&qp->q.lock); 670 671 ret = ip_frag_queue(qp, skb); 672 673 spin_unlock(&qp->q.lock); 674 ipq_put(qp); 675 return ret; 676 } 677 678 IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS); 679 kfree_skb(skb); 680 return -ENOMEM; 681 } 682 EXPORT_SYMBOL(ip_defrag); 683 684 #ifdef CONFIG_SYSCTL 685 static int zero; 686 687 static struct ctl_table ip4_frags_ns_ctl_table[] = { 688 { 689 .procname = "ipfrag_high_thresh", 690 .data = &init_net.ipv4.frags.high_thresh, 691 .maxlen = sizeof(int), 692 .mode = 0644, 693 .proc_handler = proc_dointvec 694 }, 695 { 696 .procname = "ipfrag_low_thresh", 697 .data = &init_net.ipv4.frags.low_thresh, 698 .maxlen = sizeof(int), 699 .mode = 0644, 700 .proc_handler = proc_dointvec 701 }, 702 { 703 .procname = "ipfrag_time", 704 .data = &init_net.ipv4.frags.timeout, 705 .maxlen = sizeof(int), 706 .mode = 0644, 707 .proc_handler = proc_dointvec_jiffies, 708 }, 709 { } 710 }; 711 712 static struct ctl_table ip4_frags_ctl_table[] = { 713 { 714 .procname = "ipfrag_secret_interval", 715 .data = &ip4_frags.secret_interval, 716 .maxlen = sizeof(int), 717 .mode = 0644, 718 .proc_handler = proc_dointvec_jiffies, 719 }, 720 { 721 .procname = "ipfrag_max_dist", 722 .data = &sysctl_ipfrag_max_dist, 723 .maxlen = sizeof(int), 724 .mode = 0644, 725 .proc_handler = proc_dointvec_minmax, 726 .extra1 = &zero 727 }, 728 { } 729 }; 730 731 static int __net_init ip4_frags_ns_ctl_register(struct net *net) 732 { 733 struct ctl_table *table; 734 struct ctl_table_header *hdr; 735 736 table = ip4_frags_ns_ctl_table; 737 if (!net_eq(net, &init_net)) { 738 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 739 if (table == NULL) 740 goto err_alloc; 741 742 table[0].data = &net->ipv4.frags.high_thresh; 743 table[1].data = &net->ipv4.frags.low_thresh; 744 table[2].data = &net->ipv4.frags.timeout; 745 } 746 747 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); 748 if (hdr == NULL) 749 goto err_reg; 750 751 net->ipv4.frags_hdr = hdr; 752 return 0; 753 754 err_reg: 755 if (!net_eq(net, &init_net)) 756 kfree(table); 757 err_alloc: 758 return -ENOMEM; 759 } 760 761 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) 762 { 763 struct ctl_table *table; 764 765 table = net->ipv4.frags_hdr->ctl_table_arg; 766 unregister_net_sysctl_table(net->ipv4.frags_hdr); 767 kfree(table); 768 } 769 770 static void ip4_frags_ctl_register(void) 771 { 772 register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table); 773 } 774 #else 775 static inline int ip4_frags_ns_ctl_register(struct net *net) 776 { 777 return 0; 778 } 779 780 static inline void ip4_frags_ns_ctl_unregister(struct net *net) 781 { 782 } 783 784 static inline void ip4_frags_ctl_register(void) 785 { 786 } 787 #endif 788 789 static int __net_init ipv4_frags_init_net(struct net *net) 790 { 791 /* 792 * Fragment cache limits. We will commit 256K at one time. Should we 793 * cross that limit we will prune down to 192K. This should cope with 794 * even the most extreme cases without allowing an attacker to 795 * measurably harm machine performance. 796 */ 797 net->ipv4.frags.high_thresh = 256 * 1024; 798 net->ipv4.frags.low_thresh = 192 * 1024; 799 /* 800 * Important NOTE! Fragment queue must be destroyed before MSL expires. 801 * RFC791 is wrong proposing to prolongate timer each fragment arrival 802 * by TTL. 803 */ 804 net->ipv4.frags.timeout = IP_FRAG_TIME; 805 806 inet_frags_init_net(&net->ipv4.frags); 807 808 return ip4_frags_ns_ctl_register(net); 809 } 810 811 static void __net_exit ipv4_frags_exit_net(struct net *net) 812 { 813 ip4_frags_ns_ctl_unregister(net); 814 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 815 } 816 817 static struct pernet_operations ip4_frags_ops = { 818 .init = ipv4_frags_init_net, 819 .exit = ipv4_frags_exit_net, 820 }; 821 822 void __init ipfrag_init(void) 823 { 824 ip4_frags_ctl_register(); 825 register_pernet_subsys(&ip4_frags_ops); 826 ip4_frags.hashfn = ip4_hashfn; 827 ip4_frags.constructor = ip4_frag_init; 828 ip4_frags.destructor = ip4_frag_free; 829 ip4_frags.skb_free = NULL; 830 ip4_frags.qsize = sizeof(struct ipq); 831 ip4_frags.match = ip4_frag_match; 832 ip4_frags.frag_expire = ip_expire; 833 ip4_frags.secret_interval = 10 * 60 * HZ; 834 inet_frags_init(&ip4_frags); 835 } 836