xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 15b7cc78)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #define pr_fmt(fmt) "IPv4: " fmt
24 
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 #include <net/l3mdev.h>
52 
53 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
54  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
55  * as well. Or notify me, at least. --ANK
56  */
57 static const char ip_frag_cache_name[] = "ip4-frags";
58 
59 struct ipfrag_skb_cb
60 {
61 	struct inet_skb_parm	h;
62 	int			offset;
63 };
64 
65 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
66 
67 /* Describe an entry in the "incomplete datagrams" queue. */
68 struct ipq {
69 	struct inet_frag_queue q;
70 
71 	u32		user;
72 	__be32		saddr;
73 	__be32		daddr;
74 	__be16		id;
75 	u8		protocol;
76 	u8		ecn; /* RFC3168 support */
77 	u16		max_df_size; /* largest frag with DF set seen */
78 	int             iif;
79 	int             vif;   /* L3 master device index */
80 	unsigned int    rid;
81 	struct inet_peer *peer;
82 };
83 
84 static u8 ip4_frag_ecn(u8 tos)
85 {
86 	return 1 << (tos & INET_ECN_MASK);
87 }
88 
89 static struct inet_frags ip4_frags;
90 
91 int ip_frag_mem(struct net *net)
92 {
93 	return sum_frag_mem_limit(&net->ipv4.frags);
94 }
95 
96 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
97 			 struct net_device *dev);
98 
99 struct ip4_create_arg {
100 	struct iphdr *iph;
101 	u32 user;
102 	int vif;
103 };
104 
105 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
106 {
107 	net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
108 	return jhash_3words((__force u32)id << 16 | prot,
109 			    (__force u32)saddr, (__force u32)daddr,
110 			    ip4_frags.rnd);
111 }
112 
113 static unsigned int ip4_hashfn(const struct inet_frag_queue *q)
114 {
115 	const struct ipq *ipq;
116 
117 	ipq = container_of(q, struct ipq, q);
118 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
119 }
120 
121 static bool ip4_frag_match(const struct inet_frag_queue *q, const void *a)
122 {
123 	const struct ipq *qp;
124 	const struct ip4_create_arg *arg = a;
125 
126 	qp = container_of(q, struct ipq, q);
127 	return	qp->id == arg->iph->id &&
128 		qp->saddr == arg->iph->saddr &&
129 		qp->daddr == arg->iph->daddr &&
130 		qp->protocol == arg->iph->protocol &&
131 		qp->user == arg->user &&
132 		qp->vif == arg->vif;
133 }
134 
135 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
136 {
137 	struct ipq *qp = container_of(q, struct ipq, q);
138 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
139 					       frags);
140 	struct net *net = container_of(ipv4, struct net, ipv4);
141 
142 	const struct ip4_create_arg *arg = a;
143 
144 	qp->protocol = arg->iph->protocol;
145 	qp->id = arg->iph->id;
146 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
147 	qp->saddr = arg->iph->saddr;
148 	qp->daddr = arg->iph->daddr;
149 	qp->vif = arg->vif;
150 	qp->user = arg->user;
151 	qp->peer = q->net->max_dist ?
152 		inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, arg->vif, 1) :
153 		NULL;
154 }
155 
156 static void ip4_frag_free(struct inet_frag_queue *q)
157 {
158 	struct ipq *qp;
159 
160 	qp = container_of(q, struct ipq, q);
161 	if (qp->peer)
162 		inet_putpeer(qp->peer);
163 }
164 
165 
166 /* Destruction primitives. */
167 
168 static void ipq_put(struct ipq *ipq)
169 {
170 	inet_frag_put(&ipq->q, &ip4_frags);
171 }
172 
173 /* Kill ipq entry. It is not destroyed immediately,
174  * because caller (and someone more) holds reference count.
175  */
176 static void ipq_kill(struct ipq *ipq)
177 {
178 	inet_frag_kill(&ipq->q, &ip4_frags);
179 }
180 
181 static bool frag_expire_skip_icmp(u32 user)
182 {
183 	return user == IP_DEFRAG_AF_PACKET ||
184 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
185 					 __IP_DEFRAG_CONNTRACK_IN_END) ||
186 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
187 					 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
188 }
189 
190 /*
191  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
192  */
193 static void ip_expire(unsigned long arg)
194 {
195 	struct ipq *qp;
196 	struct net *net;
197 
198 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
199 	net = container_of(qp->q.net, struct net, ipv4.frags);
200 
201 	spin_lock(&qp->q.lock);
202 
203 	if (qp->q.flags & INET_FRAG_COMPLETE)
204 		goto out;
205 
206 	ipq_kill(qp);
207 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
208 
209 	if (!inet_frag_evicting(&qp->q)) {
210 		struct sk_buff *head = qp->q.fragments;
211 		const struct iphdr *iph;
212 		int err;
213 
214 		__IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
215 
216 		if (!(qp->q.flags & INET_FRAG_FIRST_IN) || !qp->q.fragments)
217 			goto out;
218 
219 		rcu_read_lock();
220 		head->dev = dev_get_by_index_rcu(net, qp->iif);
221 		if (!head->dev)
222 			goto out_rcu_unlock;
223 
224 		/* skb has no dst, perform route lookup again */
225 		iph = ip_hdr(head);
226 		err = ip_route_input_noref(head, iph->daddr, iph->saddr,
227 					   iph->tos, head->dev);
228 		if (err)
229 			goto out_rcu_unlock;
230 
231 		/* Only an end host needs to send an ICMP
232 		 * "Fragment Reassembly Timeout" message, per RFC792.
233 		 */
234 		if (frag_expire_skip_icmp(qp->user) &&
235 		    (skb_rtable(head)->rt_type != RTN_LOCAL))
236 			goto out_rcu_unlock;
237 
238 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
239 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
240 out_rcu_unlock:
241 		rcu_read_unlock();
242 	}
243 out:
244 	spin_unlock(&qp->q.lock);
245 	ipq_put(qp);
246 }
247 
248 /* Find the correct entry in the "incomplete datagrams" queue for
249  * this IP datagram, and create new one, if nothing is found.
250  */
251 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
252 			   u32 user, int vif)
253 {
254 	struct inet_frag_queue *q;
255 	struct ip4_create_arg arg;
256 	unsigned int hash;
257 
258 	arg.iph = iph;
259 	arg.user = user;
260 	arg.vif = vif;
261 
262 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
263 
264 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
265 	if (IS_ERR_OR_NULL(q)) {
266 		inet_frag_maybe_warn_overflow(q, pr_fmt());
267 		return NULL;
268 	}
269 	return container_of(q, struct ipq, q);
270 }
271 
272 /* Is the fragment too far ahead to be part of ipq? */
273 static int ip_frag_too_far(struct ipq *qp)
274 {
275 	struct inet_peer *peer = qp->peer;
276 	unsigned int max = qp->q.net->max_dist;
277 	unsigned int start, end;
278 
279 	int rc;
280 
281 	if (!peer || !max)
282 		return 0;
283 
284 	start = qp->rid;
285 	end = atomic_inc_return(&peer->rid);
286 	qp->rid = end;
287 
288 	rc = qp->q.fragments && (end - start) > max;
289 
290 	if (rc) {
291 		struct net *net;
292 
293 		net = container_of(qp->q.net, struct net, ipv4.frags);
294 		__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
295 	}
296 
297 	return rc;
298 }
299 
300 static int ip_frag_reinit(struct ipq *qp)
301 {
302 	struct sk_buff *fp;
303 	unsigned int sum_truesize = 0;
304 
305 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
306 		atomic_inc(&qp->q.refcnt);
307 		return -ETIMEDOUT;
308 	}
309 
310 	fp = qp->q.fragments;
311 	do {
312 		struct sk_buff *xp = fp->next;
313 
314 		sum_truesize += fp->truesize;
315 		kfree_skb(fp);
316 		fp = xp;
317 	} while (fp);
318 	sub_frag_mem_limit(qp->q.net, sum_truesize);
319 
320 	qp->q.flags = 0;
321 	qp->q.len = 0;
322 	qp->q.meat = 0;
323 	qp->q.fragments = NULL;
324 	qp->q.fragments_tail = NULL;
325 	qp->iif = 0;
326 	qp->ecn = 0;
327 
328 	return 0;
329 }
330 
331 /* Add new segment to existing queue. */
332 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
333 {
334 	struct sk_buff *prev, *next;
335 	struct net_device *dev;
336 	unsigned int fragsize;
337 	int flags, offset;
338 	int ihl, end;
339 	int err = -ENOENT;
340 	u8 ecn;
341 
342 	if (qp->q.flags & INET_FRAG_COMPLETE)
343 		goto err;
344 
345 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
346 	    unlikely(ip_frag_too_far(qp)) &&
347 	    unlikely(err = ip_frag_reinit(qp))) {
348 		ipq_kill(qp);
349 		goto err;
350 	}
351 
352 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
353 	offset = ntohs(ip_hdr(skb)->frag_off);
354 	flags = offset & ~IP_OFFSET;
355 	offset &= IP_OFFSET;
356 	offset <<= 3;		/* offset is in 8-byte chunks */
357 	ihl = ip_hdrlen(skb);
358 
359 	/* Determine the position of this fragment. */
360 	end = offset + skb->len - skb_network_offset(skb) - ihl;
361 	err = -EINVAL;
362 
363 	/* Is this the final fragment? */
364 	if ((flags & IP_MF) == 0) {
365 		/* If we already have some bits beyond end
366 		 * or have different end, the segment is corrupted.
367 		 */
368 		if (end < qp->q.len ||
369 		    ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
370 			goto err;
371 		qp->q.flags |= INET_FRAG_LAST_IN;
372 		qp->q.len = end;
373 	} else {
374 		if (end&7) {
375 			end &= ~7;
376 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
377 				skb->ip_summed = CHECKSUM_NONE;
378 		}
379 		if (end > qp->q.len) {
380 			/* Some bits beyond end -> corruption. */
381 			if (qp->q.flags & INET_FRAG_LAST_IN)
382 				goto err;
383 			qp->q.len = end;
384 		}
385 	}
386 	if (end == offset)
387 		goto err;
388 
389 	err = -ENOMEM;
390 	if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
391 		goto err;
392 
393 	err = pskb_trim_rcsum(skb, end - offset);
394 	if (err)
395 		goto err;
396 
397 	/* Find out which fragments are in front and at the back of us
398 	 * in the chain of fragments so far.  We must know where to put
399 	 * this fragment, right?
400 	 */
401 	prev = qp->q.fragments_tail;
402 	if (!prev || FRAG_CB(prev)->offset < offset) {
403 		next = NULL;
404 		goto found;
405 	}
406 	prev = NULL;
407 	for (next = qp->q.fragments; next != NULL; next = next->next) {
408 		if (FRAG_CB(next)->offset >= offset)
409 			break;	/* bingo! */
410 		prev = next;
411 	}
412 
413 found:
414 	/* We found where to put this one.  Check for overlap with
415 	 * preceding fragment, and, if needed, align things so that
416 	 * any overlaps are eliminated.
417 	 */
418 	if (prev) {
419 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
420 
421 		if (i > 0) {
422 			offset += i;
423 			err = -EINVAL;
424 			if (end <= offset)
425 				goto err;
426 			err = -ENOMEM;
427 			if (!pskb_pull(skb, i))
428 				goto err;
429 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
430 				skb->ip_summed = CHECKSUM_NONE;
431 		}
432 	}
433 
434 	err = -ENOMEM;
435 
436 	while (next && FRAG_CB(next)->offset < end) {
437 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
438 
439 		if (i < next->len) {
440 			/* Eat head of the next overlapped fragment
441 			 * and leave the loop. The next ones cannot overlap.
442 			 */
443 			if (!pskb_pull(next, i))
444 				goto err;
445 			FRAG_CB(next)->offset += i;
446 			qp->q.meat -= i;
447 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
448 				next->ip_summed = CHECKSUM_NONE;
449 			break;
450 		} else {
451 			struct sk_buff *free_it = next;
452 
453 			/* Old fragment is completely overridden with
454 			 * new one drop it.
455 			 */
456 			next = next->next;
457 
458 			if (prev)
459 				prev->next = next;
460 			else
461 				qp->q.fragments = next;
462 
463 			qp->q.meat -= free_it->len;
464 			sub_frag_mem_limit(qp->q.net, free_it->truesize);
465 			kfree_skb(free_it);
466 		}
467 	}
468 
469 	FRAG_CB(skb)->offset = offset;
470 
471 	/* Insert this fragment in the chain of fragments. */
472 	skb->next = next;
473 	if (!next)
474 		qp->q.fragments_tail = skb;
475 	if (prev)
476 		prev->next = skb;
477 	else
478 		qp->q.fragments = skb;
479 
480 	dev = skb->dev;
481 	if (dev) {
482 		qp->iif = dev->ifindex;
483 		skb->dev = NULL;
484 	}
485 	qp->q.stamp = skb->tstamp;
486 	qp->q.meat += skb->len;
487 	qp->ecn |= ecn;
488 	add_frag_mem_limit(qp->q.net, skb->truesize);
489 	if (offset == 0)
490 		qp->q.flags |= INET_FRAG_FIRST_IN;
491 
492 	fragsize = skb->len + ihl;
493 
494 	if (fragsize > qp->q.max_size)
495 		qp->q.max_size = fragsize;
496 
497 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
498 	    fragsize > qp->max_df_size)
499 		qp->max_df_size = fragsize;
500 
501 	if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
502 	    qp->q.meat == qp->q.len) {
503 		unsigned long orefdst = skb->_skb_refdst;
504 
505 		skb->_skb_refdst = 0UL;
506 		err = ip_frag_reasm(qp, prev, dev);
507 		skb->_skb_refdst = orefdst;
508 		return err;
509 	}
510 
511 	skb_dst_drop(skb);
512 	return -EINPROGRESS;
513 
514 err:
515 	kfree_skb(skb);
516 	return err;
517 }
518 
519 
520 /* Build a new IP datagram from all its fragments. */
521 
522 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
523 			 struct net_device *dev)
524 {
525 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
526 	struct iphdr *iph;
527 	struct sk_buff *fp, *head = qp->q.fragments;
528 	int len;
529 	int ihlen;
530 	int err;
531 	u8 ecn;
532 
533 	ipq_kill(qp);
534 
535 	ecn = ip_frag_ecn_table[qp->ecn];
536 	if (unlikely(ecn == 0xff)) {
537 		err = -EINVAL;
538 		goto out_fail;
539 	}
540 	/* Make the one we just received the head. */
541 	if (prev) {
542 		head = prev->next;
543 		fp = skb_clone(head, GFP_ATOMIC);
544 		if (!fp)
545 			goto out_nomem;
546 
547 		fp->next = head->next;
548 		if (!fp->next)
549 			qp->q.fragments_tail = fp;
550 		prev->next = fp;
551 
552 		skb_morph(head, qp->q.fragments);
553 		head->next = qp->q.fragments->next;
554 
555 		consume_skb(qp->q.fragments);
556 		qp->q.fragments = head;
557 	}
558 
559 	WARN_ON(!head);
560 	WARN_ON(FRAG_CB(head)->offset != 0);
561 
562 	/* Allocate a new buffer for the datagram. */
563 	ihlen = ip_hdrlen(head);
564 	len = ihlen + qp->q.len;
565 
566 	err = -E2BIG;
567 	if (len > 65535)
568 		goto out_oversize;
569 
570 	/* Head of list must not be cloned. */
571 	if (skb_unclone(head, GFP_ATOMIC))
572 		goto out_nomem;
573 
574 	/* If the first fragment is fragmented itself, we split
575 	 * it to two chunks: the first with data and paged part
576 	 * and the second, holding only fragments. */
577 	if (skb_has_frag_list(head)) {
578 		struct sk_buff *clone;
579 		int i, plen = 0;
580 
581 		clone = alloc_skb(0, GFP_ATOMIC);
582 		if (!clone)
583 			goto out_nomem;
584 		clone->next = head->next;
585 		head->next = clone;
586 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
587 		skb_frag_list_init(head);
588 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
589 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
590 		clone->len = clone->data_len = head->data_len - plen;
591 		head->data_len -= clone->len;
592 		head->len -= clone->len;
593 		clone->csum = 0;
594 		clone->ip_summed = head->ip_summed;
595 		add_frag_mem_limit(qp->q.net, clone->truesize);
596 	}
597 
598 	skb_shinfo(head)->frag_list = head->next;
599 	skb_push(head, head->data - skb_network_header(head));
600 
601 	for (fp=head->next; fp; fp = fp->next) {
602 		head->data_len += fp->len;
603 		head->len += fp->len;
604 		if (head->ip_summed != fp->ip_summed)
605 			head->ip_summed = CHECKSUM_NONE;
606 		else if (head->ip_summed == CHECKSUM_COMPLETE)
607 			head->csum = csum_add(head->csum, fp->csum);
608 		head->truesize += fp->truesize;
609 	}
610 	sub_frag_mem_limit(qp->q.net, head->truesize);
611 
612 	head->next = NULL;
613 	head->dev = dev;
614 	head->tstamp = qp->q.stamp;
615 	IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
616 
617 	iph = ip_hdr(head);
618 	iph->tot_len = htons(len);
619 	iph->tos |= ecn;
620 
621 	/* When we set IP_DF on a refragmented skb we must also force a
622 	 * call to ip_fragment to avoid forwarding a DF-skb of size s while
623 	 * original sender only sent fragments of size f (where f < s).
624 	 *
625 	 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
626 	 * frag seen to avoid sending tiny DF-fragments in case skb was built
627 	 * from one very small df-fragment and one large non-df frag.
628 	 */
629 	if (qp->max_df_size == qp->q.max_size) {
630 		IPCB(head)->flags |= IPSKB_FRAG_PMTU;
631 		iph->frag_off = htons(IP_DF);
632 	} else {
633 		iph->frag_off = 0;
634 	}
635 
636 	ip_send_check(iph);
637 
638 	__IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
639 	qp->q.fragments = NULL;
640 	qp->q.fragments_tail = NULL;
641 	return 0;
642 
643 out_nomem:
644 	net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
645 	err = -ENOMEM;
646 	goto out_fail;
647 out_oversize:
648 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
649 out_fail:
650 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
651 	return err;
652 }
653 
654 /* Process an incoming IP datagram fragment. */
655 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
656 {
657 	struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
658 	int vif = l3mdev_master_ifindex_rcu(dev);
659 	struct ipq *qp;
660 
661 	__IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
662 	skb_orphan(skb);
663 
664 	/* Lookup (or create) queue header */
665 	qp = ip_find(net, ip_hdr(skb), user, vif);
666 	if (qp) {
667 		int ret;
668 
669 		spin_lock(&qp->q.lock);
670 
671 		ret = ip_frag_queue(qp, skb);
672 
673 		spin_unlock(&qp->q.lock);
674 		ipq_put(qp);
675 		return ret;
676 	}
677 
678 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
679 	kfree_skb(skb);
680 	return -ENOMEM;
681 }
682 EXPORT_SYMBOL(ip_defrag);
683 
684 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
685 {
686 	struct iphdr iph;
687 	int netoff;
688 	u32 len;
689 
690 	if (skb->protocol != htons(ETH_P_IP))
691 		return skb;
692 
693 	netoff = skb_network_offset(skb);
694 
695 	if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
696 		return skb;
697 
698 	if (iph.ihl < 5 || iph.version != 4)
699 		return skb;
700 
701 	len = ntohs(iph.tot_len);
702 	if (skb->len < netoff + len || len < (iph.ihl * 4))
703 		return skb;
704 
705 	if (ip_is_fragment(&iph)) {
706 		skb = skb_share_check(skb, GFP_ATOMIC);
707 		if (skb) {
708 			if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
709 				return skb;
710 			if (pskb_trim_rcsum(skb, netoff + len))
711 				return skb;
712 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
713 			if (ip_defrag(net, skb, user))
714 				return NULL;
715 			skb_clear_hash(skb);
716 		}
717 	}
718 	return skb;
719 }
720 EXPORT_SYMBOL(ip_check_defrag);
721 
722 #ifdef CONFIG_SYSCTL
723 static int zero;
724 
725 static struct ctl_table ip4_frags_ns_ctl_table[] = {
726 	{
727 		.procname	= "ipfrag_high_thresh",
728 		.data		= &init_net.ipv4.frags.high_thresh,
729 		.maxlen		= sizeof(int),
730 		.mode		= 0644,
731 		.proc_handler	= proc_dointvec_minmax,
732 		.extra1		= &init_net.ipv4.frags.low_thresh
733 	},
734 	{
735 		.procname	= "ipfrag_low_thresh",
736 		.data		= &init_net.ipv4.frags.low_thresh,
737 		.maxlen		= sizeof(int),
738 		.mode		= 0644,
739 		.proc_handler	= proc_dointvec_minmax,
740 		.extra1		= &zero,
741 		.extra2		= &init_net.ipv4.frags.high_thresh
742 	},
743 	{
744 		.procname	= "ipfrag_time",
745 		.data		= &init_net.ipv4.frags.timeout,
746 		.maxlen		= sizeof(int),
747 		.mode		= 0644,
748 		.proc_handler	= proc_dointvec_jiffies,
749 	},
750 	{
751 		.procname	= "ipfrag_max_dist",
752 		.data		= &init_net.ipv4.frags.max_dist,
753 		.maxlen		= sizeof(int),
754 		.mode		= 0644,
755 		.proc_handler	= proc_dointvec_minmax,
756 		.extra1		= &zero
757 	},
758 	{ }
759 };
760 
761 /* secret interval has been deprecated */
762 static int ip4_frags_secret_interval_unused;
763 static struct ctl_table ip4_frags_ctl_table[] = {
764 	{
765 		.procname	= "ipfrag_secret_interval",
766 		.data		= &ip4_frags_secret_interval_unused,
767 		.maxlen		= sizeof(int),
768 		.mode		= 0644,
769 		.proc_handler	= proc_dointvec_jiffies,
770 	},
771 	{ }
772 };
773 
774 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
775 {
776 	struct ctl_table *table;
777 	struct ctl_table_header *hdr;
778 
779 	table = ip4_frags_ns_ctl_table;
780 	if (!net_eq(net, &init_net)) {
781 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
782 		if (!table)
783 			goto err_alloc;
784 
785 		table[0].data = &net->ipv4.frags.high_thresh;
786 		table[0].extra1 = &net->ipv4.frags.low_thresh;
787 		table[0].extra2 = &init_net.ipv4.frags.high_thresh;
788 		table[1].data = &net->ipv4.frags.low_thresh;
789 		table[1].extra2 = &net->ipv4.frags.high_thresh;
790 		table[2].data = &net->ipv4.frags.timeout;
791 		table[3].data = &net->ipv4.frags.max_dist;
792 	}
793 
794 	hdr = register_net_sysctl(net, "net/ipv4", table);
795 	if (!hdr)
796 		goto err_reg;
797 
798 	net->ipv4.frags_hdr = hdr;
799 	return 0;
800 
801 err_reg:
802 	if (!net_eq(net, &init_net))
803 		kfree(table);
804 err_alloc:
805 	return -ENOMEM;
806 }
807 
808 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
809 {
810 	struct ctl_table *table;
811 
812 	table = net->ipv4.frags_hdr->ctl_table_arg;
813 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
814 	kfree(table);
815 }
816 
817 static void __init ip4_frags_ctl_register(void)
818 {
819 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
820 }
821 #else
822 static int ip4_frags_ns_ctl_register(struct net *net)
823 {
824 	return 0;
825 }
826 
827 static void ip4_frags_ns_ctl_unregister(struct net *net)
828 {
829 }
830 
831 static void __init ip4_frags_ctl_register(void)
832 {
833 }
834 #endif
835 
836 static int __net_init ipv4_frags_init_net(struct net *net)
837 {
838 	int res;
839 
840 	/* Fragment cache limits.
841 	 *
842 	 * The fragment memory accounting code, (tries to) account for
843 	 * the real memory usage, by measuring both the size of frag
844 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
845 	 * and the SKB's truesize.
846 	 *
847 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
848 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
849 	 *
850 	 * We will commit 4MB at one time. Should we cross that limit
851 	 * we will prune down to 3MB, making room for approx 8 big 64K
852 	 * fragments 8x128k.
853 	 */
854 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
855 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
856 	/*
857 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
858 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
859 	 * by TTL.
860 	 */
861 	net->ipv4.frags.timeout = IP_FRAG_TIME;
862 
863 	net->ipv4.frags.max_dist = 64;
864 
865 	res = inet_frags_init_net(&net->ipv4.frags);
866 	if (res)
867 		return res;
868 	res = ip4_frags_ns_ctl_register(net);
869 	if (res)
870 		inet_frags_uninit_net(&net->ipv4.frags);
871 	return res;
872 }
873 
874 static void __net_exit ipv4_frags_exit_net(struct net *net)
875 {
876 	ip4_frags_ns_ctl_unregister(net);
877 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
878 }
879 
880 static struct pernet_operations ip4_frags_ops = {
881 	.init = ipv4_frags_init_net,
882 	.exit = ipv4_frags_exit_net,
883 };
884 
885 void __init ipfrag_init(void)
886 {
887 	ip4_frags_ctl_register();
888 	register_pernet_subsys(&ip4_frags_ops);
889 	ip4_frags.hashfn = ip4_hashfn;
890 	ip4_frags.constructor = ip4_frag_init;
891 	ip4_frags.destructor = ip4_frag_free;
892 	ip4_frags.qsize = sizeof(struct ipq);
893 	ip4_frags.match = ip4_frag_match;
894 	ip4_frags.frag_expire = ip_expire;
895 	ip4_frags.frags_cache_name = ip_frag_cache_name;
896 	if (inet_frags_init(&ip4_frags))
897 		panic("IP: failed to allocate ip4_frags cache\n");
898 }
899