1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * The IP fragmentation functionality. 8 * 9 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox <alan@lxorguk.ukuu.org.uk> 11 * 12 * Fixes: 13 * Alan Cox : Split from ip.c , see ip_input.c for history. 14 * David S. Miller : Begin massive cleanup... 15 * Andi Kleen : Add sysctls. 16 * xxxx : Overlapfrag bug. 17 * Ultima : ip_expire() kernel panic. 18 * Bill Hawes : Frag accounting and evictor fixes. 19 * John McDonald : 0 length frag bug. 20 * Alexey Kuznetsov: SMP races, threading, cleanup. 21 * Patrick McHardy : LRU queue of frag heads for evictor. 22 */ 23 24 #define pr_fmt(fmt) "IPv4: " fmt 25 26 #include <linux/compiler.h> 27 #include <linux/module.h> 28 #include <linux/types.h> 29 #include <linux/mm.h> 30 #include <linux/jiffies.h> 31 #include <linux/skbuff.h> 32 #include <linux/list.h> 33 #include <linux/ip.h> 34 #include <linux/icmp.h> 35 #include <linux/netdevice.h> 36 #include <linux/jhash.h> 37 #include <linux/random.h> 38 #include <linux/slab.h> 39 #include <net/route.h> 40 #include <net/dst.h> 41 #include <net/sock.h> 42 #include <net/ip.h> 43 #include <net/icmp.h> 44 #include <net/checksum.h> 45 #include <net/inetpeer.h> 46 #include <net/inet_frag.h> 47 #include <linux/tcp.h> 48 #include <linux/udp.h> 49 #include <linux/inet.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <net/inet_ecn.h> 52 #include <net/l3mdev.h> 53 54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 55 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c 56 * as well. Or notify me, at least. --ANK 57 */ 58 static const char ip_frag_cache_name[] = "ip4-frags"; 59 60 /* Use skb->cb to track consecutive/adjacent fragments coming at 61 * the end of the queue. Nodes in the rb-tree queue will 62 * contain "runs" of one or more adjacent fragments. 63 * 64 * Invariants: 65 * - next_frag is NULL at the tail of a "run"; 66 * - the head of a "run" has the sum of all fragment lengths in frag_run_len. 67 */ 68 struct ipfrag_skb_cb { 69 struct inet_skb_parm h; 70 struct sk_buff *next_frag; 71 int frag_run_len; 72 }; 73 74 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb)) 75 76 static void ip4_frag_init_run(struct sk_buff *skb) 77 { 78 BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb)); 79 80 FRAG_CB(skb)->next_frag = NULL; 81 FRAG_CB(skb)->frag_run_len = skb->len; 82 } 83 84 /* Append skb to the last "run". */ 85 static void ip4_frag_append_to_last_run(struct inet_frag_queue *q, 86 struct sk_buff *skb) 87 { 88 RB_CLEAR_NODE(&skb->rbnode); 89 FRAG_CB(skb)->next_frag = NULL; 90 91 FRAG_CB(q->last_run_head)->frag_run_len += skb->len; 92 FRAG_CB(q->fragments_tail)->next_frag = skb; 93 q->fragments_tail = skb; 94 } 95 96 /* Create a new "run" with the skb. */ 97 static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb) 98 { 99 if (q->last_run_head) 100 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode, 101 &q->last_run_head->rbnode.rb_right); 102 else 103 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node); 104 rb_insert_color(&skb->rbnode, &q->rb_fragments); 105 106 ip4_frag_init_run(skb); 107 q->fragments_tail = skb; 108 q->last_run_head = skb; 109 } 110 111 /* Describe an entry in the "incomplete datagrams" queue. */ 112 struct ipq { 113 struct inet_frag_queue q; 114 115 u8 ecn; /* RFC3168 support */ 116 u16 max_df_size; /* largest frag with DF set seen */ 117 int iif; 118 unsigned int rid; 119 struct inet_peer *peer; 120 }; 121 122 static u8 ip4_frag_ecn(u8 tos) 123 { 124 return 1 << (tos & INET_ECN_MASK); 125 } 126 127 static struct inet_frags ip4_frags; 128 129 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, 130 struct sk_buff *prev_tail, struct net_device *dev); 131 132 133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a) 134 { 135 struct ipq *qp = container_of(q, struct ipq, q); 136 struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4, 137 frags); 138 struct net *net = container_of(ipv4, struct net, ipv4); 139 140 const struct frag_v4_compare_key *key = a; 141 142 q->key.v4 = *key; 143 qp->ecn = 0; 144 qp->peer = q->net->max_dist ? 145 inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) : 146 NULL; 147 } 148 149 static void ip4_frag_free(struct inet_frag_queue *q) 150 { 151 struct ipq *qp; 152 153 qp = container_of(q, struct ipq, q); 154 if (qp->peer) 155 inet_putpeer(qp->peer); 156 } 157 158 159 /* Destruction primitives. */ 160 161 static void ipq_put(struct ipq *ipq) 162 { 163 inet_frag_put(&ipq->q); 164 } 165 166 /* Kill ipq entry. It is not destroyed immediately, 167 * because caller (and someone more) holds reference count. 168 */ 169 static void ipq_kill(struct ipq *ipq) 170 { 171 inet_frag_kill(&ipq->q); 172 } 173 174 static bool frag_expire_skip_icmp(u32 user) 175 { 176 return user == IP_DEFRAG_AF_PACKET || 177 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN, 178 __IP_DEFRAG_CONNTRACK_IN_END) || 179 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN, 180 __IP_DEFRAG_CONNTRACK_BRIDGE_IN); 181 } 182 183 /* 184 * Oops, a fragment queue timed out. Kill it and send an ICMP reply. 185 */ 186 static void ip_expire(struct timer_list *t) 187 { 188 struct inet_frag_queue *frag = from_timer(frag, t, timer); 189 const struct iphdr *iph; 190 struct sk_buff *head = NULL; 191 struct net *net; 192 struct ipq *qp; 193 int err; 194 195 qp = container_of(frag, struct ipq, q); 196 net = container_of(qp->q.net, struct net, ipv4.frags); 197 198 rcu_read_lock(); 199 spin_lock(&qp->q.lock); 200 201 if (qp->q.flags & INET_FRAG_COMPLETE) 202 goto out; 203 204 ipq_kill(qp); 205 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 206 __IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT); 207 208 if (!(qp->q.flags & INET_FRAG_FIRST_IN)) 209 goto out; 210 211 /* sk_buff::dev and sk_buff::rbnode are unionized. So we 212 * pull the head out of the tree in order to be able to 213 * deal with head->dev. 214 */ 215 if (qp->q.fragments) { 216 head = qp->q.fragments; 217 qp->q.fragments = head->next; 218 } else { 219 head = skb_rb_first(&qp->q.rb_fragments); 220 if (!head) 221 goto out; 222 if (FRAG_CB(head)->next_frag) 223 rb_replace_node(&head->rbnode, 224 &FRAG_CB(head)->next_frag->rbnode, 225 &qp->q.rb_fragments); 226 else 227 rb_erase(&head->rbnode, &qp->q.rb_fragments); 228 memset(&head->rbnode, 0, sizeof(head->rbnode)); 229 barrier(); 230 } 231 if (head == qp->q.fragments_tail) 232 qp->q.fragments_tail = NULL; 233 234 sub_frag_mem_limit(qp->q.net, head->truesize); 235 236 head->dev = dev_get_by_index_rcu(net, qp->iif); 237 if (!head->dev) 238 goto out; 239 240 241 /* skb has no dst, perform route lookup again */ 242 iph = ip_hdr(head); 243 err = ip_route_input_noref(head, iph->daddr, iph->saddr, 244 iph->tos, head->dev); 245 if (err) 246 goto out; 247 248 /* Only an end host needs to send an ICMP 249 * "Fragment Reassembly Timeout" message, per RFC792. 250 */ 251 if (frag_expire_skip_icmp(qp->q.key.v4.user) && 252 (skb_rtable(head)->rt_type != RTN_LOCAL)) 253 goto out; 254 255 spin_unlock(&qp->q.lock); 256 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); 257 goto out_rcu_unlock; 258 259 out: 260 spin_unlock(&qp->q.lock); 261 out_rcu_unlock: 262 rcu_read_unlock(); 263 kfree_skb(head); 264 ipq_put(qp); 265 } 266 267 /* Find the correct entry in the "incomplete datagrams" queue for 268 * this IP datagram, and create new one, if nothing is found. 269 */ 270 static struct ipq *ip_find(struct net *net, struct iphdr *iph, 271 u32 user, int vif) 272 { 273 struct frag_v4_compare_key key = { 274 .saddr = iph->saddr, 275 .daddr = iph->daddr, 276 .user = user, 277 .vif = vif, 278 .id = iph->id, 279 .protocol = iph->protocol, 280 }; 281 struct inet_frag_queue *q; 282 283 q = inet_frag_find(&net->ipv4.frags, &key); 284 if (!q) 285 return NULL; 286 287 return container_of(q, struct ipq, q); 288 } 289 290 /* Is the fragment too far ahead to be part of ipq? */ 291 static int ip_frag_too_far(struct ipq *qp) 292 { 293 struct inet_peer *peer = qp->peer; 294 unsigned int max = qp->q.net->max_dist; 295 unsigned int start, end; 296 297 int rc; 298 299 if (!peer || !max) 300 return 0; 301 302 start = qp->rid; 303 end = atomic_inc_return(&peer->rid); 304 qp->rid = end; 305 306 rc = qp->q.fragments_tail && (end - start) > max; 307 308 if (rc) { 309 struct net *net; 310 311 net = container_of(qp->q.net, struct net, ipv4.frags); 312 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 313 } 314 315 return rc; 316 } 317 318 static int ip_frag_reinit(struct ipq *qp) 319 { 320 unsigned int sum_truesize = 0; 321 322 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) { 323 refcount_inc(&qp->q.refcnt); 324 return -ETIMEDOUT; 325 } 326 327 sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments); 328 sub_frag_mem_limit(qp->q.net, sum_truesize); 329 330 qp->q.flags = 0; 331 qp->q.len = 0; 332 qp->q.meat = 0; 333 qp->q.fragments = NULL; 334 qp->q.rb_fragments = RB_ROOT; 335 qp->q.fragments_tail = NULL; 336 qp->q.last_run_head = NULL; 337 qp->iif = 0; 338 qp->ecn = 0; 339 340 return 0; 341 } 342 343 /* Add new segment to existing queue. */ 344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb) 345 { 346 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 347 struct rb_node **rbn, *parent; 348 struct sk_buff *skb1, *prev_tail; 349 struct net_device *dev; 350 unsigned int fragsize; 351 int flags, offset; 352 int ihl, end; 353 int err = -ENOENT; 354 u8 ecn; 355 356 if (qp->q.flags & INET_FRAG_COMPLETE) 357 goto err; 358 359 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) && 360 unlikely(ip_frag_too_far(qp)) && 361 unlikely(err = ip_frag_reinit(qp))) { 362 ipq_kill(qp); 363 goto err; 364 } 365 366 ecn = ip4_frag_ecn(ip_hdr(skb)->tos); 367 offset = ntohs(ip_hdr(skb)->frag_off); 368 flags = offset & ~IP_OFFSET; 369 offset &= IP_OFFSET; 370 offset <<= 3; /* offset is in 8-byte chunks */ 371 ihl = ip_hdrlen(skb); 372 373 /* Determine the position of this fragment. */ 374 end = offset + skb->len - skb_network_offset(skb) - ihl; 375 err = -EINVAL; 376 377 /* Is this the final fragment? */ 378 if ((flags & IP_MF) == 0) { 379 /* If we already have some bits beyond end 380 * or have different end, the segment is corrupted. 381 */ 382 if (end < qp->q.len || 383 ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len)) 384 goto discard_qp; 385 qp->q.flags |= INET_FRAG_LAST_IN; 386 qp->q.len = end; 387 } else { 388 if (end&7) { 389 end &= ~7; 390 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 391 skb->ip_summed = CHECKSUM_NONE; 392 } 393 if (end > qp->q.len) { 394 /* Some bits beyond end -> corruption. */ 395 if (qp->q.flags & INET_FRAG_LAST_IN) 396 goto discard_qp; 397 qp->q.len = end; 398 } 399 } 400 if (end == offset) 401 goto discard_qp; 402 403 err = -ENOMEM; 404 if (!pskb_pull(skb, skb_network_offset(skb) + ihl)) 405 goto discard_qp; 406 407 err = pskb_trim_rcsum(skb, end - offset); 408 if (err) 409 goto discard_qp; 410 411 /* Note : skb->rbnode and skb->dev share the same location. */ 412 dev = skb->dev; 413 /* Makes sure compiler wont do silly aliasing games */ 414 barrier(); 415 416 /* RFC5722, Section 4, amended by Errata ID : 3089 417 * When reassembling an IPv6 datagram, if 418 * one or more its constituent fragments is determined to be an 419 * overlapping fragment, the entire datagram (and any constituent 420 * fragments) MUST be silently discarded. 421 * 422 * We do the same here for IPv4 (and increment an snmp counter). 423 */ 424 425 err = -EINVAL; 426 /* Find out where to put this fragment. */ 427 prev_tail = qp->q.fragments_tail; 428 if (!prev_tail) 429 ip4_frag_create_run(&qp->q, skb); /* First fragment. */ 430 else if (prev_tail->ip_defrag_offset + prev_tail->len < end) { 431 /* This is the common case: skb goes to the end. */ 432 /* Detect and discard overlaps. */ 433 if (offset < prev_tail->ip_defrag_offset + prev_tail->len) 434 goto overlap; 435 if (offset == prev_tail->ip_defrag_offset + prev_tail->len) 436 ip4_frag_append_to_last_run(&qp->q, skb); 437 else 438 ip4_frag_create_run(&qp->q, skb); 439 } else { 440 /* Binary search. Note that skb can become the first fragment, 441 * but not the last (covered above). 442 */ 443 rbn = &qp->q.rb_fragments.rb_node; 444 do { 445 parent = *rbn; 446 skb1 = rb_to_skb(parent); 447 if (end <= skb1->ip_defrag_offset) 448 rbn = &parent->rb_left; 449 else if (offset >= skb1->ip_defrag_offset + 450 FRAG_CB(skb1)->frag_run_len) 451 rbn = &parent->rb_right; 452 else /* Found an overlap with skb1. */ 453 goto overlap; 454 } while (*rbn); 455 /* Here we have parent properly set, and rbn pointing to 456 * one of its NULL left/right children. Insert skb. 457 */ 458 ip4_frag_init_run(skb); 459 rb_link_node(&skb->rbnode, parent, rbn); 460 rb_insert_color(&skb->rbnode, &qp->q.rb_fragments); 461 } 462 463 if (dev) 464 qp->iif = dev->ifindex; 465 skb->ip_defrag_offset = offset; 466 467 qp->q.stamp = skb->tstamp; 468 qp->q.meat += skb->len; 469 qp->ecn |= ecn; 470 add_frag_mem_limit(qp->q.net, skb->truesize); 471 if (offset == 0) 472 qp->q.flags |= INET_FRAG_FIRST_IN; 473 474 fragsize = skb->len + ihl; 475 476 if (fragsize > qp->q.max_size) 477 qp->q.max_size = fragsize; 478 479 if (ip_hdr(skb)->frag_off & htons(IP_DF) && 480 fragsize > qp->max_df_size) 481 qp->max_df_size = fragsize; 482 483 if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) && 484 qp->q.meat == qp->q.len) { 485 unsigned long orefdst = skb->_skb_refdst; 486 487 skb->_skb_refdst = 0UL; 488 err = ip_frag_reasm(qp, skb, prev_tail, dev); 489 skb->_skb_refdst = orefdst; 490 if (err) 491 inet_frag_kill(&qp->q); 492 return err; 493 } 494 495 skb_dst_drop(skb); 496 return -EINPROGRESS; 497 498 overlap: 499 __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS); 500 discard_qp: 501 inet_frag_kill(&qp->q); 502 err: 503 kfree_skb(skb); 504 return err; 505 } 506 507 /* Build a new IP datagram from all its fragments. */ 508 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb, 509 struct sk_buff *prev_tail, struct net_device *dev) 510 { 511 struct net *net = container_of(qp->q.net, struct net, ipv4.frags); 512 struct iphdr *iph; 513 struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments); 514 struct sk_buff **nextp; /* To build frag_list. */ 515 struct rb_node *rbn; 516 int len; 517 int ihlen; 518 int delta; 519 int err; 520 u8 ecn; 521 522 ipq_kill(qp); 523 524 ecn = ip_frag_ecn_table[qp->ecn]; 525 if (unlikely(ecn == 0xff)) { 526 err = -EINVAL; 527 goto out_fail; 528 } 529 /* Make the one we just received the head. */ 530 if (head != skb) { 531 fp = skb_clone(skb, GFP_ATOMIC); 532 if (!fp) 533 goto out_nomem; 534 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag; 535 if (RB_EMPTY_NODE(&skb->rbnode)) 536 FRAG_CB(prev_tail)->next_frag = fp; 537 else 538 rb_replace_node(&skb->rbnode, &fp->rbnode, 539 &qp->q.rb_fragments); 540 if (qp->q.fragments_tail == skb) 541 qp->q.fragments_tail = fp; 542 skb_morph(skb, head); 543 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag; 544 rb_replace_node(&head->rbnode, &skb->rbnode, 545 &qp->q.rb_fragments); 546 consume_skb(head); 547 head = skb; 548 } 549 550 WARN_ON(head->ip_defrag_offset != 0); 551 552 /* Allocate a new buffer for the datagram. */ 553 ihlen = ip_hdrlen(head); 554 len = ihlen + qp->q.len; 555 556 err = -E2BIG; 557 if (len > 65535) 558 goto out_oversize; 559 560 delta = - head->truesize; 561 562 /* Head of list must not be cloned. */ 563 if (skb_unclone(head, GFP_ATOMIC)) 564 goto out_nomem; 565 566 delta += head->truesize; 567 if (delta) 568 add_frag_mem_limit(qp->q.net, delta); 569 570 /* If the first fragment is fragmented itself, we split 571 * it to two chunks: the first with data and paged part 572 * and the second, holding only fragments. */ 573 if (skb_has_frag_list(head)) { 574 struct sk_buff *clone; 575 int i, plen = 0; 576 577 clone = alloc_skb(0, GFP_ATOMIC); 578 if (!clone) 579 goto out_nomem; 580 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; 581 skb_frag_list_init(head); 582 for (i = 0; i < skb_shinfo(head)->nr_frags; i++) 583 plen += skb_frag_size(&skb_shinfo(head)->frags[i]); 584 clone->len = clone->data_len = head->data_len - plen; 585 head->truesize += clone->truesize; 586 clone->csum = 0; 587 clone->ip_summed = head->ip_summed; 588 add_frag_mem_limit(qp->q.net, clone->truesize); 589 skb_shinfo(head)->frag_list = clone; 590 nextp = &clone->next; 591 } else { 592 nextp = &skb_shinfo(head)->frag_list; 593 } 594 595 skb_push(head, head->data - skb_network_header(head)); 596 597 /* Traverse the tree in order, to build frag_list. */ 598 fp = FRAG_CB(head)->next_frag; 599 rbn = rb_next(&head->rbnode); 600 rb_erase(&head->rbnode, &qp->q.rb_fragments); 601 while (rbn || fp) { 602 /* fp points to the next sk_buff in the current run; 603 * rbn points to the next run. 604 */ 605 /* Go through the current run. */ 606 while (fp) { 607 *nextp = fp; 608 nextp = &fp->next; 609 fp->prev = NULL; 610 memset(&fp->rbnode, 0, sizeof(fp->rbnode)); 611 fp->sk = NULL; 612 head->data_len += fp->len; 613 head->len += fp->len; 614 if (head->ip_summed != fp->ip_summed) 615 head->ip_summed = CHECKSUM_NONE; 616 else if (head->ip_summed == CHECKSUM_COMPLETE) 617 head->csum = csum_add(head->csum, fp->csum); 618 head->truesize += fp->truesize; 619 fp = FRAG_CB(fp)->next_frag; 620 } 621 /* Move to the next run. */ 622 if (rbn) { 623 struct rb_node *rbnext = rb_next(rbn); 624 625 fp = rb_to_skb(rbn); 626 rb_erase(rbn, &qp->q.rb_fragments); 627 rbn = rbnext; 628 } 629 } 630 sub_frag_mem_limit(qp->q.net, head->truesize); 631 632 *nextp = NULL; 633 skb_mark_not_on_list(head); 634 head->prev = NULL; 635 head->dev = dev; 636 head->tstamp = qp->q.stamp; 637 IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size); 638 639 iph = ip_hdr(head); 640 iph->tot_len = htons(len); 641 iph->tos |= ecn; 642 643 /* When we set IP_DF on a refragmented skb we must also force a 644 * call to ip_fragment to avoid forwarding a DF-skb of size s while 645 * original sender only sent fragments of size f (where f < s). 646 * 647 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest 648 * frag seen to avoid sending tiny DF-fragments in case skb was built 649 * from one very small df-fragment and one large non-df frag. 650 */ 651 if (qp->max_df_size == qp->q.max_size) { 652 IPCB(head)->flags |= IPSKB_FRAG_PMTU; 653 iph->frag_off = htons(IP_DF); 654 } else { 655 iph->frag_off = 0; 656 } 657 658 ip_send_check(iph); 659 660 __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS); 661 qp->q.fragments = NULL; 662 qp->q.rb_fragments = RB_ROOT; 663 qp->q.fragments_tail = NULL; 664 qp->q.last_run_head = NULL; 665 return 0; 666 667 out_nomem: 668 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp); 669 err = -ENOMEM; 670 goto out_fail; 671 out_oversize: 672 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr); 673 out_fail: 674 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 675 return err; 676 } 677 678 /* Process an incoming IP datagram fragment. */ 679 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user) 680 { 681 struct net_device *dev = skb->dev ? : skb_dst(skb)->dev; 682 int vif = l3mdev_master_ifindex_rcu(dev); 683 struct ipq *qp; 684 685 __IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS); 686 skb_orphan(skb); 687 688 /* Lookup (or create) queue header */ 689 qp = ip_find(net, ip_hdr(skb), user, vif); 690 if (qp) { 691 int ret; 692 693 spin_lock(&qp->q.lock); 694 695 ret = ip_frag_queue(qp, skb); 696 697 spin_unlock(&qp->q.lock); 698 ipq_put(qp); 699 return ret; 700 } 701 702 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS); 703 kfree_skb(skb); 704 return -ENOMEM; 705 } 706 EXPORT_SYMBOL(ip_defrag); 707 708 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user) 709 { 710 struct iphdr iph; 711 int netoff; 712 u32 len; 713 714 if (skb->protocol != htons(ETH_P_IP)) 715 return skb; 716 717 netoff = skb_network_offset(skb); 718 719 if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0) 720 return skb; 721 722 if (iph.ihl < 5 || iph.version != 4) 723 return skb; 724 725 len = ntohs(iph.tot_len); 726 if (skb->len < netoff + len || len < (iph.ihl * 4)) 727 return skb; 728 729 if (ip_is_fragment(&iph)) { 730 skb = skb_share_check(skb, GFP_ATOMIC); 731 if (skb) { 732 if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) { 733 kfree_skb(skb); 734 return NULL; 735 } 736 if (pskb_trim_rcsum(skb, netoff + len)) { 737 kfree_skb(skb); 738 return NULL; 739 } 740 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 741 if (ip_defrag(net, skb, user)) 742 return NULL; 743 skb_clear_hash(skb); 744 } 745 } 746 return skb; 747 } 748 EXPORT_SYMBOL(ip_check_defrag); 749 750 unsigned int inet_frag_rbtree_purge(struct rb_root *root) 751 { 752 struct rb_node *p = rb_first(root); 753 unsigned int sum = 0; 754 755 while (p) { 756 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 757 758 p = rb_next(p); 759 rb_erase(&skb->rbnode, root); 760 while (skb) { 761 struct sk_buff *next = FRAG_CB(skb)->next_frag; 762 763 sum += skb->truesize; 764 kfree_skb(skb); 765 skb = next; 766 } 767 } 768 return sum; 769 } 770 EXPORT_SYMBOL(inet_frag_rbtree_purge); 771 772 #ifdef CONFIG_SYSCTL 773 static int dist_min; 774 775 static struct ctl_table ip4_frags_ns_ctl_table[] = { 776 { 777 .procname = "ipfrag_high_thresh", 778 .data = &init_net.ipv4.frags.high_thresh, 779 .maxlen = sizeof(unsigned long), 780 .mode = 0644, 781 .proc_handler = proc_doulongvec_minmax, 782 .extra1 = &init_net.ipv4.frags.low_thresh 783 }, 784 { 785 .procname = "ipfrag_low_thresh", 786 .data = &init_net.ipv4.frags.low_thresh, 787 .maxlen = sizeof(unsigned long), 788 .mode = 0644, 789 .proc_handler = proc_doulongvec_minmax, 790 .extra2 = &init_net.ipv4.frags.high_thresh 791 }, 792 { 793 .procname = "ipfrag_time", 794 .data = &init_net.ipv4.frags.timeout, 795 .maxlen = sizeof(int), 796 .mode = 0644, 797 .proc_handler = proc_dointvec_jiffies, 798 }, 799 { 800 .procname = "ipfrag_max_dist", 801 .data = &init_net.ipv4.frags.max_dist, 802 .maxlen = sizeof(int), 803 .mode = 0644, 804 .proc_handler = proc_dointvec_minmax, 805 .extra1 = &dist_min, 806 }, 807 { } 808 }; 809 810 /* secret interval has been deprecated */ 811 static int ip4_frags_secret_interval_unused; 812 static struct ctl_table ip4_frags_ctl_table[] = { 813 { 814 .procname = "ipfrag_secret_interval", 815 .data = &ip4_frags_secret_interval_unused, 816 .maxlen = sizeof(int), 817 .mode = 0644, 818 .proc_handler = proc_dointvec_jiffies, 819 }, 820 { } 821 }; 822 823 static int __net_init ip4_frags_ns_ctl_register(struct net *net) 824 { 825 struct ctl_table *table; 826 struct ctl_table_header *hdr; 827 828 table = ip4_frags_ns_ctl_table; 829 if (!net_eq(net, &init_net)) { 830 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL); 831 if (!table) 832 goto err_alloc; 833 834 table[0].data = &net->ipv4.frags.high_thresh; 835 table[0].extra1 = &net->ipv4.frags.low_thresh; 836 table[1].data = &net->ipv4.frags.low_thresh; 837 table[1].extra2 = &net->ipv4.frags.high_thresh; 838 table[2].data = &net->ipv4.frags.timeout; 839 table[3].data = &net->ipv4.frags.max_dist; 840 } 841 842 hdr = register_net_sysctl(net, "net/ipv4", table); 843 if (!hdr) 844 goto err_reg; 845 846 net->ipv4.frags_hdr = hdr; 847 return 0; 848 849 err_reg: 850 if (!net_eq(net, &init_net)) 851 kfree(table); 852 err_alloc: 853 return -ENOMEM; 854 } 855 856 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net) 857 { 858 struct ctl_table *table; 859 860 table = net->ipv4.frags_hdr->ctl_table_arg; 861 unregister_net_sysctl_table(net->ipv4.frags_hdr); 862 kfree(table); 863 } 864 865 static void __init ip4_frags_ctl_register(void) 866 { 867 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table); 868 } 869 #else 870 static int ip4_frags_ns_ctl_register(struct net *net) 871 { 872 return 0; 873 } 874 875 static void ip4_frags_ns_ctl_unregister(struct net *net) 876 { 877 } 878 879 static void __init ip4_frags_ctl_register(void) 880 { 881 } 882 #endif 883 884 static int __net_init ipv4_frags_init_net(struct net *net) 885 { 886 int res; 887 888 /* Fragment cache limits. 889 * 890 * The fragment memory accounting code, (tries to) account for 891 * the real memory usage, by measuring both the size of frag 892 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue)) 893 * and the SKB's truesize. 894 * 895 * A 64K fragment consumes 129736 bytes (44*2944)+200 896 * (1500 truesize == 2944, sizeof(struct ipq) == 200) 897 * 898 * We will commit 4MB at one time. Should we cross that limit 899 * we will prune down to 3MB, making room for approx 8 big 64K 900 * fragments 8x128k. 901 */ 902 net->ipv4.frags.high_thresh = 4 * 1024 * 1024; 903 net->ipv4.frags.low_thresh = 3 * 1024 * 1024; 904 /* 905 * Important NOTE! Fragment queue must be destroyed before MSL expires. 906 * RFC791 is wrong proposing to prolongate timer each fragment arrival 907 * by TTL. 908 */ 909 net->ipv4.frags.timeout = IP_FRAG_TIME; 910 911 net->ipv4.frags.max_dist = 64; 912 net->ipv4.frags.f = &ip4_frags; 913 914 res = inet_frags_init_net(&net->ipv4.frags); 915 if (res < 0) 916 return res; 917 res = ip4_frags_ns_ctl_register(net); 918 if (res < 0) 919 inet_frags_exit_net(&net->ipv4.frags); 920 return res; 921 } 922 923 static void __net_exit ipv4_frags_exit_net(struct net *net) 924 { 925 ip4_frags_ns_ctl_unregister(net); 926 inet_frags_exit_net(&net->ipv4.frags); 927 } 928 929 static struct pernet_operations ip4_frags_ops = { 930 .init = ipv4_frags_init_net, 931 .exit = ipv4_frags_exit_net, 932 }; 933 934 935 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed) 936 { 937 return jhash2(data, 938 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); 939 } 940 941 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed) 942 { 943 const struct inet_frag_queue *fq = data; 944 945 return jhash2((const u32 *)&fq->key.v4, 946 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed); 947 } 948 949 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr) 950 { 951 const struct frag_v4_compare_key *key = arg->key; 952 const struct inet_frag_queue *fq = ptr; 953 954 return !!memcmp(&fq->key, key, sizeof(*key)); 955 } 956 957 static const struct rhashtable_params ip4_rhash_params = { 958 .head_offset = offsetof(struct inet_frag_queue, node), 959 .key_offset = offsetof(struct inet_frag_queue, key), 960 .key_len = sizeof(struct frag_v4_compare_key), 961 .hashfn = ip4_key_hashfn, 962 .obj_hashfn = ip4_obj_hashfn, 963 .obj_cmpfn = ip4_obj_cmpfn, 964 .automatic_shrinking = true, 965 }; 966 967 void __init ipfrag_init(void) 968 { 969 ip4_frags.constructor = ip4_frag_init; 970 ip4_frags.destructor = ip4_frag_free; 971 ip4_frags.qsize = sizeof(struct ipq); 972 ip4_frags.frag_expire = ip_expire; 973 ip4_frags.frags_cache_name = ip_frag_cache_name; 974 ip4_frags.rhash_params = ip4_rhash_params; 975 if (inet_frags_init(&ip4_frags)) 976 panic("IP: failed to allocate ip4_frags cache\n"); 977 ip4_frags_ctl_register(); 978 register_pernet_subsys(&ip4_frags_ops); 979 } 980