1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 28 * only, and any IPv4 addresses if not IPv6 only 29 * match_wildcard == false: addresses must be exactly the same, i.e. 30 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 31 * and 0.0.0.0 equals to 0.0.0.0 only 32 */ 33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 34 const struct in6_addr *sk2_rcv_saddr6, 35 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 36 bool sk1_ipv6only, bool sk2_ipv6only, 37 bool match_wildcard) 38 { 39 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 40 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 41 42 /* if both are mapped, treat as IPv4 */ 43 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 44 if (!sk2_ipv6only) { 45 if (sk1_rcv_saddr == sk2_rcv_saddr) 46 return true; 47 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 48 return match_wildcard; 49 } 50 return false; 51 } 52 53 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 54 return true; 55 56 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 57 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 58 return true; 59 60 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 61 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 62 return true; 63 64 if (sk2_rcv_saddr6 && 65 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 66 return true; 67 68 return false; 69 } 70 #endif 71 72 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 73 * match_wildcard == false: addresses must be exactly the same, i.e. 74 * 0.0.0.0 only equals to 0.0.0.0 75 */ 76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 77 bool sk2_ipv6only, bool match_wildcard) 78 { 79 if (!sk2_ipv6only) { 80 if (sk1_rcv_saddr == sk2_rcv_saddr) 81 return true; 82 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 83 return match_wildcard; 84 } 85 return false; 86 } 87 88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 89 bool match_wildcard) 90 { 91 #if IS_ENABLED(CONFIG_IPV6) 92 if (sk->sk_family == AF_INET6) 93 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 94 inet6_rcv_saddr(sk2), 95 sk->sk_rcv_saddr, 96 sk2->sk_rcv_saddr, 97 ipv6_only_sock(sk), 98 ipv6_only_sock(sk2), 99 match_wildcard); 100 #endif 101 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 102 ipv6_only_sock(sk2), match_wildcard); 103 } 104 EXPORT_SYMBOL(inet_rcv_saddr_equal); 105 106 bool inet_rcv_saddr_any(const struct sock *sk) 107 { 108 #if IS_ENABLED(CONFIG_IPV6) 109 if (sk->sk_family == AF_INET6) 110 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 111 #endif 112 return !sk->sk_rcv_saddr; 113 } 114 115 void inet_get_local_port_range(struct net *net, int *low, int *high) 116 { 117 unsigned int seq; 118 119 do { 120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 121 122 *low = net->ipv4.ip_local_ports.range[0]; 123 *high = net->ipv4.ip_local_ports.range[1]; 124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 125 } 126 EXPORT_SYMBOL(inet_get_local_port_range); 127 128 static int inet_csk_bind_conflict(const struct sock *sk, 129 const struct inet_bind_bucket *tb, 130 bool relax, bool reuseport_ok) 131 { 132 struct sock *sk2; 133 bool reuse = sk->sk_reuse; 134 bool reuseport = !!sk->sk_reuseport; 135 kuid_t uid = sock_i_uid((struct sock *)sk); 136 137 /* 138 * Unlike other sk lookup places we do not check 139 * for sk_net here, since _all_ the socks listed 140 * in tb->owners list belong to the same net - the 141 * one this bucket belongs to. 142 */ 143 144 sk_for_each_bound(sk2, &tb->owners) { 145 if (sk != sk2 && 146 (!sk->sk_bound_dev_if || 147 !sk2->sk_bound_dev_if || 148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 149 if (reuse && sk2->sk_reuse && 150 sk2->sk_state != TCP_LISTEN) { 151 if ((!relax || 152 (!reuseport_ok && 153 reuseport && sk2->sk_reuseport && 154 !rcu_access_pointer(sk->sk_reuseport_cb) && 155 (sk2->sk_state == TCP_TIME_WAIT || 156 uid_eq(uid, sock_i_uid(sk2))))) && 157 inet_rcv_saddr_equal(sk, sk2, true)) 158 break; 159 } else if (!reuseport_ok || 160 !reuseport || !sk2->sk_reuseport || 161 rcu_access_pointer(sk->sk_reuseport_cb) || 162 (sk2->sk_state != TCP_TIME_WAIT && 163 !uid_eq(uid, sock_i_uid(sk2)))) { 164 if (inet_rcv_saddr_equal(sk, sk2, true)) 165 break; 166 } 167 } 168 } 169 return sk2 != NULL; 170 } 171 172 /* 173 * Find an open port number for the socket. Returns with the 174 * inet_bind_hashbucket lock held. 175 */ 176 static struct inet_bind_hashbucket * 177 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 178 { 179 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 180 int port = 0; 181 struct inet_bind_hashbucket *head; 182 struct net *net = sock_net(sk); 183 bool relax = false; 184 int i, low, high, attempt_half; 185 struct inet_bind_bucket *tb; 186 u32 remaining, offset; 187 int l3mdev; 188 189 l3mdev = inet_sk_bound_l3mdev(sk); 190 ports_exhausted: 191 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 192 other_half_scan: 193 inet_get_local_port_range(net, &low, &high); 194 high++; /* [32768, 60999] -> [32768, 61000[ */ 195 if (high - low < 4) 196 attempt_half = 0; 197 if (attempt_half) { 198 int half = low + (((high - low) >> 2) << 1); 199 200 if (attempt_half == 1) 201 high = half; 202 else 203 low = half; 204 } 205 remaining = high - low; 206 if (likely(remaining > 1)) 207 remaining &= ~1U; 208 209 offset = prandom_u32() % remaining; 210 /* __inet_hash_connect() favors ports having @low parity 211 * We do the opposite to not pollute connect() users. 212 */ 213 offset |= 1U; 214 215 other_parity_scan: 216 port = low + offset; 217 for (i = 0; i < remaining; i += 2, port += 2) { 218 if (unlikely(port >= high)) 219 port -= remaining; 220 if (inet_is_local_reserved_port(net, port)) 221 continue; 222 head = &hinfo->bhash[inet_bhashfn(net, port, 223 hinfo->bhash_size)]; 224 spin_lock_bh(&head->lock); 225 inet_bind_bucket_for_each(tb, &head->chain) 226 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 227 tb->port == port) { 228 if (!inet_csk_bind_conflict(sk, tb, relax, false)) 229 goto success; 230 goto next_port; 231 } 232 tb = NULL; 233 goto success; 234 next_port: 235 spin_unlock_bh(&head->lock); 236 cond_resched(); 237 } 238 239 offset--; 240 if (!(offset & 1)) 241 goto other_parity_scan; 242 243 if (attempt_half == 1) { 244 /* OK we now try the upper half of the range */ 245 attempt_half = 2; 246 goto other_half_scan; 247 } 248 249 if (net->ipv4.sysctl_ip_autobind_reuse && !relax) { 250 /* We still have a chance to connect to different destinations */ 251 relax = true; 252 goto ports_exhausted; 253 } 254 return NULL; 255 success: 256 *port_ret = port; 257 *tb_ret = tb; 258 return head; 259 } 260 261 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 262 struct sock *sk) 263 { 264 kuid_t uid = sock_i_uid(sk); 265 266 if (tb->fastreuseport <= 0) 267 return 0; 268 if (!sk->sk_reuseport) 269 return 0; 270 if (rcu_access_pointer(sk->sk_reuseport_cb)) 271 return 0; 272 if (!uid_eq(tb->fastuid, uid)) 273 return 0; 274 /* We only need to check the rcv_saddr if this tb was once marked 275 * without fastreuseport and then was reset, as we can only know that 276 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 277 * owners list. 278 */ 279 if (tb->fastreuseport == FASTREUSEPORT_ANY) 280 return 1; 281 #if IS_ENABLED(CONFIG_IPV6) 282 if (tb->fast_sk_family == AF_INET6) 283 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 284 inet6_rcv_saddr(sk), 285 tb->fast_rcv_saddr, 286 sk->sk_rcv_saddr, 287 tb->fast_ipv6_only, 288 ipv6_only_sock(sk), true); 289 #endif 290 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 291 ipv6_only_sock(sk), true); 292 } 293 294 /* Obtain a reference to a local port for the given sock, 295 * if snum is zero it means select any available local port. 296 * We try to allocate an odd port (and leave even ports for connect()) 297 */ 298 int inet_csk_get_port(struct sock *sk, unsigned short snum) 299 { 300 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 301 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 302 int ret = 1, port = snum; 303 struct inet_bind_hashbucket *head; 304 struct net *net = sock_net(sk); 305 struct inet_bind_bucket *tb = NULL; 306 kuid_t uid = sock_i_uid(sk); 307 int l3mdev; 308 309 l3mdev = inet_sk_bound_l3mdev(sk); 310 311 if (!port) { 312 head = inet_csk_find_open_port(sk, &tb, &port); 313 if (!head) 314 return ret; 315 if (!tb) 316 goto tb_not_found; 317 goto success; 318 } 319 head = &hinfo->bhash[inet_bhashfn(net, port, 320 hinfo->bhash_size)]; 321 spin_lock_bh(&head->lock); 322 inet_bind_bucket_for_each(tb, &head->chain) 323 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 324 tb->port == port) 325 goto tb_found; 326 tb_not_found: 327 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 328 net, head, port, l3mdev); 329 if (!tb) 330 goto fail_unlock; 331 tb_found: 332 if (!hlist_empty(&tb->owners)) { 333 if (sk->sk_reuse == SK_FORCE_REUSE) 334 goto success; 335 336 if ((tb->fastreuse > 0 && reuse) || 337 sk_reuseport_match(tb, sk)) 338 goto success; 339 if (inet_csk_bind_conflict(sk, tb, true, true)) 340 goto fail_unlock; 341 } 342 success: 343 if (hlist_empty(&tb->owners)) { 344 tb->fastreuse = reuse; 345 if (sk->sk_reuseport) { 346 tb->fastreuseport = FASTREUSEPORT_ANY; 347 tb->fastuid = uid; 348 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 349 tb->fast_ipv6_only = ipv6_only_sock(sk); 350 tb->fast_sk_family = sk->sk_family; 351 #if IS_ENABLED(CONFIG_IPV6) 352 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 353 #endif 354 } else { 355 tb->fastreuseport = 0; 356 } 357 } else { 358 if (!reuse) 359 tb->fastreuse = 0; 360 if (sk->sk_reuseport) { 361 /* We didn't match or we don't have fastreuseport set on 362 * the tb, but we have sk_reuseport set on this socket 363 * and we know that there are no bind conflicts with 364 * this socket in this tb, so reset our tb's reuseport 365 * settings so that any subsequent sockets that match 366 * our current socket will be put on the fast path. 367 * 368 * If we reset we need to set FASTREUSEPORT_STRICT so we 369 * do extra checking for all subsequent sk_reuseport 370 * socks. 371 */ 372 if (!sk_reuseport_match(tb, sk)) { 373 tb->fastreuseport = FASTREUSEPORT_STRICT; 374 tb->fastuid = uid; 375 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 376 tb->fast_ipv6_only = ipv6_only_sock(sk); 377 tb->fast_sk_family = sk->sk_family; 378 #if IS_ENABLED(CONFIG_IPV6) 379 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 380 #endif 381 } 382 } else { 383 tb->fastreuseport = 0; 384 } 385 } 386 if (!inet_csk(sk)->icsk_bind_hash) 387 inet_bind_hash(sk, tb, port); 388 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 389 ret = 0; 390 391 fail_unlock: 392 spin_unlock_bh(&head->lock); 393 return ret; 394 } 395 EXPORT_SYMBOL_GPL(inet_csk_get_port); 396 397 /* 398 * Wait for an incoming connection, avoid race conditions. This must be called 399 * with the socket locked. 400 */ 401 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 402 { 403 struct inet_connection_sock *icsk = inet_csk(sk); 404 DEFINE_WAIT(wait); 405 int err; 406 407 /* 408 * True wake-one mechanism for incoming connections: only 409 * one process gets woken up, not the 'whole herd'. 410 * Since we do not 'race & poll' for established sockets 411 * anymore, the common case will execute the loop only once. 412 * 413 * Subtle issue: "add_wait_queue_exclusive()" will be added 414 * after any current non-exclusive waiters, and we know that 415 * it will always _stay_ after any new non-exclusive waiters 416 * because all non-exclusive waiters are added at the 417 * beginning of the wait-queue. As such, it's ok to "drop" 418 * our exclusiveness temporarily when we get woken up without 419 * having to remove and re-insert us on the wait queue. 420 */ 421 for (;;) { 422 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 423 TASK_INTERRUPTIBLE); 424 release_sock(sk); 425 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 426 timeo = schedule_timeout(timeo); 427 sched_annotate_sleep(); 428 lock_sock(sk); 429 err = 0; 430 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 431 break; 432 err = -EINVAL; 433 if (sk->sk_state != TCP_LISTEN) 434 break; 435 err = sock_intr_errno(timeo); 436 if (signal_pending(current)) 437 break; 438 err = -EAGAIN; 439 if (!timeo) 440 break; 441 } 442 finish_wait(sk_sleep(sk), &wait); 443 return err; 444 } 445 446 /* 447 * This will accept the next outstanding connection. 448 */ 449 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 450 { 451 struct inet_connection_sock *icsk = inet_csk(sk); 452 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 453 struct request_sock *req; 454 struct sock *newsk; 455 int error; 456 457 lock_sock(sk); 458 459 /* We need to make sure that this socket is listening, 460 * and that it has something pending. 461 */ 462 error = -EINVAL; 463 if (sk->sk_state != TCP_LISTEN) 464 goto out_err; 465 466 /* Find already established connection */ 467 if (reqsk_queue_empty(queue)) { 468 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 469 470 /* If this is a non blocking socket don't sleep */ 471 error = -EAGAIN; 472 if (!timeo) 473 goto out_err; 474 475 error = inet_csk_wait_for_connect(sk, timeo); 476 if (error) 477 goto out_err; 478 } 479 req = reqsk_queue_remove(queue, sk); 480 newsk = req->sk; 481 482 if (sk->sk_protocol == IPPROTO_TCP && 483 tcp_rsk(req)->tfo_listener) { 484 spin_lock_bh(&queue->fastopenq.lock); 485 if (tcp_rsk(req)->tfo_listener) { 486 /* We are still waiting for the final ACK from 3WHS 487 * so can't free req now. Instead, we set req->sk to 488 * NULL to signify that the child socket is taken 489 * so reqsk_fastopen_remove() will free the req 490 * when 3WHS finishes (or is aborted). 491 */ 492 req->sk = NULL; 493 req = NULL; 494 } 495 spin_unlock_bh(&queue->fastopenq.lock); 496 } 497 498 out: 499 release_sock(sk); 500 if (newsk && mem_cgroup_sockets_enabled) { 501 int amt; 502 503 /* atomically get the memory usage, set and charge the 504 * newsk->sk_memcg. 505 */ 506 lock_sock(newsk); 507 508 /* The socket has not been accepted yet, no need to look at 509 * newsk->sk_wmem_queued. 510 */ 511 amt = sk_mem_pages(newsk->sk_forward_alloc + 512 atomic_read(&newsk->sk_rmem_alloc)); 513 mem_cgroup_sk_alloc(newsk); 514 if (newsk->sk_memcg && amt) 515 mem_cgroup_charge_skmem(newsk->sk_memcg, amt); 516 517 release_sock(newsk); 518 } 519 if (req) 520 reqsk_put(req); 521 return newsk; 522 out_err: 523 newsk = NULL; 524 req = NULL; 525 *err = error; 526 goto out; 527 } 528 EXPORT_SYMBOL(inet_csk_accept); 529 530 /* 531 * Using different timers for retransmit, delayed acks and probes 532 * We may wish use just one timer maintaining a list of expire jiffies 533 * to optimize. 534 */ 535 void inet_csk_init_xmit_timers(struct sock *sk, 536 void (*retransmit_handler)(struct timer_list *t), 537 void (*delack_handler)(struct timer_list *t), 538 void (*keepalive_handler)(struct timer_list *t)) 539 { 540 struct inet_connection_sock *icsk = inet_csk(sk); 541 542 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 543 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 544 timer_setup(&sk->sk_timer, keepalive_handler, 0); 545 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 546 } 547 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 548 549 void inet_csk_clear_xmit_timers(struct sock *sk) 550 { 551 struct inet_connection_sock *icsk = inet_csk(sk); 552 553 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 554 555 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 556 sk_stop_timer(sk, &icsk->icsk_delack_timer); 557 sk_stop_timer(sk, &sk->sk_timer); 558 } 559 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 560 561 void inet_csk_delete_keepalive_timer(struct sock *sk) 562 { 563 sk_stop_timer(sk, &sk->sk_timer); 564 } 565 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 566 567 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 568 { 569 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 570 } 571 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 572 573 struct dst_entry *inet_csk_route_req(const struct sock *sk, 574 struct flowi4 *fl4, 575 const struct request_sock *req) 576 { 577 const struct inet_request_sock *ireq = inet_rsk(req); 578 struct net *net = read_pnet(&ireq->ireq_net); 579 struct ip_options_rcu *opt; 580 struct rtable *rt; 581 582 rcu_read_lock(); 583 opt = rcu_dereference(ireq->ireq_opt); 584 585 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 586 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 587 sk->sk_protocol, inet_sk_flowi_flags(sk), 588 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 589 ireq->ir_loc_addr, ireq->ir_rmt_port, 590 htons(ireq->ir_num), sk->sk_uid); 591 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 592 rt = ip_route_output_flow(net, fl4, sk); 593 if (IS_ERR(rt)) 594 goto no_route; 595 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 596 goto route_err; 597 rcu_read_unlock(); 598 return &rt->dst; 599 600 route_err: 601 ip_rt_put(rt); 602 no_route: 603 rcu_read_unlock(); 604 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 605 return NULL; 606 } 607 EXPORT_SYMBOL_GPL(inet_csk_route_req); 608 609 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 610 struct sock *newsk, 611 const struct request_sock *req) 612 { 613 const struct inet_request_sock *ireq = inet_rsk(req); 614 struct net *net = read_pnet(&ireq->ireq_net); 615 struct inet_sock *newinet = inet_sk(newsk); 616 struct ip_options_rcu *opt; 617 struct flowi4 *fl4; 618 struct rtable *rt; 619 620 opt = rcu_dereference(ireq->ireq_opt); 621 fl4 = &newinet->cork.fl.u.ip4; 622 623 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 624 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 625 sk->sk_protocol, inet_sk_flowi_flags(sk), 626 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 627 ireq->ir_loc_addr, ireq->ir_rmt_port, 628 htons(ireq->ir_num), sk->sk_uid); 629 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 630 rt = ip_route_output_flow(net, fl4, sk); 631 if (IS_ERR(rt)) 632 goto no_route; 633 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 634 goto route_err; 635 return &rt->dst; 636 637 route_err: 638 ip_rt_put(rt); 639 no_route: 640 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 641 return NULL; 642 } 643 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 644 645 /* Decide when to expire the request and when to resend SYN-ACK */ 646 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 647 const int max_retries, 648 const u8 rskq_defer_accept, 649 int *expire, int *resend) 650 { 651 if (!rskq_defer_accept) { 652 *expire = req->num_timeout >= thresh; 653 *resend = 1; 654 return; 655 } 656 *expire = req->num_timeout >= thresh && 657 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 658 /* 659 * Do not resend while waiting for data after ACK, 660 * start to resend on end of deferring period to give 661 * last chance for data or ACK to create established socket. 662 */ 663 *resend = !inet_rsk(req)->acked || 664 req->num_timeout >= rskq_defer_accept - 1; 665 } 666 667 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 668 { 669 int err = req->rsk_ops->rtx_syn_ack(parent, req); 670 671 if (!err) 672 req->num_retrans++; 673 return err; 674 } 675 EXPORT_SYMBOL(inet_rtx_syn_ack); 676 677 /* return true if req was found in the ehash table */ 678 static bool reqsk_queue_unlink(struct request_sock *req) 679 { 680 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 681 bool found = false; 682 683 if (sk_hashed(req_to_sk(req))) { 684 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 685 686 spin_lock(lock); 687 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 688 spin_unlock(lock); 689 } 690 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 691 reqsk_put(req); 692 return found; 693 } 694 695 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 696 { 697 if (reqsk_queue_unlink(req)) { 698 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 699 reqsk_put(req); 700 } 701 } 702 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 703 704 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 705 { 706 inet_csk_reqsk_queue_drop(sk, req); 707 reqsk_put(req); 708 } 709 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 710 711 static void reqsk_timer_handler(struct timer_list *t) 712 { 713 struct request_sock *req = from_timer(req, t, rsk_timer); 714 struct sock *sk_listener = req->rsk_listener; 715 struct net *net = sock_net(sk_listener); 716 struct inet_connection_sock *icsk = inet_csk(sk_listener); 717 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 718 int qlen, expire = 0, resend = 0; 719 int max_retries, thresh; 720 u8 defer_accept; 721 722 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) 723 goto drop; 724 725 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 726 thresh = max_retries; 727 /* Normally all the openreqs are young and become mature 728 * (i.e. converted to established socket) for first timeout. 729 * If synack was not acknowledged for 1 second, it means 730 * one of the following things: synack was lost, ack was lost, 731 * rtt is high or nobody planned to ack (i.e. synflood). 732 * When server is a bit loaded, queue is populated with old 733 * open requests, reducing effective size of queue. 734 * When server is well loaded, queue size reduces to zero 735 * after several minutes of work. It is not synflood, 736 * it is normal operation. The solution is pruning 737 * too old entries overriding normal timeout, when 738 * situation becomes dangerous. 739 * 740 * Essentially, we reserve half of room for young 741 * embrions; and abort old ones without pity, if old 742 * ones are about to clog our table. 743 */ 744 qlen = reqsk_queue_len(queue); 745 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 746 int young = reqsk_queue_len_young(queue) << 1; 747 748 while (thresh > 2) { 749 if (qlen < young) 750 break; 751 thresh--; 752 young <<= 1; 753 } 754 } 755 defer_accept = READ_ONCE(queue->rskq_defer_accept); 756 if (defer_accept) 757 max_retries = defer_accept; 758 syn_ack_recalc(req, thresh, max_retries, defer_accept, 759 &expire, &resend); 760 req->rsk_ops->syn_ack_timeout(req); 761 if (!expire && 762 (!resend || 763 !inet_rtx_syn_ack(sk_listener, req) || 764 inet_rsk(req)->acked)) { 765 unsigned long timeo; 766 767 if (req->num_timeout++ == 0) 768 atomic_dec(&queue->young); 769 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 770 mod_timer(&req->rsk_timer, jiffies + timeo); 771 return; 772 } 773 drop: 774 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 775 } 776 777 static void reqsk_queue_hash_req(struct request_sock *req, 778 unsigned long timeout) 779 { 780 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 781 mod_timer(&req->rsk_timer, jiffies + timeout); 782 783 inet_ehash_insert(req_to_sk(req), NULL); 784 /* before letting lookups find us, make sure all req fields 785 * are committed to memory and refcnt initialized. 786 */ 787 smp_wmb(); 788 refcount_set(&req->rsk_refcnt, 2 + 1); 789 } 790 791 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 792 unsigned long timeout) 793 { 794 reqsk_queue_hash_req(req, timeout); 795 inet_csk_reqsk_queue_added(sk); 796 } 797 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 798 799 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 800 const gfp_t priority) 801 { 802 struct inet_connection_sock *icsk = inet_csk(newsk); 803 804 if (!icsk->icsk_ulp_ops) 805 return; 806 807 if (icsk->icsk_ulp_ops->clone) 808 icsk->icsk_ulp_ops->clone(req, newsk, priority); 809 } 810 811 /** 812 * inet_csk_clone_lock - clone an inet socket, and lock its clone 813 * @sk: the socket to clone 814 * @req: request_sock 815 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 816 * 817 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 818 */ 819 struct sock *inet_csk_clone_lock(const struct sock *sk, 820 const struct request_sock *req, 821 const gfp_t priority) 822 { 823 struct sock *newsk = sk_clone_lock(sk, priority); 824 825 if (newsk) { 826 struct inet_connection_sock *newicsk = inet_csk(newsk); 827 828 inet_sk_set_state(newsk, TCP_SYN_RECV); 829 newicsk->icsk_bind_hash = NULL; 830 831 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 832 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 833 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 834 835 /* listeners have SOCK_RCU_FREE, not the children */ 836 sock_reset_flag(newsk, SOCK_RCU_FREE); 837 838 inet_sk(newsk)->mc_list = NULL; 839 840 newsk->sk_mark = inet_rsk(req)->ir_mark; 841 atomic64_set(&newsk->sk_cookie, 842 atomic64_read(&inet_rsk(req)->ir_cookie)); 843 844 newicsk->icsk_retransmits = 0; 845 newicsk->icsk_backoff = 0; 846 newicsk->icsk_probes_out = 0; 847 848 /* Deinitialize accept_queue to trap illegal accesses. */ 849 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 850 851 inet_clone_ulp(req, newsk, priority); 852 853 security_inet_csk_clone(newsk, req); 854 } 855 return newsk; 856 } 857 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 858 859 /* 860 * At this point, there should be no process reference to this 861 * socket, and thus no user references at all. Therefore we 862 * can assume the socket waitqueue is inactive and nobody will 863 * try to jump onto it. 864 */ 865 void inet_csk_destroy_sock(struct sock *sk) 866 { 867 WARN_ON(sk->sk_state != TCP_CLOSE); 868 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 869 870 /* It cannot be in hash table! */ 871 WARN_ON(!sk_unhashed(sk)); 872 873 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 874 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 875 876 sk->sk_prot->destroy(sk); 877 878 sk_stream_kill_queues(sk); 879 880 xfrm_sk_free_policy(sk); 881 882 sk_refcnt_debug_release(sk); 883 884 percpu_counter_dec(sk->sk_prot->orphan_count); 885 886 sock_put(sk); 887 } 888 EXPORT_SYMBOL(inet_csk_destroy_sock); 889 890 /* This function allows to force a closure of a socket after the call to 891 * tcp/dccp_create_openreq_child(). 892 */ 893 void inet_csk_prepare_forced_close(struct sock *sk) 894 __releases(&sk->sk_lock.slock) 895 { 896 /* sk_clone_lock locked the socket and set refcnt to 2 */ 897 bh_unlock_sock(sk); 898 sock_put(sk); 899 900 /* The below has to be done to allow calling inet_csk_destroy_sock */ 901 sock_set_flag(sk, SOCK_DEAD); 902 percpu_counter_inc(sk->sk_prot->orphan_count); 903 inet_sk(sk)->inet_num = 0; 904 } 905 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 906 907 int inet_csk_listen_start(struct sock *sk, int backlog) 908 { 909 struct inet_connection_sock *icsk = inet_csk(sk); 910 struct inet_sock *inet = inet_sk(sk); 911 int err = -EADDRINUSE; 912 913 reqsk_queue_alloc(&icsk->icsk_accept_queue); 914 915 sk->sk_ack_backlog = 0; 916 inet_csk_delack_init(sk); 917 918 /* There is race window here: we announce ourselves listening, 919 * but this transition is still not validated by get_port(). 920 * It is OK, because this socket enters to hash table only 921 * after validation is complete. 922 */ 923 inet_sk_state_store(sk, TCP_LISTEN); 924 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 925 inet->inet_sport = htons(inet->inet_num); 926 927 sk_dst_reset(sk); 928 err = sk->sk_prot->hash(sk); 929 930 if (likely(!err)) 931 return 0; 932 } 933 934 inet_sk_set_state(sk, TCP_CLOSE); 935 return err; 936 } 937 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 938 939 static void inet_child_forget(struct sock *sk, struct request_sock *req, 940 struct sock *child) 941 { 942 sk->sk_prot->disconnect(child, O_NONBLOCK); 943 944 sock_orphan(child); 945 946 percpu_counter_inc(sk->sk_prot->orphan_count); 947 948 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 949 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 950 BUG_ON(sk != req->rsk_listener); 951 952 /* Paranoid, to prevent race condition if 953 * an inbound pkt destined for child is 954 * blocked by sock lock in tcp_v4_rcv(). 955 * Also to satisfy an assertion in 956 * tcp_v4_destroy_sock(). 957 */ 958 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 959 } 960 inet_csk_destroy_sock(child); 961 } 962 963 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 964 struct request_sock *req, 965 struct sock *child) 966 { 967 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 968 969 spin_lock(&queue->rskq_lock); 970 if (unlikely(sk->sk_state != TCP_LISTEN)) { 971 inet_child_forget(sk, req, child); 972 child = NULL; 973 } else { 974 req->sk = child; 975 req->dl_next = NULL; 976 if (queue->rskq_accept_head == NULL) 977 WRITE_ONCE(queue->rskq_accept_head, req); 978 else 979 queue->rskq_accept_tail->dl_next = req; 980 queue->rskq_accept_tail = req; 981 sk_acceptq_added(sk); 982 } 983 spin_unlock(&queue->rskq_lock); 984 return child; 985 } 986 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 987 988 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 989 struct request_sock *req, bool own_req) 990 { 991 if (own_req) { 992 inet_csk_reqsk_queue_drop(sk, req); 993 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 994 if (inet_csk_reqsk_queue_add(sk, req, child)) 995 return child; 996 } 997 /* Too bad, another child took ownership of the request, undo. */ 998 bh_unlock_sock(child); 999 sock_put(child); 1000 return NULL; 1001 } 1002 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1003 1004 /* 1005 * This routine closes sockets which have been at least partially 1006 * opened, but not yet accepted. 1007 */ 1008 void inet_csk_listen_stop(struct sock *sk) 1009 { 1010 struct inet_connection_sock *icsk = inet_csk(sk); 1011 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1012 struct request_sock *next, *req; 1013 1014 /* Following specs, it would be better either to send FIN 1015 * (and enter FIN-WAIT-1, it is normal close) 1016 * or to send active reset (abort). 1017 * Certainly, it is pretty dangerous while synflood, but it is 1018 * bad justification for our negligence 8) 1019 * To be honest, we are not able to make either 1020 * of the variants now. --ANK 1021 */ 1022 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1023 struct sock *child = req->sk; 1024 1025 local_bh_disable(); 1026 bh_lock_sock(child); 1027 WARN_ON(sock_owned_by_user(child)); 1028 sock_hold(child); 1029 1030 inet_child_forget(sk, req, child); 1031 reqsk_put(req); 1032 bh_unlock_sock(child); 1033 local_bh_enable(); 1034 sock_put(child); 1035 1036 cond_resched(); 1037 } 1038 if (queue->fastopenq.rskq_rst_head) { 1039 /* Free all the reqs queued in rskq_rst_head. */ 1040 spin_lock_bh(&queue->fastopenq.lock); 1041 req = queue->fastopenq.rskq_rst_head; 1042 queue->fastopenq.rskq_rst_head = NULL; 1043 spin_unlock_bh(&queue->fastopenq.lock); 1044 while (req != NULL) { 1045 next = req->dl_next; 1046 reqsk_put(req); 1047 req = next; 1048 } 1049 } 1050 WARN_ON_ONCE(sk->sk_ack_backlog); 1051 } 1052 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1053 1054 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1055 { 1056 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1057 const struct inet_sock *inet = inet_sk(sk); 1058 1059 sin->sin_family = AF_INET; 1060 sin->sin_addr.s_addr = inet->inet_daddr; 1061 sin->sin_port = inet->inet_dport; 1062 } 1063 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1064 1065 #ifdef CONFIG_COMPAT 1066 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1067 char __user *optval, int __user *optlen) 1068 { 1069 const struct inet_connection_sock *icsk = inet_csk(sk); 1070 1071 if (icsk->icsk_af_ops->compat_getsockopt) 1072 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1073 optval, optlen); 1074 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1075 optval, optlen); 1076 } 1077 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1078 1079 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1080 char __user *optval, unsigned int optlen) 1081 { 1082 const struct inet_connection_sock *icsk = inet_csk(sk); 1083 1084 if (icsk->icsk_af_ops->compat_setsockopt) 1085 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1086 optval, optlen); 1087 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1088 optval, optlen); 1089 } 1090 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1091 #endif 1092 1093 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1094 { 1095 const struct inet_sock *inet = inet_sk(sk); 1096 const struct ip_options_rcu *inet_opt; 1097 __be32 daddr = inet->inet_daddr; 1098 struct flowi4 *fl4; 1099 struct rtable *rt; 1100 1101 rcu_read_lock(); 1102 inet_opt = rcu_dereference(inet->inet_opt); 1103 if (inet_opt && inet_opt->opt.srr) 1104 daddr = inet_opt->opt.faddr; 1105 fl4 = &fl->u.ip4; 1106 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1107 inet->inet_saddr, inet->inet_dport, 1108 inet->inet_sport, sk->sk_protocol, 1109 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1110 if (IS_ERR(rt)) 1111 rt = NULL; 1112 if (rt) 1113 sk_setup_caps(sk, &rt->dst); 1114 rcu_read_unlock(); 1115 1116 return &rt->dst; 1117 } 1118 1119 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1120 { 1121 struct dst_entry *dst = __sk_dst_check(sk, 0); 1122 struct inet_sock *inet = inet_sk(sk); 1123 1124 if (!dst) { 1125 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1126 if (!dst) 1127 goto out; 1128 } 1129 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1130 1131 dst = __sk_dst_check(sk, 0); 1132 if (!dst) 1133 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1134 out: 1135 return dst; 1136 } 1137 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1138