xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 12eb4683)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #define pr_fmt(fmt) "IPv4: " fmt
24 
25 #include <linux/compiler.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/mm.h>
29 #include <linux/jiffies.h>
30 #include <linux/skbuff.h>
31 #include <linux/list.h>
32 #include <linux/ip.h>
33 #include <linux/icmp.h>
34 #include <linux/netdevice.h>
35 #include <linux/jhash.h>
36 #include <linux/random.h>
37 #include <linux/slab.h>
38 #include <net/route.h>
39 #include <net/dst.h>
40 #include <net/sock.h>
41 #include <net/ip.h>
42 #include <net/icmp.h>
43 #include <net/checksum.h>
44 #include <net/inetpeer.h>
45 #include <net/inet_frag.h>
46 #include <linux/tcp.h>
47 #include <linux/udp.h>
48 #include <linux/inet.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <net/inet_ecn.h>
51 
52 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
53  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
54  * as well. Or notify me, at least. --ANK
55  */
56 
57 static int sysctl_ipfrag_max_dist __read_mostly = 64;
58 
59 struct ipfrag_skb_cb
60 {
61 	struct inet_skb_parm	h;
62 	int			offset;
63 };
64 
65 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
66 
67 /* Describe an entry in the "incomplete datagrams" queue. */
68 struct ipq {
69 	struct inet_frag_queue q;
70 
71 	u32		user;
72 	__be32		saddr;
73 	__be32		daddr;
74 	__be16		id;
75 	u8		protocol;
76 	u8		ecn; /* RFC3168 support */
77 	int             iif;
78 	unsigned int    rid;
79 	struct inet_peer *peer;
80 };
81 
82 static inline u8 ip4_frag_ecn(u8 tos)
83 {
84 	return 1 << (tos & INET_ECN_MASK);
85 }
86 
87 static struct inet_frags ip4_frags;
88 
89 int ip_frag_nqueues(struct net *net)
90 {
91 	return net->ipv4.frags.nqueues;
92 }
93 
94 int ip_frag_mem(struct net *net)
95 {
96 	return sum_frag_mem_limit(&net->ipv4.frags);
97 }
98 
99 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
100 			 struct net_device *dev);
101 
102 struct ip4_create_arg {
103 	struct iphdr *iph;
104 	u32 user;
105 };
106 
107 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
108 {
109 	net_get_random_once(&ip4_frags.rnd, sizeof(ip4_frags.rnd));
110 	return jhash_3words((__force u32)id << 16 | prot,
111 			    (__force u32)saddr, (__force u32)daddr,
112 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
113 }
114 
115 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
116 {
117 	struct ipq *ipq;
118 
119 	ipq = container_of(q, struct ipq, q);
120 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
121 }
122 
123 static bool ip4_frag_match(struct inet_frag_queue *q, void *a)
124 {
125 	struct ipq *qp;
126 	struct ip4_create_arg *arg = a;
127 
128 	qp = container_of(q, struct ipq, q);
129 	return	qp->id == arg->iph->id &&
130 		qp->saddr == arg->iph->saddr &&
131 		qp->daddr == arg->iph->daddr &&
132 		qp->protocol == arg->iph->protocol &&
133 		qp->user == arg->user;
134 }
135 
136 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
137 {
138 	struct ipq *qp = container_of(q, struct ipq, q);
139 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
140 					       frags);
141 	struct net *net = container_of(ipv4, struct net, ipv4);
142 
143 	struct ip4_create_arg *arg = a;
144 
145 	qp->protocol = arg->iph->protocol;
146 	qp->id = arg->iph->id;
147 	qp->ecn = ip4_frag_ecn(arg->iph->tos);
148 	qp->saddr = arg->iph->saddr;
149 	qp->daddr = arg->iph->daddr;
150 	qp->user = arg->user;
151 	qp->peer = sysctl_ipfrag_max_dist ?
152 		inet_getpeer_v4(net->ipv4.peers, arg->iph->saddr, 1) : NULL;
153 }
154 
155 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
156 {
157 	struct ipq *qp;
158 
159 	qp = container_of(q, struct ipq, q);
160 	if (qp->peer)
161 		inet_putpeer(qp->peer);
162 }
163 
164 
165 /* Destruction primitives. */
166 
167 static __inline__ void ipq_put(struct ipq *ipq)
168 {
169 	inet_frag_put(&ipq->q, &ip4_frags);
170 }
171 
172 /* Kill ipq entry. It is not destroyed immediately,
173  * because caller (and someone more) holds reference count.
174  */
175 static void ipq_kill(struct ipq *ipq)
176 {
177 	inet_frag_kill(&ipq->q, &ip4_frags);
178 }
179 
180 /* Memory limiting on fragments.  Evictor trashes the oldest
181  * fragment queue until we are back under the threshold.
182  */
183 static void ip_evictor(struct net *net)
184 {
185 	int evicted;
186 
187 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags, false);
188 	if (evicted)
189 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
190 }
191 
192 /*
193  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
194  */
195 static void ip_expire(unsigned long arg)
196 {
197 	struct ipq *qp;
198 	struct net *net;
199 
200 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
201 	net = container_of(qp->q.net, struct net, ipv4.frags);
202 
203 	spin_lock(&qp->q.lock);
204 
205 	if (qp->q.last_in & INET_FRAG_COMPLETE)
206 		goto out;
207 
208 	ipq_kill(qp);
209 
210 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
211 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
212 
213 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
214 		struct sk_buff *head = qp->q.fragments;
215 		const struct iphdr *iph;
216 		int err;
217 
218 		rcu_read_lock();
219 		head->dev = dev_get_by_index_rcu(net, qp->iif);
220 		if (!head->dev)
221 			goto out_rcu_unlock;
222 
223 		/* skb has no dst, perform route lookup again */
224 		iph = ip_hdr(head);
225 		err = ip_route_input_noref(head, iph->daddr, iph->saddr,
226 					   iph->tos, head->dev);
227 		if (err)
228 			goto out_rcu_unlock;
229 
230 		/*
231 		 * Only an end host needs to send an ICMP
232 		 * "Fragment Reassembly Timeout" message, per RFC792.
233 		 */
234 		if (qp->user == IP_DEFRAG_AF_PACKET ||
235 		    (qp->user == IP_DEFRAG_CONNTRACK_IN &&
236 		     skb_rtable(head)->rt_type != RTN_LOCAL))
237 			goto out_rcu_unlock;
238 
239 
240 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
241 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
242 out_rcu_unlock:
243 		rcu_read_unlock();
244 	}
245 out:
246 	spin_unlock(&qp->q.lock);
247 	ipq_put(qp);
248 }
249 
250 /* Find the correct entry in the "incomplete datagrams" queue for
251  * this IP datagram, and create new one, if nothing is found.
252  */
253 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
254 {
255 	struct inet_frag_queue *q;
256 	struct ip4_create_arg arg;
257 	unsigned int hash;
258 
259 	arg.iph = iph;
260 	arg.user = user;
261 
262 	read_lock(&ip4_frags.lock);
263 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
264 
265 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
266 	if (IS_ERR_OR_NULL(q)) {
267 		inet_frag_maybe_warn_overflow(q, pr_fmt());
268 		return NULL;
269 	}
270 	return container_of(q, struct ipq, q);
271 }
272 
273 /* Is the fragment too far ahead to be part of ipq? */
274 static inline int ip_frag_too_far(struct ipq *qp)
275 {
276 	struct inet_peer *peer = qp->peer;
277 	unsigned int max = sysctl_ipfrag_max_dist;
278 	unsigned int start, end;
279 
280 	int rc;
281 
282 	if (!peer || !max)
283 		return 0;
284 
285 	start = qp->rid;
286 	end = atomic_inc_return(&peer->rid);
287 	qp->rid = end;
288 
289 	rc = qp->q.fragments && (end - start) > max;
290 
291 	if (rc) {
292 		struct net *net;
293 
294 		net = container_of(qp->q.net, struct net, ipv4.frags);
295 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
296 	}
297 
298 	return rc;
299 }
300 
301 static int ip_frag_reinit(struct ipq *qp)
302 {
303 	struct sk_buff *fp;
304 	unsigned int sum_truesize = 0;
305 
306 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
307 		atomic_inc(&qp->q.refcnt);
308 		return -ETIMEDOUT;
309 	}
310 
311 	fp = qp->q.fragments;
312 	do {
313 		struct sk_buff *xp = fp->next;
314 
315 		sum_truesize += fp->truesize;
316 		kfree_skb(fp);
317 		fp = xp;
318 	} while (fp);
319 	sub_frag_mem_limit(&qp->q, sum_truesize);
320 
321 	qp->q.last_in = 0;
322 	qp->q.len = 0;
323 	qp->q.meat = 0;
324 	qp->q.fragments = NULL;
325 	qp->q.fragments_tail = NULL;
326 	qp->iif = 0;
327 	qp->ecn = 0;
328 
329 	return 0;
330 }
331 
332 /* Add new segment to existing queue. */
333 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
334 {
335 	struct sk_buff *prev, *next;
336 	struct net_device *dev;
337 	int flags, offset;
338 	int ihl, end;
339 	int err = -ENOENT;
340 	u8 ecn;
341 
342 	if (qp->q.last_in & INET_FRAG_COMPLETE)
343 		goto err;
344 
345 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
346 	    unlikely(ip_frag_too_far(qp)) &&
347 	    unlikely(err = ip_frag_reinit(qp))) {
348 		ipq_kill(qp);
349 		goto err;
350 	}
351 
352 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
353 	offset = ntohs(ip_hdr(skb)->frag_off);
354 	flags = offset & ~IP_OFFSET;
355 	offset &= IP_OFFSET;
356 	offset <<= 3;		/* offset is in 8-byte chunks */
357 	ihl = ip_hdrlen(skb);
358 
359 	/* Determine the position of this fragment. */
360 	end = offset + skb->len - ihl;
361 	err = -EINVAL;
362 
363 	/* Is this the final fragment? */
364 	if ((flags & IP_MF) == 0) {
365 		/* If we already have some bits beyond end
366 		 * or have different end, the segment is corrupted.
367 		 */
368 		if (end < qp->q.len ||
369 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
370 			goto err;
371 		qp->q.last_in |= INET_FRAG_LAST_IN;
372 		qp->q.len = end;
373 	} else {
374 		if (end&7) {
375 			end &= ~7;
376 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
377 				skb->ip_summed = CHECKSUM_NONE;
378 		}
379 		if (end > qp->q.len) {
380 			/* Some bits beyond end -> corruption. */
381 			if (qp->q.last_in & INET_FRAG_LAST_IN)
382 				goto err;
383 			qp->q.len = end;
384 		}
385 	}
386 	if (end == offset)
387 		goto err;
388 
389 	err = -ENOMEM;
390 	if (pskb_pull(skb, ihl) == NULL)
391 		goto err;
392 
393 	err = pskb_trim_rcsum(skb, end - offset);
394 	if (err)
395 		goto err;
396 
397 	/* Find out which fragments are in front and at the back of us
398 	 * in the chain of fragments so far.  We must know where to put
399 	 * this fragment, right?
400 	 */
401 	prev = qp->q.fragments_tail;
402 	if (!prev || FRAG_CB(prev)->offset < offset) {
403 		next = NULL;
404 		goto found;
405 	}
406 	prev = NULL;
407 	for (next = qp->q.fragments; next != NULL; next = next->next) {
408 		if (FRAG_CB(next)->offset >= offset)
409 			break;	/* bingo! */
410 		prev = next;
411 	}
412 
413 found:
414 	/* We found where to put this one.  Check for overlap with
415 	 * preceding fragment, and, if needed, align things so that
416 	 * any overlaps are eliminated.
417 	 */
418 	if (prev) {
419 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
420 
421 		if (i > 0) {
422 			offset += i;
423 			err = -EINVAL;
424 			if (end <= offset)
425 				goto err;
426 			err = -ENOMEM;
427 			if (!pskb_pull(skb, i))
428 				goto err;
429 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
430 				skb->ip_summed = CHECKSUM_NONE;
431 		}
432 	}
433 
434 	err = -ENOMEM;
435 
436 	while (next && FRAG_CB(next)->offset < end) {
437 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
438 
439 		if (i < next->len) {
440 			/* Eat head of the next overlapped fragment
441 			 * and leave the loop. The next ones cannot overlap.
442 			 */
443 			if (!pskb_pull(next, i))
444 				goto err;
445 			FRAG_CB(next)->offset += i;
446 			qp->q.meat -= i;
447 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
448 				next->ip_summed = CHECKSUM_NONE;
449 			break;
450 		} else {
451 			struct sk_buff *free_it = next;
452 
453 			/* Old fragment is completely overridden with
454 			 * new one drop it.
455 			 */
456 			next = next->next;
457 
458 			if (prev)
459 				prev->next = next;
460 			else
461 				qp->q.fragments = next;
462 
463 			qp->q.meat -= free_it->len;
464 			sub_frag_mem_limit(&qp->q, free_it->truesize);
465 			kfree_skb(free_it);
466 		}
467 	}
468 
469 	FRAG_CB(skb)->offset = offset;
470 
471 	/* Insert this fragment in the chain of fragments. */
472 	skb->next = next;
473 	if (!next)
474 		qp->q.fragments_tail = skb;
475 	if (prev)
476 		prev->next = skb;
477 	else
478 		qp->q.fragments = skb;
479 
480 	dev = skb->dev;
481 	if (dev) {
482 		qp->iif = dev->ifindex;
483 		skb->dev = NULL;
484 	}
485 	qp->q.stamp = skb->tstamp;
486 	qp->q.meat += skb->len;
487 	qp->ecn |= ecn;
488 	add_frag_mem_limit(&qp->q, skb->truesize);
489 	if (offset == 0)
490 		qp->q.last_in |= INET_FRAG_FIRST_IN;
491 
492 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
493 	    skb->len + ihl > qp->q.max_size)
494 		qp->q.max_size = skb->len + ihl;
495 
496 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
497 	    qp->q.meat == qp->q.len) {
498 		unsigned long orefdst = skb->_skb_refdst;
499 
500 		skb->_skb_refdst = 0UL;
501 		err = ip_frag_reasm(qp, prev, dev);
502 		skb->_skb_refdst = orefdst;
503 		return err;
504 	}
505 
506 	skb_dst_drop(skb);
507 	inet_frag_lru_move(&qp->q);
508 	return -EINPROGRESS;
509 
510 err:
511 	kfree_skb(skb);
512 	return err;
513 }
514 
515 
516 /* Build a new IP datagram from all its fragments. */
517 
518 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
519 			 struct net_device *dev)
520 {
521 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
522 	struct iphdr *iph;
523 	struct sk_buff *fp, *head = qp->q.fragments;
524 	int len;
525 	int ihlen;
526 	int err;
527 	int sum_truesize;
528 	u8 ecn;
529 
530 	ipq_kill(qp);
531 
532 	ecn = ip_frag_ecn_table[qp->ecn];
533 	if (unlikely(ecn == 0xff)) {
534 		err = -EINVAL;
535 		goto out_fail;
536 	}
537 	/* Make the one we just received the head. */
538 	if (prev) {
539 		head = prev->next;
540 		fp = skb_clone(head, GFP_ATOMIC);
541 		if (!fp)
542 			goto out_nomem;
543 
544 		fp->next = head->next;
545 		if (!fp->next)
546 			qp->q.fragments_tail = fp;
547 		prev->next = fp;
548 
549 		skb_morph(head, qp->q.fragments);
550 		head->next = qp->q.fragments->next;
551 
552 		consume_skb(qp->q.fragments);
553 		qp->q.fragments = head;
554 	}
555 
556 	WARN_ON(head == NULL);
557 	WARN_ON(FRAG_CB(head)->offset != 0);
558 
559 	/* Allocate a new buffer for the datagram. */
560 	ihlen = ip_hdrlen(head);
561 	len = ihlen + qp->q.len;
562 
563 	err = -E2BIG;
564 	if (len > 65535)
565 		goto out_oversize;
566 
567 	/* Head of list must not be cloned. */
568 	if (skb_unclone(head, GFP_ATOMIC))
569 		goto out_nomem;
570 
571 	/* If the first fragment is fragmented itself, we split
572 	 * it to two chunks: the first with data and paged part
573 	 * and the second, holding only fragments. */
574 	if (skb_has_frag_list(head)) {
575 		struct sk_buff *clone;
576 		int i, plen = 0;
577 
578 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
579 			goto out_nomem;
580 		clone->next = head->next;
581 		head->next = clone;
582 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
583 		skb_frag_list_init(head);
584 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
585 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
586 		clone->len = clone->data_len = head->data_len - plen;
587 		head->data_len -= clone->len;
588 		head->len -= clone->len;
589 		clone->csum = 0;
590 		clone->ip_summed = head->ip_summed;
591 		add_frag_mem_limit(&qp->q, clone->truesize);
592 	}
593 
594 	skb_push(head, head->data - skb_network_header(head));
595 
596 	sum_truesize = head->truesize;
597 	for (fp = head->next; fp;) {
598 		bool headstolen;
599 		int delta;
600 		struct sk_buff *next = fp->next;
601 
602 		sum_truesize += fp->truesize;
603 		if (head->ip_summed != fp->ip_summed)
604 			head->ip_summed = CHECKSUM_NONE;
605 		else if (head->ip_summed == CHECKSUM_COMPLETE)
606 			head->csum = csum_add(head->csum, fp->csum);
607 
608 		if (skb_try_coalesce(head, fp, &headstolen, &delta)) {
609 			kfree_skb_partial(fp, headstolen);
610 		} else {
611 			if (!skb_shinfo(head)->frag_list)
612 				skb_shinfo(head)->frag_list = fp;
613 			head->data_len += fp->len;
614 			head->len += fp->len;
615 			head->truesize += fp->truesize;
616 		}
617 		fp = next;
618 	}
619 	sub_frag_mem_limit(&qp->q, sum_truesize);
620 
621 	head->next = NULL;
622 	head->dev = dev;
623 	head->tstamp = qp->q.stamp;
624 	IPCB(head)->frag_max_size = qp->q.max_size;
625 
626 	iph = ip_hdr(head);
627 	/* max_size != 0 implies at least one fragment had IP_DF set */
628 	iph->frag_off = qp->q.max_size ? htons(IP_DF) : 0;
629 	iph->tot_len = htons(len);
630 	iph->tos |= ecn;
631 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
632 	qp->q.fragments = NULL;
633 	qp->q.fragments_tail = NULL;
634 	return 0;
635 
636 out_nomem:
637 	LIMIT_NETDEBUG(KERN_ERR pr_fmt("queue_glue: no memory for gluing queue %p\n"),
638 		       qp);
639 	err = -ENOMEM;
640 	goto out_fail;
641 out_oversize:
642 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->saddr);
643 out_fail:
644 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
645 	return err;
646 }
647 
648 /* Process an incoming IP datagram fragment. */
649 int ip_defrag(struct sk_buff *skb, u32 user)
650 {
651 	struct ipq *qp;
652 	struct net *net;
653 
654 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
655 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
656 
657 	/* Start by cleaning up the memory. */
658 	ip_evictor(net);
659 
660 	/* Lookup (or create) queue header */
661 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
662 		int ret;
663 
664 		spin_lock(&qp->q.lock);
665 
666 		ret = ip_frag_queue(qp, skb);
667 
668 		spin_unlock(&qp->q.lock);
669 		ipq_put(qp);
670 		return ret;
671 	}
672 
673 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
674 	kfree_skb(skb);
675 	return -ENOMEM;
676 }
677 EXPORT_SYMBOL(ip_defrag);
678 
679 struct sk_buff *ip_check_defrag(struct sk_buff *skb, u32 user)
680 {
681 	struct iphdr iph;
682 	u32 len;
683 
684 	if (skb->protocol != htons(ETH_P_IP))
685 		return skb;
686 
687 	if (!skb_copy_bits(skb, 0, &iph, sizeof(iph)))
688 		return skb;
689 
690 	if (iph.ihl < 5 || iph.version != 4)
691 		return skb;
692 
693 	len = ntohs(iph.tot_len);
694 	if (skb->len < len || len < (iph.ihl * 4))
695 		return skb;
696 
697 	if (ip_is_fragment(&iph)) {
698 		skb = skb_share_check(skb, GFP_ATOMIC);
699 		if (skb) {
700 			if (!pskb_may_pull(skb, iph.ihl*4))
701 				return skb;
702 			if (pskb_trim_rcsum(skb, len))
703 				return skb;
704 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
705 			if (ip_defrag(skb, user))
706 				return NULL;
707 			skb->rxhash = 0;
708 		}
709 	}
710 	return skb;
711 }
712 EXPORT_SYMBOL(ip_check_defrag);
713 
714 #ifdef CONFIG_SYSCTL
715 static int zero;
716 
717 static struct ctl_table ip4_frags_ns_ctl_table[] = {
718 	{
719 		.procname	= "ipfrag_high_thresh",
720 		.data		= &init_net.ipv4.frags.high_thresh,
721 		.maxlen		= sizeof(int),
722 		.mode		= 0644,
723 		.proc_handler	= proc_dointvec
724 	},
725 	{
726 		.procname	= "ipfrag_low_thresh",
727 		.data		= &init_net.ipv4.frags.low_thresh,
728 		.maxlen		= sizeof(int),
729 		.mode		= 0644,
730 		.proc_handler	= proc_dointvec
731 	},
732 	{
733 		.procname	= "ipfrag_time",
734 		.data		= &init_net.ipv4.frags.timeout,
735 		.maxlen		= sizeof(int),
736 		.mode		= 0644,
737 		.proc_handler	= proc_dointvec_jiffies,
738 	},
739 	{ }
740 };
741 
742 static struct ctl_table ip4_frags_ctl_table[] = {
743 	{
744 		.procname	= "ipfrag_secret_interval",
745 		.data		= &ip4_frags.secret_interval,
746 		.maxlen		= sizeof(int),
747 		.mode		= 0644,
748 		.proc_handler	= proc_dointvec_jiffies,
749 	},
750 	{
751 		.procname	= "ipfrag_max_dist",
752 		.data		= &sysctl_ipfrag_max_dist,
753 		.maxlen		= sizeof(int),
754 		.mode		= 0644,
755 		.proc_handler	= proc_dointvec_minmax,
756 		.extra1		= &zero
757 	},
758 	{ }
759 };
760 
761 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
762 {
763 	struct ctl_table *table;
764 	struct ctl_table_header *hdr;
765 
766 	table = ip4_frags_ns_ctl_table;
767 	if (!net_eq(net, &init_net)) {
768 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
769 		if (table == NULL)
770 			goto err_alloc;
771 
772 		table[0].data = &net->ipv4.frags.high_thresh;
773 		table[1].data = &net->ipv4.frags.low_thresh;
774 		table[2].data = &net->ipv4.frags.timeout;
775 
776 		/* Don't export sysctls to unprivileged users */
777 		if (net->user_ns != &init_user_ns)
778 			table[0].procname = NULL;
779 	}
780 
781 	hdr = register_net_sysctl(net, "net/ipv4", table);
782 	if (hdr == NULL)
783 		goto err_reg;
784 
785 	net->ipv4.frags_hdr = hdr;
786 	return 0;
787 
788 err_reg:
789 	if (!net_eq(net, &init_net))
790 		kfree(table);
791 err_alloc:
792 	return -ENOMEM;
793 }
794 
795 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
796 {
797 	struct ctl_table *table;
798 
799 	table = net->ipv4.frags_hdr->ctl_table_arg;
800 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
801 	kfree(table);
802 }
803 
804 static void ip4_frags_ctl_register(void)
805 {
806 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
807 }
808 #else
809 static inline int ip4_frags_ns_ctl_register(struct net *net)
810 {
811 	return 0;
812 }
813 
814 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
815 {
816 }
817 
818 static inline void ip4_frags_ctl_register(void)
819 {
820 }
821 #endif
822 
823 static int __net_init ipv4_frags_init_net(struct net *net)
824 {
825 	/* Fragment cache limits.
826 	 *
827 	 * The fragment memory accounting code, (tries to) account for
828 	 * the real memory usage, by measuring both the size of frag
829 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
830 	 * and the SKB's truesize.
831 	 *
832 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
833 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
834 	 *
835 	 * We will commit 4MB at one time. Should we cross that limit
836 	 * we will prune down to 3MB, making room for approx 8 big 64K
837 	 * fragments 8x128k.
838 	 */
839 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
840 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
841 	/*
842 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
843 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
844 	 * by TTL.
845 	 */
846 	net->ipv4.frags.timeout = IP_FRAG_TIME;
847 
848 	inet_frags_init_net(&net->ipv4.frags);
849 
850 	return ip4_frags_ns_ctl_register(net);
851 }
852 
853 static void __net_exit ipv4_frags_exit_net(struct net *net)
854 {
855 	ip4_frags_ns_ctl_unregister(net);
856 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
857 }
858 
859 static struct pernet_operations ip4_frags_ops = {
860 	.init = ipv4_frags_init_net,
861 	.exit = ipv4_frags_exit_net,
862 };
863 
864 void __init ipfrag_init(void)
865 {
866 	ip4_frags_ctl_register();
867 	register_pernet_subsys(&ip4_frags_ops);
868 	ip4_frags.hashfn = ip4_hashfn;
869 	ip4_frags.constructor = ip4_frag_init;
870 	ip4_frags.destructor = ip4_frag_free;
871 	ip4_frags.skb_free = NULL;
872 	ip4_frags.qsize = sizeof(struct ipq);
873 	ip4_frags.match = ip4_frag_match;
874 	ip4_frags.frag_expire = ip_expire;
875 	ip4_frags.secret_interval = 10 * 60 * HZ;
876 	inet_frags_init(&ip4_frags);
877 }
878