xref: /openbmc/linux/net/ipv4/inet_fragment.c (revision b7019ac5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * inet fragments management
4  *
5  * 		Authors:	Pavel Emelyanov <xemul@openvz.org>
6  *				Started as consolidation of ipv4/ip_fragment.c,
7  *				ipv6/reassembly. and ipv6 nf conntrack reassembly
8  */
9 
10 #include <linux/list.h>
11 #include <linux/spinlock.h>
12 #include <linux/module.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/random.h>
16 #include <linux/skbuff.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/rhashtable.h>
20 
21 #include <net/sock.h>
22 #include <net/inet_frag.h>
23 #include <net/inet_ecn.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 
27 /* Use skb->cb to track consecutive/adjacent fragments coming at
28  * the end of the queue. Nodes in the rb-tree queue will
29  * contain "runs" of one or more adjacent fragments.
30  *
31  * Invariants:
32  * - next_frag is NULL at the tail of a "run";
33  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
34  */
35 struct ipfrag_skb_cb {
36 	union {
37 		struct inet_skb_parm	h4;
38 		struct inet6_skb_parm	h6;
39 	};
40 	struct sk_buff		*next_frag;
41 	int			frag_run_len;
42 };
43 
44 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
45 
46 static void fragcb_clear(struct sk_buff *skb)
47 {
48 	RB_CLEAR_NODE(&skb->rbnode);
49 	FRAG_CB(skb)->next_frag = NULL;
50 	FRAG_CB(skb)->frag_run_len = skb->len;
51 }
52 
53 /* Append skb to the last "run". */
54 static void fragrun_append_to_last(struct inet_frag_queue *q,
55 				   struct sk_buff *skb)
56 {
57 	fragcb_clear(skb);
58 
59 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
60 	FRAG_CB(q->fragments_tail)->next_frag = skb;
61 	q->fragments_tail = skb;
62 }
63 
64 /* Create a new "run" with the skb. */
65 static void fragrun_create(struct inet_frag_queue *q, struct sk_buff *skb)
66 {
67 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
68 	fragcb_clear(skb);
69 
70 	if (q->last_run_head)
71 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
72 			     &q->last_run_head->rbnode.rb_right);
73 	else
74 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
75 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
76 
77 	q->fragments_tail = skb;
78 	q->last_run_head = skb;
79 }
80 
81 /* Given the OR values of all fragments, apply RFC 3168 5.3 requirements
82  * Value : 0xff if frame should be dropped.
83  *         0 or INET_ECN_CE value, to be ORed in to final iph->tos field
84  */
85 const u8 ip_frag_ecn_table[16] = {
86 	/* at least one fragment had CE, and others ECT_0 or ECT_1 */
87 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0]			= INET_ECN_CE,
88 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1]			= INET_ECN_CE,
89 	[IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1]	= INET_ECN_CE,
90 
91 	/* invalid combinations : drop frame */
92 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE] = 0xff,
93 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0] = 0xff,
94 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_1] = 0xff,
95 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
96 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0] = 0xff,
97 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_1] = 0xff,
98 	[IPFRAG_ECN_NOT_ECT | IPFRAG_ECN_CE | IPFRAG_ECN_ECT_0 | IPFRAG_ECN_ECT_1] = 0xff,
99 };
100 EXPORT_SYMBOL(ip_frag_ecn_table);
101 
102 int inet_frags_init(struct inet_frags *f)
103 {
104 	f->frags_cachep = kmem_cache_create(f->frags_cache_name, f->qsize, 0, 0,
105 					    NULL);
106 	if (!f->frags_cachep)
107 		return -ENOMEM;
108 
109 	return 0;
110 }
111 EXPORT_SYMBOL(inet_frags_init);
112 
113 void inet_frags_fini(struct inet_frags *f)
114 {
115 	/* We must wait that all inet_frag_destroy_rcu() have completed. */
116 	rcu_barrier();
117 
118 	kmem_cache_destroy(f->frags_cachep);
119 	f->frags_cachep = NULL;
120 }
121 EXPORT_SYMBOL(inet_frags_fini);
122 
123 static void inet_frags_free_cb(void *ptr, void *arg)
124 {
125 	struct inet_frag_queue *fq = ptr;
126 
127 	/* If we can not cancel the timer, it means this frag_queue
128 	 * is already disappearing, we have nothing to do.
129 	 * Otherwise, we own a refcount until the end of this function.
130 	 */
131 	if (!del_timer(&fq->timer))
132 		return;
133 
134 	spin_lock_bh(&fq->lock);
135 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
136 		fq->flags |= INET_FRAG_COMPLETE;
137 		refcount_dec(&fq->refcnt);
138 	}
139 	spin_unlock_bh(&fq->lock);
140 
141 	inet_frag_put(fq);
142 }
143 
144 void inet_frags_exit_net(struct netns_frags *nf)
145 {
146 	nf->high_thresh = 0; /* prevent creation of new frags */
147 
148 	rhashtable_free_and_destroy(&nf->rhashtable, inet_frags_free_cb, NULL);
149 }
150 EXPORT_SYMBOL(inet_frags_exit_net);
151 
152 void inet_frag_kill(struct inet_frag_queue *fq)
153 {
154 	if (del_timer(&fq->timer))
155 		refcount_dec(&fq->refcnt);
156 
157 	if (!(fq->flags & INET_FRAG_COMPLETE)) {
158 		struct netns_frags *nf = fq->net;
159 
160 		fq->flags |= INET_FRAG_COMPLETE;
161 		rhashtable_remove_fast(&nf->rhashtable, &fq->node, nf->f->rhash_params);
162 		refcount_dec(&fq->refcnt);
163 	}
164 }
165 EXPORT_SYMBOL(inet_frag_kill);
166 
167 static void inet_frag_destroy_rcu(struct rcu_head *head)
168 {
169 	struct inet_frag_queue *q = container_of(head, struct inet_frag_queue,
170 						 rcu);
171 	struct inet_frags *f = q->net->f;
172 
173 	if (f->destructor)
174 		f->destructor(q);
175 	kmem_cache_free(f->frags_cachep, q);
176 }
177 
178 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
179 {
180 	struct rb_node *p = rb_first(root);
181 	unsigned int sum = 0;
182 
183 	while (p) {
184 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
185 
186 		p = rb_next(p);
187 		rb_erase(&skb->rbnode, root);
188 		while (skb) {
189 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
190 
191 			sum += skb->truesize;
192 			kfree_skb(skb);
193 			skb = next;
194 		}
195 	}
196 	return sum;
197 }
198 EXPORT_SYMBOL(inet_frag_rbtree_purge);
199 
200 void inet_frag_destroy(struct inet_frag_queue *q)
201 {
202 	struct netns_frags *nf;
203 	unsigned int sum, sum_truesize = 0;
204 	struct inet_frags *f;
205 
206 	WARN_ON(!(q->flags & INET_FRAG_COMPLETE));
207 	WARN_ON(del_timer(&q->timer) != 0);
208 
209 	/* Release all fragment data. */
210 	nf = q->net;
211 	f = nf->f;
212 	sum_truesize = inet_frag_rbtree_purge(&q->rb_fragments);
213 	sum = sum_truesize + f->qsize;
214 
215 	call_rcu(&q->rcu, inet_frag_destroy_rcu);
216 
217 	sub_frag_mem_limit(nf, sum);
218 }
219 EXPORT_SYMBOL(inet_frag_destroy);
220 
221 static struct inet_frag_queue *inet_frag_alloc(struct netns_frags *nf,
222 					       struct inet_frags *f,
223 					       void *arg)
224 {
225 	struct inet_frag_queue *q;
226 
227 	q = kmem_cache_zalloc(f->frags_cachep, GFP_ATOMIC);
228 	if (!q)
229 		return NULL;
230 
231 	q->net = nf;
232 	f->constructor(q, arg);
233 	add_frag_mem_limit(nf, f->qsize);
234 
235 	timer_setup(&q->timer, f->frag_expire, 0);
236 	spin_lock_init(&q->lock);
237 	refcount_set(&q->refcnt, 3);
238 
239 	return q;
240 }
241 
242 static struct inet_frag_queue *inet_frag_create(struct netns_frags *nf,
243 						void *arg,
244 						struct inet_frag_queue **prev)
245 {
246 	struct inet_frags *f = nf->f;
247 	struct inet_frag_queue *q;
248 
249 	q = inet_frag_alloc(nf, f, arg);
250 	if (!q) {
251 		*prev = ERR_PTR(-ENOMEM);
252 		return NULL;
253 	}
254 	mod_timer(&q->timer, jiffies + nf->timeout);
255 
256 	*prev = rhashtable_lookup_get_insert_key(&nf->rhashtable, &q->key,
257 						 &q->node, f->rhash_params);
258 	if (*prev) {
259 		q->flags |= INET_FRAG_COMPLETE;
260 		inet_frag_kill(q);
261 		inet_frag_destroy(q);
262 		return NULL;
263 	}
264 	return q;
265 }
266 
267 /* TODO : call from rcu_read_lock() and no longer use refcount_inc_not_zero() */
268 struct inet_frag_queue *inet_frag_find(struct netns_frags *nf, void *key)
269 {
270 	struct inet_frag_queue *fq = NULL, *prev;
271 
272 	if (!nf->high_thresh || frag_mem_limit(nf) > nf->high_thresh)
273 		return NULL;
274 
275 	rcu_read_lock();
276 
277 	prev = rhashtable_lookup(&nf->rhashtable, key, nf->f->rhash_params);
278 	if (!prev)
279 		fq = inet_frag_create(nf, key, &prev);
280 	if (prev && !IS_ERR(prev)) {
281 		fq = prev;
282 		if (!refcount_inc_not_zero(&fq->refcnt))
283 			fq = NULL;
284 	}
285 	rcu_read_unlock();
286 	return fq;
287 }
288 EXPORT_SYMBOL(inet_frag_find);
289 
290 int inet_frag_queue_insert(struct inet_frag_queue *q, struct sk_buff *skb,
291 			   int offset, int end)
292 {
293 	struct sk_buff *last = q->fragments_tail;
294 
295 	/* RFC5722, Section 4, amended by Errata ID : 3089
296 	 *                          When reassembling an IPv6 datagram, if
297 	 *   one or more its constituent fragments is determined to be an
298 	 *   overlapping fragment, the entire datagram (and any constituent
299 	 *   fragments) MUST be silently discarded.
300 	 *
301 	 * Duplicates, however, should be ignored (i.e. skb dropped, but the
302 	 * queue/fragments kept for later reassembly).
303 	 */
304 	if (!last)
305 		fragrun_create(q, skb);  /* First fragment. */
306 	else if (last->ip_defrag_offset + last->len < end) {
307 		/* This is the common case: skb goes to the end. */
308 		/* Detect and discard overlaps. */
309 		if (offset < last->ip_defrag_offset + last->len)
310 			return IPFRAG_OVERLAP;
311 		if (offset == last->ip_defrag_offset + last->len)
312 			fragrun_append_to_last(q, skb);
313 		else
314 			fragrun_create(q, skb);
315 	} else {
316 		/* Binary search. Note that skb can become the first fragment,
317 		 * but not the last (covered above).
318 		 */
319 		struct rb_node **rbn, *parent;
320 
321 		rbn = &q->rb_fragments.rb_node;
322 		do {
323 			struct sk_buff *curr;
324 			int curr_run_end;
325 
326 			parent = *rbn;
327 			curr = rb_to_skb(parent);
328 			curr_run_end = curr->ip_defrag_offset +
329 					FRAG_CB(curr)->frag_run_len;
330 			if (end <= curr->ip_defrag_offset)
331 				rbn = &parent->rb_left;
332 			else if (offset >= curr_run_end)
333 				rbn = &parent->rb_right;
334 			else if (offset >= curr->ip_defrag_offset &&
335 				 end <= curr_run_end)
336 				return IPFRAG_DUP;
337 			else
338 				return IPFRAG_OVERLAP;
339 		} while (*rbn);
340 		/* Here we have parent properly set, and rbn pointing to
341 		 * one of its NULL left/right children. Insert skb.
342 		 */
343 		fragcb_clear(skb);
344 		rb_link_node(&skb->rbnode, parent, rbn);
345 		rb_insert_color(&skb->rbnode, &q->rb_fragments);
346 	}
347 
348 	skb->ip_defrag_offset = offset;
349 
350 	return IPFRAG_OK;
351 }
352 EXPORT_SYMBOL(inet_frag_queue_insert);
353 
354 void *inet_frag_reasm_prepare(struct inet_frag_queue *q, struct sk_buff *skb,
355 			      struct sk_buff *parent)
356 {
357 	struct sk_buff *fp, *head = skb_rb_first(&q->rb_fragments);
358 	struct sk_buff **nextp;
359 	int delta;
360 
361 	if (head != skb) {
362 		fp = skb_clone(skb, GFP_ATOMIC);
363 		if (!fp)
364 			return NULL;
365 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
366 		if (RB_EMPTY_NODE(&skb->rbnode))
367 			FRAG_CB(parent)->next_frag = fp;
368 		else
369 			rb_replace_node(&skb->rbnode, &fp->rbnode,
370 					&q->rb_fragments);
371 		if (q->fragments_tail == skb)
372 			q->fragments_tail = fp;
373 		skb_morph(skb, head);
374 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
375 		rb_replace_node(&head->rbnode, &skb->rbnode,
376 				&q->rb_fragments);
377 		consume_skb(head);
378 		head = skb;
379 	}
380 	WARN_ON(head->ip_defrag_offset != 0);
381 
382 	delta = -head->truesize;
383 
384 	/* Head of list must not be cloned. */
385 	if (skb_unclone(head, GFP_ATOMIC))
386 		return NULL;
387 
388 	delta += head->truesize;
389 	if (delta)
390 		add_frag_mem_limit(q->net, delta);
391 
392 	/* If the first fragment is fragmented itself, we split
393 	 * it to two chunks: the first with data and paged part
394 	 * and the second, holding only fragments.
395 	 */
396 	if (skb_has_frag_list(head)) {
397 		struct sk_buff *clone;
398 		int i, plen = 0;
399 
400 		clone = alloc_skb(0, GFP_ATOMIC);
401 		if (!clone)
402 			return NULL;
403 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
404 		skb_frag_list_init(head);
405 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
406 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
407 		clone->data_len = head->data_len - plen;
408 		clone->len = clone->data_len;
409 		head->truesize += clone->truesize;
410 		clone->csum = 0;
411 		clone->ip_summed = head->ip_summed;
412 		add_frag_mem_limit(q->net, clone->truesize);
413 		skb_shinfo(head)->frag_list = clone;
414 		nextp = &clone->next;
415 	} else {
416 		nextp = &skb_shinfo(head)->frag_list;
417 	}
418 
419 	return nextp;
420 }
421 EXPORT_SYMBOL(inet_frag_reasm_prepare);
422 
423 void inet_frag_reasm_finish(struct inet_frag_queue *q, struct sk_buff *head,
424 			    void *reasm_data)
425 {
426 	struct sk_buff **nextp = (struct sk_buff **)reasm_data;
427 	struct rb_node *rbn;
428 	struct sk_buff *fp;
429 
430 	skb_push(head, head->data - skb_network_header(head));
431 
432 	/* Traverse the tree in order, to build frag_list. */
433 	fp = FRAG_CB(head)->next_frag;
434 	rbn = rb_next(&head->rbnode);
435 	rb_erase(&head->rbnode, &q->rb_fragments);
436 	while (rbn || fp) {
437 		/* fp points to the next sk_buff in the current run;
438 		 * rbn points to the next run.
439 		 */
440 		/* Go through the current run. */
441 		while (fp) {
442 			*nextp = fp;
443 			nextp = &fp->next;
444 			fp->prev = NULL;
445 			memset(&fp->rbnode, 0, sizeof(fp->rbnode));
446 			fp->sk = NULL;
447 			head->data_len += fp->len;
448 			head->len += fp->len;
449 			if (head->ip_summed != fp->ip_summed)
450 				head->ip_summed = CHECKSUM_NONE;
451 			else if (head->ip_summed == CHECKSUM_COMPLETE)
452 				head->csum = csum_add(head->csum, fp->csum);
453 			head->truesize += fp->truesize;
454 			fp = FRAG_CB(fp)->next_frag;
455 		}
456 		/* Move to the next run. */
457 		if (rbn) {
458 			struct rb_node *rbnext = rb_next(rbn);
459 
460 			fp = rb_to_skb(rbn);
461 			rb_erase(rbn, &q->rb_fragments);
462 			rbn = rbnext;
463 		}
464 	}
465 	sub_frag_mem_limit(q->net, head->truesize);
466 
467 	*nextp = NULL;
468 	skb_mark_not_on_list(head);
469 	head->prev = NULL;
470 	head->tstamp = q->stamp;
471 }
472 EXPORT_SYMBOL(inet_frag_reasm_finish);
473 
474 struct sk_buff *inet_frag_pull_head(struct inet_frag_queue *q)
475 {
476 	struct sk_buff *head, *skb;
477 
478 	head = skb_rb_first(&q->rb_fragments);
479 	if (!head)
480 		return NULL;
481 	skb = FRAG_CB(head)->next_frag;
482 	if (skb)
483 		rb_replace_node(&head->rbnode, &skb->rbnode,
484 				&q->rb_fragments);
485 	else
486 		rb_erase(&head->rbnode, &q->rb_fragments);
487 	memset(&head->rbnode, 0, sizeof(head->rbnode));
488 	barrier();
489 
490 	if (head == q->fragments_tail)
491 		q->fragments_tail = NULL;
492 
493 	sub_frag_mem_limit(q->net, head->truesize);
494 
495 	return head;
496 }
497 EXPORT_SYMBOL(inet_frag_pull_head);
498