1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 void inet_get_local_port_range(struct net *net, int *low, int *high) 121 { 122 unsigned int seq; 123 124 do { 125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 126 127 *low = net->ipv4.ip_local_ports.range[0]; 128 *high = net->ipv4.ip_local_ports.range[1]; 129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 130 } 131 EXPORT_SYMBOL(inet_get_local_port_range); 132 133 static int inet_csk_bind_conflict(const struct sock *sk, 134 const struct inet_bind_bucket *tb, 135 bool relax, bool reuseport_ok) 136 { 137 struct sock *sk2; 138 bool reuseport_cb_ok; 139 bool reuse = sk->sk_reuse; 140 bool reuseport = !!sk->sk_reuseport; 141 struct sock_reuseport *reuseport_cb; 142 kuid_t uid = sock_i_uid((struct sock *)sk); 143 144 rcu_read_lock(); 145 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 146 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 147 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 148 rcu_read_unlock(); 149 150 /* 151 * Unlike other sk lookup places we do not check 152 * for sk_net here, since _all_ the socks listed 153 * in tb->owners list belong to the same net - the 154 * one this bucket belongs to. 155 */ 156 157 sk_for_each_bound(sk2, &tb->owners) { 158 if (sk != sk2 && 159 (!sk->sk_bound_dev_if || 160 !sk2->sk_bound_dev_if || 161 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 162 if (reuse && sk2->sk_reuse && 163 sk2->sk_state != TCP_LISTEN) { 164 if ((!relax || 165 (!reuseport_ok && 166 reuseport && sk2->sk_reuseport && 167 reuseport_cb_ok && 168 (sk2->sk_state == TCP_TIME_WAIT || 169 uid_eq(uid, sock_i_uid(sk2))))) && 170 inet_rcv_saddr_equal(sk, sk2, true)) 171 break; 172 } else if (!reuseport_ok || 173 !reuseport || !sk2->sk_reuseport || 174 !reuseport_cb_ok || 175 (sk2->sk_state != TCP_TIME_WAIT && 176 !uid_eq(uid, sock_i_uid(sk2)))) { 177 if (inet_rcv_saddr_equal(sk, sk2, true)) 178 break; 179 } 180 } 181 } 182 return sk2 != NULL; 183 } 184 185 /* 186 * Find an open port number for the socket. Returns with the 187 * inet_bind_hashbucket lock held. 188 */ 189 static struct inet_bind_hashbucket * 190 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 191 { 192 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 193 int port = 0; 194 struct inet_bind_hashbucket *head; 195 struct net *net = sock_net(sk); 196 bool relax = false; 197 int i, low, high, attempt_half; 198 struct inet_bind_bucket *tb; 199 u32 remaining, offset; 200 int l3mdev; 201 202 l3mdev = inet_sk_bound_l3mdev(sk); 203 ports_exhausted: 204 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 205 other_half_scan: 206 inet_get_local_port_range(net, &low, &high); 207 high++; /* [32768, 60999] -> [32768, 61000[ */ 208 if (high - low < 4) 209 attempt_half = 0; 210 if (attempt_half) { 211 int half = low + (((high - low) >> 2) << 1); 212 213 if (attempt_half == 1) 214 high = half; 215 else 216 low = half; 217 } 218 remaining = high - low; 219 if (likely(remaining > 1)) 220 remaining &= ~1U; 221 222 offset = prandom_u32() % remaining; 223 /* __inet_hash_connect() favors ports having @low parity 224 * We do the opposite to not pollute connect() users. 225 */ 226 offset |= 1U; 227 228 other_parity_scan: 229 port = low + offset; 230 for (i = 0; i < remaining; i += 2, port += 2) { 231 if (unlikely(port >= high)) 232 port -= remaining; 233 if (inet_is_local_reserved_port(net, port)) 234 continue; 235 head = &hinfo->bhash[inet_bhashfn(net, port, 236 hinfo->bhash_size)]; 237 spin_lock_bh(&head->lock); 238 inet_bind_bucket_for_each(tb, &head->chain) 239 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 240 tb->port == port) { 241 if (!inet_csk_bind_conflict(sk, tb, relax, false)) 242 goto success; 243 goto next_port; 244 } 245 tb = NULL; 246 goto success; 247 next_port: 248 spin_unlock_bh(&head->lock); 249 cond_resched(); 250 } 251 252 offset--; 253 if (!(offset & 1)) 254 goto other_parity_scan; 255 256 if (attempt_half == 1) { 257 /* OK we now try the upper half of the range */ 258 attempt_half = 2; 259 goto other_half_scan; 260 } 261 262 if (net->ipv4.sysctl_ip_autobind_reuse && !relax) { 263 /* We still have a chance to connect to different destinations */ 264 relax = true; 265 goto ports_exhausted; 266 } 267 return NULL; 268 success: 269 *port_ret = port; 270 *tb_ret = tb; 271 return head; 272 } 273 274 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 275 struct sock *sk) 276 { 277 kuid_t uid = sock_i_uid(sk); 278 279 if (tb->fastreuseport <= 0) 280 return 0; 281 if (!sk->sk_reuseport) 282 return 0; 283 if (rcu_access_pointer(sk->sk_reuseport_cb)) 284 return 0; 285 if (!uid_eq(tb->fastuid, uid)) 286 return 0; 287 /* We only need to check the rcv_saddr if this tb was once marked 288 * without fastreuseport and then was reset, as we can only know that 289 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 290 * owners list. 291 */ 292 if (tb->fastreuseport == FASTREUSEPORT_ANY) 293 return 1; 294 #if IS_ENABLED(CONFIG_IPV6) 295 if (tb->fast_sk_family == AF_INET6) 296 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 297 inet6_rcv_saddr(sk), 298 tb->fast_rcv_saddr, 299 sk->sk_rcv_saddr, 300 tb->fast_ipv6_only, 301 ipv6_only_sock(sk), true, false); 302 #endif 303 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 304 ipv6_only_sock(sk), true, false); 305 } 306 307 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 308 struct sock *sk) 309 { 310 kuid_t uid = sock_i_uid(sk); 311 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 312 313 if (hlist_empty(&tb->owners)) { 314 tb->fastreuse = reuse; 315 if (sk->sk_reuseport) { 316 tb->fastreuseport = FASTREUSEPORT_ANY; 317 tb->fastuid = uid; 318 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 319 tb->fast_ipv6_only = ipv6_only_sock(sk); 320 tb->fast_sk_family = sk->sk_family; 321 #if IS_ENABLED(CONFIG_IPV6) 322 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 323 #endif 324 } else { 325 tb->fastreuseport = 0; 326 } 327 } else { 328 if (!reuse) 329 tb->fastreuse = 0; 330 if (sk->sk_reuseport) { 331 /* We didn't match or we don't have fastreuseport set on 332 * the tb, but we have sk_reuseport set on this socket 333 * and we know that there are no bind conflicts with 334 * this socket in this tb, so reset our tb's reuseport 335 * settings so that any subsequent sockets that match 336 * our current socket will be put on the fast path. 337 * 338 * If we reset we need to set FASTREUSEPORT_STRICT so we 339 * do extra checking for all subsequent sk_reuseport 340 * socks. 341 */ 342 if (!sk_reuseport_match(tb, sk)) { 343 tb->fastreuseport = FASTREUSEPORT_STRICT; 344 tb->fastuid = uid; 345 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 346 tb->fast_ipv6_only = ipv6_only_sock(sk); 347 tb->fast_sk_family = sk->sk_family; 348 #if IS_ENABLED(CONFIG_IPV6) 349 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 350 #endif 351 } 352 } else { 353 tb->fastreuseport = 0; 354 } 355 } 356 } 357 358 /* Obtain a reference to a local port for the given sock, 359 * if snum is zero it means select any available local port. 360 * We try to allocate an odd port (and leave even ports for connect()) 361 */ 362 int inet_csk_get_port(struct sock *sk, unsigned short snum) 363 { 364 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 365 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 366 int ret = 1, port = snum; 367 struct inet_bind_hashbucket *head; 368 struct net *net = sock_net(sk); 369 struct inet_bind_bucket *tb = NULL; 370 int l3mdev; 371 372 l3mdev = inet_sk_bound_l3mdev(sk); 373 374 if (!port) { 375 head = inet_csk_find_open_port(sk, &tb, &port); 376 if (!head) 377 return ret; 378 if (!tb) 379 goto tb_not_found; 380 goto success; 381 } 382 head = &hinfo->bhash[inet_bhashfn(net, port, 383 hinfo->bhash_size)]; 384 spin_lock_bh(&head->lock); 385 inet_bind_bucket_for_each(tb, &head->chain) 386 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 387 tb->port == port) 388 goto tb_found; 389 tb_not_found: 390 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 391 net, head, port, l3mdev); 392 if (!tb) 393 goto fail_unlock; 394 tb_found: 395 if (!hlist_empty(&tb->owners)) { 396 if (sk->sk_reuse == SK_FORCE_REUSE) 397 goto success; 398 399 if ((tb->fastreuse > 0 && reuse) || 400 sk_reuseport_match(tb, sk)) 401 goto success; 402 if (inet_csk_bind_conflict(sk, tb, true, true)) 403 goto fail_unlock; 404 } 405 success: 406 inet_csk_update_fastreuse(tb, sk); 407 408 if (!inet_csk(sk)->icsk_bind_hash) 409 inet_bind_hash(sk, tb, port); 410 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 411 ret = 0; 412 413 fail_unlock: 414 spin_unlock_bh(&head->lock); 415 return ret; 416 } 417 EXPORT_SYMBOL_GPL(inet_csk_get_port); 418 419 /* 420 * Wait for an incoming connection, avoid race conditions. This must be called 421 * with the socket locked. 422 */ 423 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 424 { 425 struct inet_connection_sock *icsk = inet_csk(sk); 426 DEFINE_WAIT(wait); 427 int err; 428 429 /* 430 * True wake-one mechanism for incoming connections: only 431 * one process gets woken up, not the 'whole herd'. 432 * Since we do not 'race & poll' for established sockets 433 * anymore, the common case will execute the loop only once. 434 * 435 * Subtle issue: "add_wait_queue_exclusive()" will be added 436 * after any current non-exclusive waiters, and we know that 437 * it will always _stay_ after any new non-exclusive waiters 438 * because all non-exclusive waiters are added at the 439 * beginning of the wait-queue. As such, it's ok to "drop" 440 * our exclusiveness temporarily when we get woken up without 441 * having to remove and re-insert us on the wait queue. 442 */ 443 for (;;) { 444 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 445 TASK_INTERRUPTIBLE); 446 release_sock(sk); 447 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 448 timeo = schedule_timeout(timeo); 449 sched_annotate_sleep(); 450 lock_sock(sk); 451 err = 0; 452 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 453 break; 454 err = -EINVAL; 455 if (sk->sk_state != TCP_LISTEN) 456 break; 457 err = sock_intr_errno(timeo); 458 if (signal_pending(current)) 459 break; 460 err = -EAGAIN; 461 if (!timeo) 462 break; 463 } 464 finish_wait(sk_sleep(sk), &wait); 465 return err; 466 } 467 468 /* 469 * This will accept the next outstanding connection. 470 */ 471 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 472 { 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 475 struct request_sock *req; 476 struct sock *newsk; 477 int error; 478 479 lock_sock(sk); 480 481 /* We need to make sure that this socket is listening, 482 * and that it has something pending. 483 */ 484 error = -EINVAL; 485 if (sk->sk_state != TCP_LISTEN) 486 goto out_err; 487 488 /* Find already established connection */ 489 if (reqsk_queue_empty(queue)) { 490 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 491 492 /* If this is a non blocking socket don't sleep */ 493 error = -EAGAIN; 494 if (!timeo) 495 goto out_err; 496 497 error = inet_csk_wait_for_connect(sk, timeo); 498 if (error) 499 goto out_err; 500 } 501 req = reqsk_queue_remove(queue, sk); 502 newsk = req->sk; 503 504 if (sk->sk_protocol == IPPROTO_TCP && 505 tcp_rsk(req)->tfo_listener) { 506 spin_lock_bh(&queue->fastopenq.lock); 507 if (tcp_rsk(req)->tfo_listener) { 508 /* We are still waiting for the final ACK from 3WHS 509 * so can't free req now. Instead, we set req->sk to 510 * NULL to signify that the child socket is taken 511 * so reqsk_fastopen_remove() will free the req 512 * when 3WHS finishes (or is aborted). 513 */ 514 req->sk = NULL; 515 req = NULL; 516 } 517 spin_unlock_bh(&queue->fastopenq.lock); 518 } 519 520 out: 521 release_sock(sk); 522 if (newsk && mem_cgroup_sockets_enabled) { 523 int amt; 524 525 /* atomically get the memory usage, set and charge the 526 * newsk->sk_memcg. 527 */ 528 lock_sock(newsk); 529 530 /* The socket has not been accepted yet, no need to look at 531 * newsk->sk_wmem_queued. 532 */ 533 amt = sk_mem_pages(newsk->sk_forward_alloc + 534 atomic_read(&newsk->sk_rmem_alloc)); 535 mem_cgroup_sk_alloc(newsk); 536 if (newsk->sk_memcg && amt) 537 mem_cgroup_charge_skmem(newsk->sk_memcg, amt); 538 539 release_sock(newsk); 540 } 541 if (req) 542 reqsk_put(req); 543 return newsk; 544 out_err: 545 newsk = NULL; 546 req = NULL; 547 *err = error; 548 goto out; 549 } 550 EXPORT_SYMBOL(inet_csk_accept); 551 552 /* 553 * Using different timers for retransmit, delayed acks and probes 554 * We may wish use just one timer maintaining a list of expire jiffies 555 * to optimize. 556 */ 557 void inet_csk_init_xmit_timers(struct sock *sk, 558 void (*retransmit_handler)(struct timer_list *t), 559 void (*delack_handler)(struct timer_list *t), 560 void (*keepalive_handler)(struct timer_list *t)) 561 { 562 struct inet_connection_sock *icsk = inet_csk(sk); 563 564 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 565 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 566 timer_setup(&sk->sk_timer, keepalive_handler, 0); 567 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 568 } 569 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 570 571 void inet_csk_clear_xmit_timers(struct sock *sk) 572 { 573 struct inet_connection_sock *icsk = inet_csk(sk); 574 575 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 576 577 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 578 sk_stop_timer(sk, &icsk->icsk_delack_timer); 579 sk_stop_timer(sk, &sk->sk_timer); 580 } 581 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 582 583 void inet_csk_delete_keepalive_timer(struct sock *sk) 584 { 585 sk_stop_timer(sk, &sk->sk_timer); 586 } 587 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 588 589 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 590 { 591 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 592 } 593 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 594 595 struct dst_entry *inet_csk_route_req(const struct sock *sk, 596 struct flowi4 *fl4, 597 const struct request_sock *req) 598 { 599 const struct inet_request_sock *ireq = inet_rsk(req); 600 struct net *net = read_pnet(&ireq->ireq_net); 601 struct ip_options_rcu *opt; 602 struct rtable *rt; 603 604 rcu_read_lock(); 605 opt = rcu_dereference(ireq->ireq_opt); 606 607 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 608 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 609 sk->sk_protocol, inet_sk_flowi_flags(sk), 610 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 611 ireq->ir_loc_addr, ireq->ir_rmt_port, 612 htons(ireq->ir_num), sk->sk_uid); 613 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 614 rt = ip_route_output_flow(net, fl4, sk); 615 if (IS_ERR(rt)) 616 goto no_route; 617 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 618 goto route_err; 619 rcu_read_unlock(); 620 return &rt->dst; 621 622 route_err: 623 ip_rt_put(rt); 624 no_route: 625 rcu_read_unlock(); 626 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 627 return NULL; 628 } 629 EXPORT_SYMBOL_GPL(inet_csk_route_req); 630 631 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 632 struct sock *newsk, 633 const struct request_sock *req) 634 { 635 const struct inet_request_sock *ireq = inet_rsk(req); 636 struct net *net = read_pnet(&ireq->ireq_net); 637 struct inet_sock *newinet = inet_sk(newsk); 638 struct ip_options_rcu *opt; 639 struct flowi4 *fl4; 640 struct rtable *rt; 641 642 opt = rcu_dereference(ireq->ireq_opt); 643 fl4 = &newinet->cork.fl.u.ip4; 644 645 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 646 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 647 sk->sk_protocol, inet_sk_flowi_flags(sk), 648 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 649 ireq->ir_loc_addr, ireq->ir_rmt_port, 650 htons(ireq->ir_num), sk->sk_uid); 651 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 652 rt = ip_route_output_flow(net, fl4, sk); 653 if (IS_ERR(rt)) 654 goto no_route; 655 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 656 goto route_err; 657 return &rt->dst; 658 659 route_err: 660 ip_rt_put(rt); 661 no_route: 662 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 663 return NULL; 664 } 665 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 666 667 /* Decide when to expire the request and when to resend SYN-ACK */ 668 static void syn_ack_recalc(struct request_sock *req, 669 const int max_syn_ack_retries, 670 const u8 rskq_defer_accept, 671 int *expire, int *resend) 672 { 673 if (!rskq_defer_accept) { 674 *expire = req->num_timeout >= max_syn_ack_retries; 675 *resend = 1; 676 return; 677 } 678 *expire = req->num_timeout >= max_syn_ack_retries && 679 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 680 /* Do not resend while waiting for data after ACK, 681 * start to resend on end of deferring period to give 682 * last chance for data or ACK to create established socket. 683 */ 684 *resend = !inet_rsk(req)->acked || 685 req->num_timeout >= rskq_defer_accept - 1; 686 } 687 688 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 689 { 690 int err = req->rsk_ops->rtx_syn_ack(parent, req); 691 692 if (!err) 693 req->num_retrans++; 694 return err; 695 } 696 EXPORT_SYMBOL(inet_rtx_syn_ack); 697 698 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 699 struct sock *sk) 700 { 701 struct sock *req_sk, *nreq_sk; 702 struct request_sock *nreq; 703 704 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 705 if (!nreq) { 706 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 707 sock_put(sk); 708 return NULL; 709 } 710 711 req_sk = req_to_sk(req); 712 nreq_sk = req_to_sk(nreq); 713 714 memcpy(nreq_sk, req_sk, 715 offsetof(struct sock, sk_dontcopy_begin)); 716 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 717 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end)); 718 719 sk_node_init(&nreq_sk->sk_node); 720 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 721 #ifdef CONFIG_XPS 722 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 723 #endif 724 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 725 726 nreq->rsk_listener = sk; 727 728 /* We need not acquire fastopenq->lock 729 * because the child socket is locked in inet_csk_listen_stop(). 730 */ 731 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 732 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 733 734 return nreq; 735 } 736 737 static void reqsk_queue_migrated(struct request_sock_queue *queue, 738 const struct request_sock *req) 739 { 740 if (req->num_timeout == 0) 741 atomic_inc(&queue->young); 742 atomic_inc(&queue->qlen); 743 } 744 745 static void reqsk_migrate_reset(struct request_sock *req) 746 { 747 req->saved_syn = NULL; 748 #if IS_ENABLED(CONFIG_IPV6) 749 inet_rsk(req)->ipv6_opt = NULL; 750 inet_rsk(req)->pktopts = NULL; 751 #else 752 inet_rsk(req)->ireq_opt = NULL; 753 #endif 754 } 755 756 /* return true if req was found in the ehash table */ 757 static bool reqsk_queue_unlink(struct request_sock *req) 758 { 759 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 760 bool found = false; 761 762 if (sk_hashed(req_to_sk(req))) { 763 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 764 765 spin_lock(lock); 766 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 767 spin_unlock(lock); 768 } 769 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 770 reqsk_put(req); 771 return found; 772 } 773 774 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 775 { 776 bool unlinked = reqsk_queue_unlink(req); 777 778 if (unlinked) { 779 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 780 reqsk_put(req); 781 } 782 return unlinked; 783 } 784 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 785 786 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 787 { 788 inet_csk_reqsk_queue_drop(sk, req); 789 reqsk_put(req); 790 } 791 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 792 793 static void reqsk_timer_handler(struct timer_list *t) 794 { 795 struct request_sock *req = from_timer(req, t, rsk_timer); 796 struct request_sock *nreq = NULL, *oreq = req; 797 struct sock *sk_listener = req->rsk_listener; 798 struct inet_connection_sock *icsk; 799 struct request_sock_queue *queue; 800 struct net *net; 801 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 802 803 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 804 struct sock *nsk; 805 806 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 807 if (!nsk) 808 goto drop; 809 810 nreq = inet_reqsk_clone(req, nsk); 811 if (!nreq) 812 goto drop; 813 814 /* The new timer for the cloned req can decrease the 2 815 * by calling inet_csk_reqsk_queue_drop_and_put(), so 816 * hold another count to prevent use-after-free and 817 * call reqsk_put() just before return. 818 */ 819 refcount_set(&nreq->rsk_refcnt, 2 + 1); 820 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 821 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 822 823 req = nreq; 824 sk_listener = nsk; 825 } 826 827 icsk = inet_csk(sk_listener); 828 net = sock_net(sk_listener); 829 max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 830 /* Normally all the openreqs are young and become mature 831 * (i.e. converted to established socket) for first timeout. 832 * If synack was not acknowledged for 1 second, it means 833 * one of the following things: synack was lost, ack was lost, 834 * rtt is high or nobody planned to ack (i.e. synflood). 835 * When server is a bit loaded, queue is populated with old 836 * open requests, reducing effective size of queue. 837 * When server is well loaded, queue size reduces to zero 838 * after several minutes of work. It is not synflood, 839 * it is normal operation. The solution is pruning 840 * too old entries overriding normal timeout, when 841 * situation becomes dangerous. 842 * 843 * Essentially, we reserve half of room for young 844 * embrions; and abort old ones without pity, if old 845 * ones are about to clog our table. 846 */ 847 queue = &icsk->icsk_accept_queue; 848 qlen = reqsk_queue_len(queue); 849 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 850 int young = reqsk_queue_len_young(queue) << 1; 851 852 while (max_syn_ack_retries > 2) { 853 if (qlen < young) 854 break; 855 max_syn_ack_retries--; 856 young <<= 1; 857 } 858 } 859 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 860 &expire, &resend); 861 req->rsk_ops->syn_ack_timeout(req); 862 if (!expire && 863 (!resend || 864 !inet_rtx_syn_ack(sk_listener, req) || 865 inet_rsk(req)->acked)) { 866 unsigned long timeo; 867 868 if (req->num_timeout++ == 0) 869 atomic_dec(&queue->young); 870 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 871 mod_timer(&req->rsk_timer, jiffies + timeo); 872 873 if (!nreq) 874 return; 875 876 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 877 /* delete timer */ 878 inet_csk_reqsk_queue_drop(sk_listener, nreq); 879 goto drop; 880 } 881 882 reqsk_migrate_reset(oreq); 883 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 884 reqsk_put(oreq); 885 886 reqsk_put(nreq); 887 return; 888 } 889 890 drop: 891 /* Even if we can clone the req, we may need not retransmit any more 892 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 893 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 894 */ 895 if (nreq) { 896 reqsk_migrate_reset(nreq); 897 reqsk_queue_removed(queue, nreq); 898 __reqsk_free(nreq); 899 } 900 901 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq); 902 } 903 904 static void reqsk_queue_hash_req(struct request_sock *req, 905 unsigned long timeout) 906 { 907 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 908 mod_timer(&req->rsk_timer, jiffies + timeout); 909 910 inet_ehash_insert(req_to_sk(req), NULL, NULL); 911 /* before letting lookups find us, make sure all req fields 912 * are committed to memory and refcnt initialized. 913 */ 914 smp_wmb(); 915 refcount_set(&req->rsk_refcnt, 2 + 1); 916 } 917 918 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 919 unsigned long timeout) 920 { 921 reqsk_queue_hash_req(req, timeout); 922 inet_csk_reqsk_queue_added(sk); 923 } 924 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 925 926 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 927 const gfp_t priority) 928 { 929 struct inet_connection_sock *icsk = inet_csk(newsk); 930 931 if (!icsk->icsk_ulp_ops) 932 return; 933 934 if (icsk->icsk_ulp_ops->clone) 935 icsk->icsk_ulp_ops->clone(req, newsk, priority); 936 } 937 938 /** 939 * inet_csk_clone_lock - clone an inet socket, and lock its clone 940 * @sk: the socket to clone 941 * @req: request_sock 942 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 943 * 944 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 945 */ 946 struct sock *inet_csk_clone_lock(const struct sock *sk, 947 const struct request_sock *req, 948 const gfp_t priority) 949 { 950 struct sock *newsk = sk_clone_lock(sk, priority); 951 952 if (newsk) { 953 struct inet_connection_sock *newicsk = inet_csk(newsk); 954 955 inet_sk_set_state(newsk, TCP_SYN_RECV); 956 newicsk->icsk_bind_hash = NULL; 957 958 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 959 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 960 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 961 962 /* listeners have SOCK_RCU_FREE, not the children */ 963 sock_reset_flag(newsk, SOCK_RCU_FREE); 964 965 inet_sk(newsk)->mc_list = NULL; 966 967 newsk->sk_mark = inet_rsk(req)->ir_mark; 968 atomic64_set(&newsk->sk_cookie, 969 atomic64_read(&inet_rsk(req)->ir_cookie)); 970 971 newicsk->icsk_retransmits = 0; 972 newicsk->icsk_backoff = 0; 973 newicsk->icsk_probes_out = 0; 974 newicsk->icsk_probes_tstamp = 0; 975 976 /* Deinitialize accept_queue to trap illegal accesses. */ 977 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 978 979 inet_clone_ulp(req, newsk, priority); 980 981 security_inet_csk_clone(newsk, req); 982 } 983 return newsk; 984 } 985 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 986 987 /* 988 * At this point, there should be no process reference to this 989 * socket, and thus no user references at all. Therefore we 990 * can assume the socket waitqueue is inactive and nobody will 991 * try to jump onto it. 992 */ 993 void inet_csk_destroy_sock(struct sock *sk) 994 { 995 WARN_ON(sk->sk_state != TCP_CLOSE); 996 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 997 998 /* It cannot be in hash table! */ 999 WARN_ON(!sk_unhashed(sk)); 1000 1001 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1002 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1003 1004 sk->sk_prot->destroy(sk); 1005 1006 sk_stream_kill_queues(sk); 1007 1008 xfrm_sk_free_policy(sk); 1009 1010 sk_refcnt_debug_release(sk); 1011 1012 percpu_counter_dec(sk->sk_prot->orphan_count); 1013 1014 sock_put(sk); 1015 } 1016 EXPORT_SYMBOL(inet_csk_destroy_sock); 1017 1018 /* This function allows to force a closure of a socket after the call to 1019 * tcp/dccp_create_openreq_child(). 1020 */ 1021 void inet_csk_prepare_forced_close(struct sock *sk) 1022 __releases(&sk->sk_lock.slock) 1023 { 1024 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1025 bh_unlock_sock(sk); 1026 sock_put(sk); 1027 inet_csk_prepare_for_destroy_sock(sk); 1028 inet_sk(sk)->inet_num = 0; 1029 } 1030 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1031 1032 int inet_csk_listen_start(struct sock *sk, int backlog) 1033 { 1034 struct inet_connection_sock *icsk = inet_csk(sk); 1035 struct inet_sock *inet = inet_sk(sk); 1036 int err = -EADDRINUSE; 1037 1038 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1039 1040 sk->sk_ack_backlog = 0; 1041 inet_csk_delack_init(sk); 1042 1043 /* There is race window here: we announce ourselves listening, 1044 * but this transition is still not validated by get_port(). 1045 * It is OK, because this socket enters to hash table only 1046 * after validation is complete. 1047 */ 1048 inet_sk_state_store(sk, TCP_LISTEN); 1049 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 1050 inet->inet_sport = htons(inet->inet_num); 1051 1052 sk_dst_reset(sk); 1053 err = sk->sk_prot->hash(sk); 1054 1055 if (likely(!err)) 1056 return 0; 1057 } 1058 1059 inet_sk_set_state(sk, TCP_CLOSE); 1060 return err; 1061 } 1062 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 1063 1064 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1065 struct sock *child) 1066 { 1067 sk->sk_prot->disconnect(child, O_NONBLOCK); 1068 1069 sock_orphan(child); 1070 1071 percpu_counter_inc(sk->sk_prot->orphan_count); 1072 1073 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1074 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1075 BUG_ON(sk != req->rsk_listener); 1076 1077 /* Paranoid, to prevent race condition if 1078 * an inbound pkt destined for child is 1079 * blocked by sock lock in tcp_v4_rcv(). 1080 * Also to satisfy an assertion in 1081 * tcp_v4_destroy_sock(). 1082 */ 1083 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1084 } 1085 inet_csk_destroy_sock(child); 1086 } 1087 1088 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1089 struct request_sock *req, 1090 struct sock *child) 1091 { 1092 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1093 1094 spin_lock(&queue->rskq_lock); 1095 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1096 inet_child_forget(sk, req, child); 1097 child = NULL; 1098 } else { 1099 req->sk = child; 1100 req->dl_next = NULL; 1101 if (queue->rskq_accept_head == NULL) 1102 WRITE_ONCE(queue->rskq_accept_head, req); 1103 else 1104 queue->rskq_accept_tail->dl_next = req; 1105 queue->rskq_accept_tail = req; 1106 sk_acceptq_added(sk); 1107 } 1108 spin_unlock(&queue->rskq_lock); 1109 return child; 1110 } 1111 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1112 1113 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1114 struct request_sock *req, bool own_req) 1115 { 1116 if (own_req) { 1117 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1118 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1119 1120 if (sk != req->rsk_listener) { 1121 /* another listening sk has been selected, 1122 * migrate the req to it. 1123 */ 1124 struct request_sock *nreq; 1125 1126 /* hold a refcnt for the nreq->rsk_listener 1127 * which is assigned in inet_reqsk_clone() 1128 */ 1129 sock_hold(sk); 1130 nreq = inet_reqsk_clone(req, sk); 1131 if (!nreq) { 1132 inet_child_forget(sk, req, child); 1133 goto child_put; 1134 } 1135 1136 refcount_set(&nreq->rsk_refcnt, 1); 1137 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1138 reqsk_migrate_reset(req); 1139 reqsk_put(req); 1140 return child; 1141 } 1142 1143 reqsk_migrate_reset(nreq); 1144 __reqsk_free(nreq); 1145 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1146 return child; 1147 } 1148 } 1149 /* Too bad, another child took ownership of the request, undo. */ 1150 child_put: 1151 bh_unlock_sock(child); 1152 sock_put(child); 1153 return NULL; 1154 } 1155 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1156 1157 /* 1158 * This routine closes sockets which have been at least partially 1159 * opened, but not yet accepted. 1160 */ 1161 void inet_csk_listen_stop(struct sock *sk) 1162 { 1163 struct inet_connection_sock *icsk = inet_csk(sk); 1164 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1165 struct request_sock *next, *req; 1166 1167 /* Following specs, it would be better either to send FIN 1168 * (and enter FIN-WAIT-1, it is normal close) 1169 * or to send active reset (abort). 1170 * Certainly, it is pretty dangerous while synflood, but it is 1171 * bad justification for our negligence 8) 1172 * To be honest, we are not able to make either 1173 * of the variants now. --ANK 1174 */ 1175 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1176 struct sock *child = req->sk, *nsk; 1177 struct request_sock *nreq; 1178 1179 local_bh_disable(); 1180 bh_lock_sock(child); 1181 WARN_ON(sock_owned_by_user(child)); 1182 sock_hold(child); 1183 1184 nsk = reuseport_migrate_sock(sk, child, NULL); 1185 if (nsk) { 1186 nreq = inet_reqsk_clone(req, nsk); 1187 if (nreq) { 1188 refcount_set(&nreq->rsk_refcnt, 1); 1189 1190 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1191 reqsk_migrate_reset(req); 1192 } else { 1193 reqsk_migrate_reset(nreq); 1194 __reqsk_free(nreq); 1195 } 1196 1197 /* inet_csk_reqsk_queue_add() has already 1198 * called inet_child_forget() on failure case. 1199 */ 1200 goto skip_child_forget; 1201 } 1202 } 1203 1204 inet_child_forget(sk, req, child); 1205 skip_child_forget: 1206 reqsk_put(req); 1207 bh_unlock_sock(child); 1208 local_bh_enable(); 1209 sock_put(child); 1210 1211 cond_resched(); 1212 } 1213 if (queue->fastopenq.rskq_rst_head) { 1214 /* Free all the reqs queued in rskq_rst_head. */ 1215 spin_lock_bh(&queue->fastopenq.lock); 1216 req = queue->fastopenq.rskq_rst_head; 1217 queue->fastopenq.rskq_rst_head = NULL; 1218 spin_unlock_bh(&queue->fastopenq.lock); 1219 while (req != NULL) { 1220 next = req->dl_next; 1221 reqsk_put(req); 1222 req = next; 1223 } 1224 } 1225 WARN_ON_ONCE(sk->sk_ack_backlog); 1226 } 1227 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1228 1229 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1230 { 1231 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1232 const struct inet_sock *inet = inet_sk(sk); 1233 1234 sin->sin_family = AF_INET; 1235 sin->sin_addr.s_addr = inet->inet_daddr; 1236 sin->sin_port = inet->inet_dport; 1237 } 1238 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1239 1240 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1241 { 1242 const struct inet_sock *inet = inet_sk(sk); 1243 const struct ip_options_rcu *inet_opt; 1244 __be32 daddr = inet->inet_daddr; 1245 struct flowi4 *fl4; 1246 struct rtable *rt; 1247 1248 rcu_read_lock(); 1249 inet_opt = rcu_dereference(inet->inet_opt); 1250 if (inet_opt && inet_opt->opt.srr) 1251 daddr = inet_opt->opt.faddr; 1252 fl4 = &fl->u.ip4; 1253 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1254 inet->inet_saddr, inet->inet_dport, 1255 inet->inet_sport, sk->sk_protocol, 1256 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1257 if (IS_ERR(rt)) 1258 rt = NULL; 1259 if (rt) 1260 sk_setup_caps(sk, &rt->dst); 1261 rcu_read_unlock(); 1262 1263 return &rt->dst; 1264 } 1265 1266 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1267 { 1268 struct dst_entry *dst = __sk_dst_check(sk, 0); 1269 struct inet_sock *inet = inet_sk(sk); 1270 1271 if (!dst) { 1272 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1273 if (!dst) 1274 goto out; 1275 } 1276 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1277 1278 dst = __sk_dst_check(sk, 0); 1279 if (!dst) 1280 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1281 out: 1282 return dst; 1283 } 1284 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1285