xref: /openbmc/linux/net/ipv4/inetpeer.c (revision 7490ca1e)
1 /*
2  *		INETPEER - A storage for permanent information about peers
3  *
4  *  This source is covered by the GNU GPL, the same as all kernel sources.
5  *
6  *  Authors:	Andrey V. Savochkin <saw@msu.ru>
7  */
8 
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock.h>
14 #include <linux/random.h>
15 #include <linux/timer.h>
16 #include <linux/time.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/net.h>
20 #include <net/ip.h>
21 #include <net/inetpeer.h>
22 #include <net/secure_seq.h>
23 
24 /*
25  *  Theory of operations.
26  *  We keep one entry for each peer IP address.  The nodes contains long-living
27  *  information about the peer which doesn't depend on routes.
28  *  At this moment this information consists only of ID field for the next
29  *  outgoing IP packet.  This field is incremented with each packet as encoded
30  *  in inet_getid() function (include/net/inetpeer.h).
31  *  At the moment of writing this notes identifier of IP packets is generated
32  *  to be unpredictable using this code only for packets subjected
33  *  (actually or potentially) to defragmentation.  I.e. DF packets less than
34  *  PMTU in size uses a constant ID and do not use this code (see
35  *  ip_select_ident() in include/net/ip.h).
36  *
37  *  Route cache entries hold references to our nodes.
38  *  New cache entries get references via lookup by destination IP address in
39  *  the avl tree.  The reference is grabbed only when it's needed i.e. only
40  *  when we try to output IP packet which needs an unpredictable ID (see
41  *  __ip_select_ident() in net/ipv4/route.c).
42  *  Nodes are removed only when reference counter goes to 0.
43  *  When it's happened the node may be removed when a sufficient amount of
44  *  time has been passed since its last use.  The less-recently-used entry can
45  *  also be removed if the pool is overloaded i.e. if the total amount of
46  *  entries is greater-or-equal than the threshold.
47  *
48  *  Node pool is organised as an AVL tree.
49  *  Such an implementation has been chosen not just for fun.  It's a way to
50  *  prevent easy and efficient DoS attacks by creating hash collisions.  A huge
51  *  amount of long living nodes in a single hash slot would significantly delay
52  *  lookups performed with disabled BHs.
53  *
54  *  Serialisation issues.
55  *  1.  Nodes may appear in the tree only with the pool lock held.
56  *  2.  Nodes may disappear from the tree only with the pool lock held
57  *      AND reference count being 0.
58  *  3.  Global variable peer_total is modified under the pool lock.
59  *  4.  struct inet_peer fields modification:
60  *		avl_left, avl_right, avl_parent, avl_height: pool lock
61  *		refcnt: atomically against modifications on other CPU;
62  *		   usually under some other lock to prevent node disappearing
63  *		daddr: unchangeable
64  *		ip_id_count: atomic value (no lock needed)
65  */
66 
67 static struct kmem_cache *peer_cachep __read_mostly;
68 
69 #define node_height(x) x->avl_height
70 
71 #define peer_avl_empty ((struct inet_peer *)&peer_fake_node)
72 #define peer_avl_empty_rcu ((struct inet_peer __rcu __force *)&peer_fake_node)
73 static const struct inet_peer peer_fake_node = {
74 	.avl_left	= peer_avl_empty_rcu,
75 	.avl_right	= peer_avl_empty_rcu,
76 	.avl_height	= 0
77 };
78 
79 struct inet_peer_base {
80 	struct inet_peer __rcu *root;
81 	seqlock_t	lock;
82 	int		total;
83 };
84 
85 static struct inet_peer_base v4_peers = {
86 	.root		= peer_avl_empty_rcu,
87 	.lock		= __SEQLOCK_UNLOCKED(v4_peers.lock),
88 	.total		= 0,
89 };
90 
91 static struct inet_peer_base v6_peers = {
92 	.root		= peer_avl_empty_rcu,
93 	.lock		= __SEQLOCK_UNLOCKED(v6_peers.lock),
94 	.total		= 0,
95 };
96 
97 #define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */
98 
99 /* Exported for sysctl_net_ipv4.  */
100 int inet_peer_threshold __read_mostly = 65536 + 128;	/* start to throw entries more
101 					 * aggressively at this stage */
102 int inet_peer_minttl __read_mostly = 120 * HZ;	/* TTL under high load: 120 sec */
103 int inet_peer_maxttl __read_mostly = 10 * 60 * HZ;	/* usual time to live: 10 min */
104 
105 
106 /* Called from ip_output.c:ip_init  */
107 void __init inet_initpeers(void)
108 {
109 	struct sysinfo si;
110 
111 	/* Use the straight interface to information about memory. */
112 	si_meminfo(&si);
113 	/* The values below were suggested by Alexey Kuznetsov
114 	 * <kuznet@ms2.inr.ac.ru>.  I don't have any opinion about the values
115 	 * myself.  --SAW
116 	 */
117 	if (si.totalram <= (32768*1024)/PAGE_SIZE)
118 		inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */
119 	if (si.totalram <= (16384*1024)/PAGE_SIZE)
120 		inet_peer_threshold >>= 1; /* about 512KB */
121 	if (si.totalram <= (8192*1024)/PAGE_SIZE)
122 		inet_peer_threshold >>= 2; /* about 128KB */
123 
124 	peer_cachep = kmem_cache_create("inet_peer_cache",
125 			sizeof(struct inet_peer),
126 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
127 			NULL);
128 
129 }
130 
131 static int addr_compare(const struct inetpeer_addr *a,
132 			const struct inetpeer_addr *b)
133 {
134 	int i, n = (a->family == AF_INET ? 1 : 4);
135 
136 	for (i = 0; i < n; i++) {
137 		if (a->addr.a6[i] == b->addr.a6[i])
138 			continue;
139 		if ((__force u32)a->addr.a6[i] < (__force u32)b->addr.a6[i])
140 			return -1;
141 		return 1;
142 	}
143 
144 	return 0;
145 }
146 
147 #define rcu_deref_locked(X, BASE)				\
148 	rcu_dereference_protected(X, lockdep_is_held(&(BASE)->lock.lock))
149 
150 /*
151  * Called with local BH disabled and the pool lock held.
152  */
153 #define lookup(_daddr, _stack, _base)				\
154 ({								\
155 	struct inet_peer *u;					\
156 	struct inet_peer __rcu **v;				\
157 								\
158 	stackptr = _stack;					\
159 	*stackptr++ = &_base->root;				\
160 	for (u = rcu_deref_locked(_base->root, _base);		\
161 	     u != peer_avl_empty; ) {				\
162 		int cmp = addr_compare(_daddr, &u->daddr);	\
163 		if (cmp == 0)					\
164 			break;					\
165 		if (cmp == -1)					\
166 			v = &u->avl_left;			\
167 		else						\
168 			v = &u->avl_right;			\
169 		*stackptr++ = v;				\
170 		u = rcu_deref_locked(*v, _base);		\
171 	}							\
172 	u;							\
173 })
174 
175 /*
176  * Called with rcu_read_lock()
177  * Because we hold no lock against a writer, its quite possible we fall
178  * in an endless loop.
179  * But every pointer we follow is guaranteed to be valid thanks to RCU.
180  * We exit from this function if number of links exceeds PEER_MAXDEPTH
181  */
182 static struct inet_peer *lookup_rcu(const struct inetpeer_addr *daddr,
183 				    struct inet_peer_base *base)
184 {
185 	struct inet_peer *u = rcu_dereference(base->root);
186 	int count = 0;
187 
188 	while (u != peer_avl_empty) {
189 		int cmp = addr_compare(daddr, &u->daddr);
190 		if (cmp == 0) {
191 			/* Before taking a reference, check if this entry was
192 			 * deleted (refcnt=-1)
193 			 */
194 			if (!atomic_add_unless(&u->refcnt, 1, -1))
195 				u = NULL;
196 			return u;
197 		}
198 		if (cmp == -1)
199 			u = rcu_dereference(u->avl_left);
200 		else
201 			u = rcu_dereference(u->avl_right);
202 		if (unlikely(++count == PEER_MAXDEPTH))
203 			break;
204 	}
205 	return NULL;
206 }
207 
208 /* Called with local BH disabled and the pool lock held. */
209 #define lookup_rightempty(start, base)				\
210 ({								\
211 	struct inet_peer *u;					\
212 	struct inet_peer __rcu **v;				\
213 	*stackptr++ = &start->avl_left;				\
214 	v = &start->avl_left;					\
215 	for (u = rcu_deref_locked(*v, base);			\
216 	     u->avl_right != peer_avl_empty_rcu; ) {		\
217 		v = &u->avl_right;				\
218 		*stackptr++ = v;				\
219 		u = rcu_deref_locked(*v, base);			\
220 	}							\
221 	u;							\
222 })
223 
224 /* Called with local BH disabled and the pool lock held.
225  * Variable names are the proof of operation correctness.
226  * Look into mm/map_avl.c for more detail description of the ideas.
227  */
228 static void peer_avl_rebalance(struct inet_peer __rcu **stack[],
229 			       struct inet_peer __rcu ***stackend,
230 			       struct inet_peer_base *base)
231 {
232 	struct inet_peer __rcu **nodep;
233 	struct inet_peer *node, *l, *r;
234 	int lh, rh;
235 
236 	while (stackend > stack) {
237 		nodep = *--stackend;
238 		node = rcu_deref_locked(*nodep, base);
239 		l = rcu_deref_locked(node->avl_left, base);
240 		r = rcu_deref_locked(node->avl_right, base);
241 		lh = node_height(l);
242 		rh = node_height(r);
243 		if (lh > rh + 1) { /* l: RH+2 */
244 			struct inet_peer *ll, *lr, *lrl, *lrr;
245 			int lrh;
246 			ll = rcu_deref_locked(l->avl_left, base);
247 			lr = rcu_deref_locked(l->avl_right, base);
248 			lrh = node_height(lr);
249 			if (lrh <= node_height(ll)) {	/* ll: RH+1 */
250 				RCU_INIT_POINTER(node->avl_left, lr);	/* lr: RH or RH+1 */
251 				RCU_INIT_POINTER(node->avl_right, r);	/* r: RH */
252 				node->avl_height = lrh + 1; /* RH+1 or RH+2 */
253 				RCU_INIT_POINTER(l->avl_left, ll);       /* ll: RH+1 */
254 				RCU_INIT_POINTER(l->avl_right, node);	/* node: RH+1 or RH+2 */
255 				l->avl_height = node->avl_height + 1;
256 				RCU_INIT_POINTER(*nodep, l);
257 			} else { /* ll: RH, lr: RH+1 */
258 				lrl = rcu_deref_locked(lr->avl_left, base);/* lrl: RH or RH-1 */
259 				lrr = rcu_deref_locked(lr->avl_right, base);/* lrr: RH or RH-1 */
260 				RCU_INIT_POINTER(node->avl_left, lrr);	/* lrr: RH or RH-1 */
261 				RCU_INIT_POINTER(node->avl_right, r);	/* r: RH */
262 				node->avl_height = rh + 1; /* node: RH+1 */
263 				RCU_INIT_POINTER(l->avl_left, ll);	/* ll: RH */
264 				RCU_INIT_POINTER(l->avl_right, lrl);	/* lrl: RH or RH-1 */
265 				l->avl_height = rh + 1;	/* l: RH+1 */
266 				RCU_INIT_POINTER(lr->avl_left, l);	/* l: RH+1 */
267 				RCU_INIT_POINTER(lr->avl_right, node);	/* node: RH+1 */
268 				lr->avl_height = rh + 2;
269 				RCU_INIT_POINTER(*nodep, lr);
270 			}
271 		} else if (rh > lh + 1) { /* r: LH+2 */
272 			struct inet_peer *rr, *rl, *rlr, *rll;
273 			int rlh;
274 			rr = rcu_deref_locked(r->avl_right, base);
275 			rl = rcu_deref_locked(r->avl_left, base);
276 			rlh = node_height(rl);
277 			if (rlh <= node_height(rr)) {	/* rr: LH+1 */
278 				RCU_INIT_POINTER(node->avl_right, rl);	/* rl: LH or LH+1 */
279 				RCU_INIT_POINTER(node->avl_left, l);	/* l: LH */
280 				node->avl_height = rlh + 1; /* LH+1 or LH+2 */
281 				RCU_INIT_POINTER(r->avl_right, rr);	/* rr: LH+1 */
282 				RCU_INIT_POINTER(r->avl_left, node);	/* node: LH+1 or LH+2 */
283 				r->avl_height = node->avl_height + 1;
284 				RCU_INIT_POINTER(*nodep, r);
285 			} else { /* rr: RH, rl: RH+1 */
286 				rlr = rcu_deref_locked(rl->avl_right, base);/* rlr: LH or LH-1 */
287 				rll = rcu_deref_locked(rl->avl_left, base);/* rll: LH or LH-1 */
288 				RCU_INIT_POINTER(node->avl_right, rll);	/* rll: LH or LH-1 */
289 				RCU_INIT_POINTER(node->avl_left, l);	/* l: LH */
290 				node->avl_height = lh + 1; /* node: LH+1 */
291 				RCU_INIT_POINTER(r->avl_right, rr);	/* rr: LH */
292 				RCU_INIT_POINTER(r->avl_left, rlr);	/* rlr: LH or LH-1 */
293 				r->avl_height = lh + 1;	/* r: LH+1 */
294 				RCU_INIT_POINTER(rl->avl_right, r);	/* r: LH+1 */
295 				RCU_INIT_POINTER(rl->avl_left, node);	/* node: LH+1 */
296 				rl->avl_height = lh + 2;
297 				RCU_INIT_POINTER(*nodep, rl);
298 			}
299 		} else {
300 			node->avl_height = (lh > rh ? lh : rh) + 1;
301 		}
302 	}
303 }
304 
305 /* Called with local BH disabled and the pool lock held. */
306 #define link_to_pool(n, base)					\
307 do {								\
308 	n->avl_height = 1;					\
309 	n->avl_left = peer_avl_empty_rcu;			\
310 	n->avl_right = peer_avl_empty_rcu;			\
311 	/* lockless readers can catch us now */			\
312 	rcu_assign_pointer(**--stackptr, n);			\
313 	peer_avl_rebalance(stack, stackptr, base);		\
314 } while (0)
315 
316 static void inetpeer_free_rcu(struct rcu_head *head)
317 {
318 	kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu));
319 }
320 
321 static void unlink_from_pool(struct inet_peer *p, struct inet_peer_base *base,
322 			     struct inet_peer __rcu **stack[PEER_MAXDEPTH])
323 {
324 	struct inet_peer __rcu ***stackptr, ***delp;
325 
326 	if (lookup(&p->daddr, stack, base) != p)
327 		BUG();
328 	delp = stackptr - 1; /* *delp[0] == p */
329 	if (p->avl_left == peer_avl_empty_rcu) {
330 		*delp[0] = p->avl_right;
331 		--stackptr;
332 	} else {
333 		/* look for a node to insert instead of p */
334 		struct inet_peer *t;
335 		t = lookup_rightempty(p, base);
336 		BUG_ON(rcu_deref_locked(*stackptr[-1], base) != t);
337 		**--stackptr = t->avl_left;
338 		/* t is removed, t->daddr > x->daddr for any
339 		 * x in p->avl_left subtree.
340 		 * Put t in the old place of p. */
341 		RCU_INIT_POINTER(*delp[0], t);
342 		t->avl_left = p->avl_left;
343 		t->avl_right = p->avl_right;
344 		t->avl_height = p->avl_height;
345 		BUG_ON(delp[1] != &p->avl_left);
346 		delp[1] = &t->avl_left; /* was &p->avl_left */
347 	}
348 	peer_avl_rebalance(stack, stackptr, base);
349 	base->total--;
350 	call_rcu(&p->rcu, inetpeer_free_rcu);
351 }
352 
353 static struct inet_peer_base *family_to_base(int family)
354 {
355 	return family == AF_INET ? &v4_peers : &v6_peers;
356 }
357 
358 /* perform garbage collect on all items stacked during a lookup */
359 static int inet_peer_gc(struct inet_peer_base *base,
360 			struct inet_peer __rcu **stack[PEER_MAXDEPTH],
361 			struct inet_peer __rcu ***stackptr)
362 {
363 	struct inet_peer *p, *gchead = NULL;
364 	__u32 delta, ttl;
365 	int cnt = 0;
366 
367 	if (base->total >= inet_peer_threshold)
368 		ttl = 0; /* be aggressive */
369 	else
370 		ttl = inet_peer_maxttl
371 				- (inet_peer_maxttl - inet_peer_minttl) / HZ *
372 					base->total / inet_peer_threshold * HZ;
373 	stackptr--; /* last stack slot is peer_avl_empty */
374 	while (stackptr > stack) {
375 		stackptr--;
376 		p = rcu_deref_locked(**stackptr, base);
377 		if (atomic_read(&p->refcnt) == 0) {
378 			smp_rmb();
379 			delta = (__u32)jiffies - p->dtime;
380 			if (delta >= ttl &&
381 			    atomic_cmpxchg(&p->refcnt, 0, -1) == 0) {
382 				p->gc_next = gchead;
383 				gchead = p;
384 			}
385 		}
386 	}
387 	while ((p = gchead) != NULL) {
388 		gchead = p->gc_next;
389 		cnt++;
390 		unlink_from_pool(p, base, stack);
391 	}
392 	return cnt;
393 }
394 
395 struct inet_peer *inet_getpeer(const struct inetpeer_addr *daddr, int create)
396 {
397 	struct inet_peer __rcu **stack[PEER_MAXDEPTH], ***stackptr;
398 	struct inet_peer_base *base = family_to_base(daddr->family);
399 	struct inet_peer *p;
400 	unsigned int sequence;
401 	int invalidated, gccnt = 0;
402 
403 	/* Attempt a lockless lookup first.
404 	 * Because of a concurrent writer, we might not find an existing entry.
405 	 */
406 	rcu_read_lock();
407 	sequence = read_seqbegin(&base->lock);
408 	p = lookup_rcu(daddr, base);
409 	invalidated = read_seqretry(&base->lock, sequence);
410 	rcu_read_unlock();
411 
412 	if (p)
413 		return p;
414 
415 	/* If no writer did a change during our lookup, we can return early. */
416 	if (!create && !invalidated)
417 		return NULL;
418 
419 	/* retry an exact lookup, taking the lock before.
420 	 * At least, nodes should be hot in our cache.
421 	 */
422 	write_seqlock_bh(&base->lock);
423 relookup:
424 	p = lookup(daddr, stack, base);
425 	if (p != peer_avl_empty) {
426 		atomic_inc(&p->refcnt);
427 		write_sequnlock_bh(&base->lock);
428 		return p;
429 	}
430 	if (!gccnt) {
431 		gccnt = inet_peer_gc(base, stack, stackptr);
432 		if (gccnt && create)
433 			goto relookup;
434 	}
435 	p = create ? kmem_cache_alloc(peer_cachep, GFP_ATOMIC) : NULL;
436 	if (p) {
437 		p->daddr = *daddr;
438 		atomic_set(&p->refcnt, 1);
439 		atomic_set(&p->rid, 0);
440 		atomic_set(&p->ip_id_count,
441 				(daddr->family == AF_INET) ?
442 					secure_ip_id(daddr->addr.a4) :
443 					secure_ipv6_id(daddr->addr.a6));
444 		p->tcp_ts_stamp = 0;
445 		p->metrics[RTAX_LOCK-1] = INETPEER_METRICS_NEW;
446 		p->rate_tokens = 0;
447 		p->rate_last = 0;
448 		p->pmtu_expires = 0;
449 		p->pmtu_orig = 0;
450 		p->redirect_genid = 0;
451 		memset(&p->redirect_learned, 0, sizeof(p->redirect_learned));
452 
453 
454 		/* Link the node. */
455 		link_to_pool(p, base);
456 		base->total++;
457 	}
458 	write_sequnlock_bh(&base->lock);
459 
460 	return p;
461 }
462 EXPORT_SYMBOL_GPL(inet_getpeer);
463 
464 void inet_putpeer(struct inet_peer *p)
465 {
466 	p->dtime = (__u32)jiffies;
467 	smp_mb__before_atomic_dec();
468 	atomic_dec(&p->refcnt);
469 }
470 EXPORT_SYMBOL_GPL(inet_putpeer);
471 
472 /*
473  *	Check transmit rate limitation for given message.
474  *	The rate information is held in the inet_peer entries now.
475  *	This function is generic and could be used for other purposes
476  *	too. It uses a Token bucket filter as suggested by Alexey Kuznetsov.
477  *
478  *	Note that the same inet_peer fields are modified by functions in
479  *	route.c too, but these work for packet destinations while xrlim_allow
480  *	works for icmp destinations. This means the rate limiting information
481  *	for one "ip object" is shared - and these ICMPs are twice limited:
482  *	by source and by destination.
483  *
484  *	RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate
485  *			  SHOULD allow setting of rate limits
486  *
487  * 	Shared between ICMPv4 and ICMPv6.
488  */
489 #define XRLIM_BURST_FACTOR 6
490 bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout)
491 {
492 	unsigned long now, token;
493 	bool rc = false;
494 
495 	if (!peer)
496 		return true;
497 
498 	token = peer->rate_tokens;
499 	now = jiffies;
500 	token += now - peer->rate_last;
501 	peer->rate_last = now;
502 	if (token > XRLIM_BURST_FACTOR * timeout)
503 		token = XRLIM_BURST_FACTOR * timeout;
504 	if (token >= timeout) {
505 		token -= timeout;
506 		rc = true;
507 	}
508 	peer->rate_tokens = token;
509 	return rc;
510 }
511 EXPORT_SYMBOL(inet_peer_xrlim_allow);
512