1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The IP fragmentation functionality. 7 * 8 * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $ 9 * 10 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 11 * Alan Cox <Alan.Cox@linux.org> 12 * 13 * Fixes: 14 * Alan Cox : Split from ip.c , see ip_input.c for history. 15 * David S. Miller : Begin massive cleanup... 16 * Andi Kleen : Add sysctls. 17 * xxxx : Overlapfrag bug. 18 * Ultima : ip_expire() kernel panic. 19 * Bill Hawes : Frag accounting and evictor fixes. 20 * John McDonald : 0 length frag bug. 21 * Alexey Kuznetsov: SMP races, threading, cleanup. 22 * Patrick McHardy : LRU queue of frag heads for evictor. 23 */ 24 25 #include <linux/compiler.h> 26 #include <linux/module.h> 27 #include <linux/types.h> 28 #include <linux/mm.h> 29 #include <linux/jiffies.h> 30 #include <linux/skbuff.h> 31 #include <linux/list.h> 32 #include <linux/ip.h> 33 #include <linux/icmp.h> 34 #include <linux/netdevice.h> 35 #include <linux/jhash.h> 36 #include <linux/random.h> 37 #include <net/sock.h> 38 #include <net/ip.h> 39 #include <net/icmp.h> 40 #include <net/checksum.h> 41 #include <net/inetpeer.h> 42 #include <net/inet_frag.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/inet.h> 46 #include <linux/netfilter_ipv4.h> 47 48 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 49 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 50 * as well. Or notify me, at least. --ANK 51 */ 52 53 static int sysctl_ipfrag_max_dist __read_mostly = 64; 54 55 struct ipfrag_skb_cb 56 { 57 struct inet_skb_parm h; 58 int offset; 59 }; 60 61 #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb)) 62 63 /* Describe an entry in the "incomplete datagrams" queue. */ 64 struct ipq { 65 struct inet_frag_queue q; 66 67 u32 user; 68 __be32 saddr; 69 __be32 daddr; 70 __be16 id; 71 u8 protocol; 72 int iif; 73 unsigned int rid; 74 struct inet_peer *peer; 75 }; 76 77 static struct inet_frags ip4_frags; 78 79 int ip_frag_nqueues(struct net *net) 80 { 81 return net->ipv4.frags.nqueues; 82 } 83 84 int ip_frag_mem(struct net *net) 85 { 86 return atomic_read(&net->ipv4.frags.mem); 87 } 88 89 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 90 struct net_device *dev); 91 92 struct ip4_create_arg { 93 struct iphdr *iph; 94 u32 user; 95 }; 96 97 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot) 98 { 99 return jhash_3words((__force u32)id << 16 | prot, 100 (__force u32)saddr, (__force u32)daddr, 101 ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1); 102 } 103 104 static unsigned int ip4_hashfn(struct inet_frag_queue *q) 105 { 106 struct ipq *ipq; 107 108 ipq = container_of(q, struct ipq, q); 109 return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol); 110 } 111 112 static int ip4_frag_match(struct inet_frag_queue *q, void *a) 113 { 114 struct ipq *qp; 115 struct ip4_create_arg *arg = a; 116 117 qp = container_of(q, struct ipq, q); 118 return (qp->id == arg->iph->id && 119 qp->saddr == arg->iph->saddr && 120 qp->daddr == arg->iph->daddr && 121 qp->protocol == arg->iph->protocol && 122 qp->user == arg->user); 123 } 124 125 /* Memory Tracking Functions. */ 126 static __inline__ void frag_kfree_skb(struct netns_frags *nf, 127 struct sk_buff *skb, int *work) 128 { 129 if (work) 130 *work -= skb->truesize; 131 atomic_sub(skb->truesize, &nf->mem); 132 kfree_skb(skb); 133 } 134 135 static void ip4_frag_init(struct inet_frag_queue *q, void *a) 136 { 137 struct ipq *qp = container_of(q, struct ipq, q); 138 struct ip4_create_arg *arg = a; 139 140 qp->protocol = arg->iph->protocol; 141 qp->id = arg->iph->id; 142 qp->saddr = arg->iph->saddr; 143 qp->daddr = arg->iph->daddr; 144 qp->user = arg->user; 145 qp->peer = sysctl_ipfrag_max_dist ? 146 inet_getpeer(arg->iph->saddr, 1) : NULL; 147 } 148 149 static __inline__ void ip4_frag_free(struct inet_frag_queue *q) 150 { 151 struct ipq *qp; 152 153 qp = container_of(q, struct ipq, q); 154 if (qp->peer) 155 inet_putpeer(qp->peer); 156 } 157 158 159 /* Destruction primitives. */ 160 161 static __inline__ void ipq_put(struct ipq *ipq) 162 { 163 inet_frag_put(&ipq->q, &ip4_frags); 164 } 165 166 /* Kill ipq entry. It is not destroyed immediately, 167 * because caller (and someone more) holds reference count. 168 */ 169 static void ipq_kill(struct ipq *ipq) 170 { 171 inet_frag_kill(&ipq->q, &ip4_frags); 172 } 173 174 /* Memory limiting on fragments. Evictor trashes the oldest 175 * fragment queue until we are back under the threshold. 176 */ 177 static void ip_evictor(struct net *net) 178 { 179 int evicted; 180 181 evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags); 182 if (evicted) 183 IP_ADD_STATS_BH(IPSTATS_MIB_REASMFAILS, evicted); 184 } 185 186 /* 187 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 188 */ 189 static void ip_expire(unsigned long arg) 190 { 191 struct ipq *qp; 192 193 qp = container_of((struct inet_frag_queue *) arg, struct ipq, q); 194 195 spin_lock(&qp->q.lock); 196 197 if (qp->q.last_in & INET_FRAG_COMPLETE) 198 goto out; 199 200 ipq_kill(qp); 201 202 IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT); 203 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 204 205 if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) { 206 struct sk_buff *head = qp->q.fragments; 207 struct net *net; 208 209 net = container_of(qp->q.net, struct net, ipv4.frags); 210 /* Send an ICMP "Fragment Reassembly Timeout" message. */ 211 if ((head->dev = dev_get_by_index(net, qp->iif)) != NULL) { 212 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 213 dev_put(head->dev); 214 } 215 } 216 out: 217 spin_unlock(&qp->q.lock); 218 ipq_put(qp); 219 } 220 221 /* Find the correct entry in the "incomplete datagrams" queue for 222 * this IP datagram, and create new one, if nothing is found. 223 */ 224 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user) 225 { 226 struct inet_frag_queue *q; 227 struct ip4_create_arg arg; 228 unsigned int hash; 229 230 arg.iph = iph; 231 arg.user = user; 232 hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol); 233 234 q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash); 235 if (q == NULL) 236 goto out_nomem; 237 238 return container_of(q, struct ipq, q); 239 240 out_nomem: 241 LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n"); 242 return NULL; 243 } 244 245 /* Is the fragment too far ahead to be part of ipq? */ 246 static inline int ip_frag_too_far(struct ipq *qp) 247 { 248 struct inet_peer *peer = qp->peer; 249 unsigned int max = sysctl_ipfrag_max_dist; 250 unsigned int start, end; 251 252 int rc; 253 254 if (!peer || !max) 255 return 0; 256 257 start = qp->rid; 258 end = atomic_inc_return(&peer->rid); 259 qp->rid = end; 260 261 rc = qp->q.fragments && (end - start) > max; 262 263 if (rc) { 264 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 265 } 266 267 return rc; 268 } 269 270 static int ip_frag_reinit(struct ipq *qp) 271 { 272 struct sk_buff *fp; 273 274 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 275 atomic_inc(&qp->q.refcnt); 276 return -ETIMEDOUT; 277 } 278 279 fp = qp->q.fragments; 280 do { 281 struct sk_buff *xp = fp->next; 282 frag_kfree_skb(qp->q.net, fp, NULL); 283 fp = xp; 284 } while (fp); 285 286 qp->q.last_in = 0; 287 qp->q.len = 0; 288 qp->q.meat = 0; 289 qp->q.fragments = NULL; 290 qp->iif = 0; 291 292 return 0; 293 } 294 295 /* Add new segment to existing queue. */ 296 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 297 { 298 struct sk_buff *prev, *next; 299 struct net_device *dev; 300 int flags, offset; 301 int ihl, end; 302 int err = -ENOENT; 303 304 if (qp->q.last_in & INET_FRAG_COMPLETE) 305 goto err; 306 307 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 308 unlikely(ip_frag_too_far(qp)) && 309 unlikely(err = ip_frag_reinit(qp))) { 310 ipq_kill(qp); 311 goto err; 312 } 313 314 offset = ntohs(ip_hdr(skb)->frag_off); 315 flags = offset & ~IP_OFFSET; 316 offset &= IP_OFFSET; 317 offset <<= 3; /* offset is in 8-byte chunks */ 318 ihl = ip_hdrlen(skb); 319 320 /* Determine the position of this fragment. */ 321 end = offset + skb->len - ihl; 322 err = -EINVAL; 323 324 /* Is this the final fragment? */ 325 if ((flags & IP_MF) == 0) { 326 /* If we already have some bits beyond end 327 * or have different end, the segment is corrrupted. 328 */ 329 if (end < qp->q.len || 330 ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len)) 331 goto err; 332 qp->q.last_in |= INET_FRAG_LAST_IN; 333 qp->q.len = end; 334 } else { 335 if (end&7) { 336 end &= ~7; 337 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 338 skb->ip_summed = CHECKSUM_NONE; 339 } 340 if (end > qp->q.len) { 341 /* Some bits beyond end -> corruption. */ 342 if (qp->q.last_in & INET_FRAG_LAST_IN) 343 goto err; 344 qp->q.len = end; 345 } 346 } 347 if (end == offset) 348 goto err; 349 350 err = -ENOMEM; 351 if (pskb_pull(skb, ihl) == NULL) 352 goto err; 353 354 err = pskb_trim_rcsum(skb, end - offset); 355 if (err) 356 goto err; 357 358 /* Find out which fragments are in front and at the back of us 359 * in the chain of fragments so far. We must know where to put 360 * this fragment, right? 361 */ 362 prev = NULL; 363 for (next = qp->q.fragments; next != NULL; next = next->next) { 364 if (FRAG_CB(next)->offset >= offset) 365 break; /* bingo! */ 366 prev = next; 367 } 368 369 /* We found where to put this one. Check for overlap with 370 * preceding fragment, and, if needed, align things so that 371 * any overlaps are eliminated. 372 */ 373 if (prev) { 374 int i = (FRAG_CB(prev)->offset + prev->len) - offset; 375 376 if (i > 0) { 377 offset += i; 378 err = -EINVAL; 379 if (end <= offset) 380 goto err; 381 err = -ENOMEM; 382 if (!pskb_pull(skb, i)) 383 goto err; 384 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 385 skb->ip_summed = CHECKSUM_NONE; 386 } 387 } 388 389 err = -ENOMEM; 390 391 while (next && FRAG_CB(next)->offset < end) { 392 int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ 393 394 if (i < next->len) { 395 /* Eat head of the next overlapped fragment 396 * and leave the loop. The next ones cannot overlap. 397 */ 398 if (!pskb_pull(next, i)) 399 goto err; 400 FRAG_CB(next)->offset += i; 401 qp->q.meat -= i; 402 if (next->ip_summed != CHECKSUM_UNNECESSARY) 403 next->ip_summed = CHECKSUM_NONE; 404 break; 405 } else { 406 struct sk_buff *free_it = next; 407 408 /* Old fragment is completely overridden with 409 * new one drop it. 410 */ 411 next = next->next; 412 413 if (prev) 414 prev->next = next; 415 else 416 qp->q.fragments = next; 417 418 qp->q.meat -= free_it->len; 419 frag_kfree_skb(qp->q.net, free_it, NULL); 420 } 421 } 422 423 FRAG_CB(skb)->offset = offset; 424 425 /* Insert this fragment in the chain of fragments. */ 426 skb->next = next; 427 if (prev) 428 prev->next = skb; 429 else 430 qp->q.fragments = skb; 431 432 dev = skb->dev; 433 if (dev) { 434 qp->iif = dev->ifindex; 435 skb->dev = NULL; 436 } 437 qp->q.stamp = skb->tstamp; 438 qp->q.meat += skb->len; 439 atomic_add(skb->truesize, &qp->q.net->mem); 440 if (offset == 0) 441 qp->q.last_in |= INET_FRAG_FIRST_IN; 442 443 if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 444 qp->q.meat == qp->q.len) 445 return ip_frag_reasm(qp, prev, dev); 446 447 write_lock(&ip4_frags.lock); 448 list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list); 449 write_unlock(&ip4_frags.lock); 450 return -EINPROGRESS; 451 452 err: 453 kfree_skb(skb); 454 return err; 455 } 456 457 458 /* Build a new IP datagram from all its fragments. */ 459 460 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev, 461 struct net_device *dev) 462 { 463 struct iphdr *iph; 464 struct sk_buff *fp, *head = qp->q.fragments; 465 int len; 466 int ihlen; 467 int err; 468 469 ipq_kill(qp); 470 471 /* Make the one we just received the head. */ 472 if (prev) { 473 head = prev->next; 474 fp = skb_clone(head, GFP_ATOMIC); 475 if (!fp) 476 goto out_nomem; 477 478 fp->next = head->next; 479 prev->next = fp; 480 481 skb_morph(head, qp->q.fragments); 482 head->next = qp->q.fragments->next; 483 484 kfree_skb(qp->q.fragments); 485 qp->q.fragments = head; 486 } 487 488 BUG_TRAP(head != NULL); 489 BUG_TRAP(FRAG_CB(head)->offset == 0); 490 491 /* Allocate a new buffer for the datagram. */ 492 ihlen = ip_hdrlen(head); 493 len = ihlen + qp->q.len; 494 495 err = -E2BIG; 496 if (len > 65535) 497 goto out_oversize; 498 499 /* Head of list must not be cloned. */ 500 if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) 501 goto out_nomem; 502 503 /* If the first fragment is fragmented itself, we split 504 * it to two chunks: the first with data and paged part 505 * and the second, holding only fragments. */ 506 if (skb_shinfo(head)->frag_list) { 507 struct sk_buff *clone; 508 int i, plen = 0; 509 510 if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) 511 goto out_nomem; 512 clone->next = head->next; 513 head->next = clone; 514 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 515 skb_shinfo(head)->frag_list = NULL; 516 for (i=0; i<skb_shinfo(head)->nr_frags; i++) 517 plen += skb_shinfo(head)->frags[i].size; 518 clone->len = clone->data_len = head->data_len - plen; 519 head->data_len -= clone->len; 520 head->len -= clone->len; 521 clone->csum = 0; 522 clone->ip_summed = head->ip_summed; 523 atomic_add(clone->truesize, &qp->q.net->mem); 524 } 525 526 skb_shinfo(head)->frag_list = head->next; 527 skb_push(head, head->data - skb_network_header(head)); 528 atomic_sub(head->truesize, &qp->q.net->mem); 529 530 for (fp=head->next; fp; fp = fp->next) { 531 head->data_len += fp->len; 532 head->len += fp->len; 533 if (head->ip_summed != fp->ip_summed) 534 head->ip_summed = CHECKSUM_NONE; 535 else if (head->ip_summed == CHECKSUM_COMPLETE) 536 head->csum = csum_add(head->csum, fp->csum); 537 head->truesize += fp->truesize; 538 atomic_sub(fp->truesize, &qp->q.net->mem); 539 } 540 541 head->next = NULL; 542 head->dev = dev; 543 head->tstamp = qp->q.stamp; 544 545 iph = ip_hdr(head); 546 iph->frag_off = 0; 547 iph->tot_len = htons(len); 548 IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS); 549 qp->q.fragments = NULL; 550 return 0; 551 552 out_nomem: 553 LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing " 554 "queue %p\n", qp); 555 err = -ENOMEM; 556 goto out_fail; 557 out_oversize: 558 if (net_ratelimit()) 559 printk(KERN_INFO 560 "Oversized IP packet from " NIPQUAD_FMT ".\n", 561 NIPQUAD(qp->saddr)); 562 out_fail: 563 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 564 return err; 565 } 566 567 /* Process an incoming IP datagram fragment. */ 568 int ip_defrag(struct sk_buff *skb, u32 user) 569 { 570 struct ipq *qp; 571 struct net *net; 572 573 IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS); 574 575 net = skb->dev ? dev_net(skb->dev) : dev_net(skb->dst->dev); 576 /* Start by cleaning up the memory. */ 577 if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh) 578 ip_evictor(net); 579 580 /* Lookup (or create) queue header */ 581 if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) { 582 int ret; 583 584 spin_lock(&qp->q.lock); 585 586 ret = ip_frag_queue(qp, skb); 587 588 spin_unlock(&qp->q.lock); 589 ipq_put(qp); 590 return ret; 591 } 592 593 IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); 594 kfree_skb(skb); 595 return -ENOMEM; 596 } 597 598 #ifdef CONFIG_SYSCTL 599 static int zero; 600 601 static struct ctl_table ip4_frags_ctl_table[] = { 602 { 603 .ctl_name = NET_IPV4_IPFRAG_HIGH_THRESH, 604 .procname = "ipfrag_high_thresh", 605 .data = &init_net.ipv4.frags.high_thresh, 606 .maxlen = sizeof(int), 607 .mode = 0644, 608 .proc_handler = &proc_dointvec 609 }, 610 { 611 .ctl_name = NET_IPV4_IPFRAG_LOW_THRESH, 612 .procname = "ipfrag_low_thresh", 613 .data = &init_net.ipv4.frags.low_thresh, 614 .maxlen = sizeof(int), 615 .mode = 0644, 616 .proc_handler = &proc_dointvec 617 }, 618 { 619 .ctl_name = NET_IPV4_IPFRAG_TIME, 620 .procname = "ipfrag_time", 621 .data = &init_net.ipv4.frags.timeout, 622 .maxlen = sizeof(int), 623 .mode = 0644, 624 .proc_handler = &proc_dointvec_jiffies, 625 .strategy = &sysctl_jiffies 626 }, 627 { 628 .ctl_name = NET_IPV4_IPFRAG_SECRET_INTERVAL, 629 .procname = "ipfrag_secret_interval", 630 .data = &ip4_frags.secret_interval, 631 .maxlen = sizeof(int), 632 .mode = 0644, 633 .proc_handler = &proc_dointvec_jiffies, 634 .strategy = &sysctl_jiffies 635 }, 636 { 637 .procname = "ipfrag_max_dist", 638 .data = &sysctl_ipfrag_max_dist, 639 .maxlen = sizeof(int), 640 .mode = 0644, 641 .proc_handler = &proc_dointvec_minmax, 642 .extra1 = &zero 643 }, 644 { } 645 }; 646 647 static int ip4_frags_ctl_register(struct net *net) 648 { 649 struct ctl_table *table; 650 struct ctl_table_header *hdr; 651 652 table = ip4_frags_ctl_table; 653 if (net != &init_net) { 654 table = kmemdup(table, sizeof(ip4_frags_ctl_table), GFP_KERNEL); 655 if (table == NULL) 656 goto err_alloc; 657 658 table[0].data = &net->ipv4.frags.high_thresh; 659 table[1].data = &net->ipv4.frags.low_thresh; 660 table[2].data = &net->ipv4.frags.timeout; 661 table[3].mode &= ~0222; 662 table[4].mode &= ~0222; 663 } 664 665 hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table); 666 if (hdr == NULL) 667 goto err_reg; 668 669 net->ipv4.frags_hdr = hdr; 670 return 0; 671 672 err_reg: 673 if (net != &init_net) 674 kfree(table); 675 err_alloc: 676 return -ENOMEM; 677 } 678 679 static void ip4_frags_ctl_unregister(struct net *net) 680 { 681 struct ctl_table *table; 682 683 table = net->ipv4.frags_hdr->ctl_table_arg; 684 unregister_net_sysctl_table(net->ipv4.frags_hdr); 685 kfree(table); 686 } 687 #else 688 static inline int ip4_frags_ctl_register(struct net *net) 689 { 690 return 0; 691 } 692 693 static inline void ip4_frags_ctl_unregister(struct net *net) 694 { 695 } 696 #endif 697 698 static int ipv4_frags_init_net(struct net *net) 699 { 700 /* 701 * Fragment cache limits. We will commit 256K at one time. Should we 702 * cross that limit we will prune down to 192K. This should cope with 703 * even the most extreme cases without allowing an attacker to 704 * measurably harm machine performance. 705 */ 706 net->ipv4.frags.high_thresh = 256 * 1024; 707 net->ipv4.frags.low_thresh = 192 * 1024; 708 /* 709 * Important NOTE! Fragment queue must be destroyed before MSL expires. 710 * RFC791 is wrong proposing to prolongate timer each fragment arrival 711 * by TTL. 712 */ 713 net->ipv4.frags.timeout = IP_FRAG_TIME; 714 715 inet_frags_init_net(&net->ipv4.frags); 716 717 return ip4_frags_ctl_register(net); 718 } 719 720 static void ipv4_frags_exit_net(struct net *net) 721 { 722 ip4_frags_ctl_unregister(net); 723 inet_frags_exit_net(&net->ipv4.frags, &ip4_frags); 724 } 725 726 static struct pernet_operations ip4_frags_ops = { 727 .init = ipv4_frags_init_net, 728 .exit = ipv4_frags_exit_net, 729 }; 730 731 void __init ipfrag_init(void) 732 { 733 register_pernet_subsys(&ip4_frags_ops); 734 ip4_frags.hashfn = ip4_hashfn; 735 ip4_frags.constructor = ip4_frag_init; 736 ip4_frags.destructor = ip4_frag_free; 737 ip4_frags.skb_free = NULL; 738 ip4_frags.qsize = sizeof(struct ipq); 739 ip4_frags.match = ip4_frag_match; 740 ip4_frags.frag_expire = ip_expire; 741 ip4_frags.secret_interval = 10 * 60 * HZ; 742 inet_frags_init(&ip4_frags); 743 } 744 745 EXPORT_SYMBOL(ip_defrag); 746