1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 28 * only, and any IPv4 addresses if not IPv6 only 29 * match_wildcard == false: addresses must be exactly the same, i.e. 30 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 31 * and 0.0.0.0 equals to 0.0.0.0 only 32 */ 33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 34 const struct in6_addr *sk2_rcv_saddr6, 35 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 36 bool sk1_ipv6only, bool sk2_ipv6only, 37 bool match_wildcard) 38 { 39 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 40 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 41 42 /* if both are mapped, treat as IPv4 */ 43 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 44 if (!sk2_ipv6only) { 45 if (sk1_rcv_saddr == sk2_rcv_saddr) 46 return true; 47 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 48 return match_wildcard; 49 } 50 return false; 51 } 52 53 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 54 return true; 55 56 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 57 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 58 return true; 59 60 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 61 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 62 return true; 63 64 if (sk2_rcv_saddr6 && 65 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 66 return true; 67 68 return false; 69 } 70 #endif 71 72 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 73 * match_wildcard == false: addresses must be exactly the same, i.e. 74 * 0.0.0.0 only equals to 0.0.0.0 75 */ 76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 77 bool sk2_ipv6only, bool match_wildcard) 78 { 79 if (!sk2_ipv6only) { 80 if (sk1_rcv_saddr == sk2_rcv_saddr) 81 return true; 82 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 83 return match_wildcard; 84 } 85 return false; 86 } 87 88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 89 bool match_wildcard) 90 { 91 #if IS_ENABLED(CONFIG_IPV6) 92 if (sk->sk_family == AF_INET6) 93 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 94 inet6_rcv_saddr(sk2), 95 sk->sk_rcv_saddr, 96 sk2->sk_rcv_saddr, 97 ipv6_only_sock(sk), 98 ipv6_only_sock(sk2), 99 match_wildcard); 100 #endif 101 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 102 ipv6_only_sock(sk2), match_wildcard); 103 } 104 EXPORT_SYMBOL(inet_rcv_saddr_equal); 105 106 bool inet_rcv_saddr_any(const struct sock *sk) 107 { 108 #if IS_ENABLED(CONFIG_IPV6) 109 if (sk->sk_family == AF_INET6) 110 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 111 #endif 112 return !sk->sk_rcv_saddr; 113 } 114 115 void inet_get_local_port_range(struct net *net, int *low, int *high) 116 { 117 unsigned int seq; 118 119 do { 120 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 121 122 *low = net->ipv4.ip_local_ports.range[0]; 123 *high = net->ipv4.ip_local_ports.range[1]; 124 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 125 } 126 EXPORT_SYMBOL(inet_get_local_port_range); 127 128 static int inet_csk_bind_conflict(const struct sock *sk, 129 const struct inet_bind_bucket *tb, 130 bool relax, bool reuseport_ok) 131 { 132 struct sock *sk2; 133 bool reuse = sk->sk_reuse; 134 bool reuseport = !!sk->sk_reuseport && reuseport_ok; 135 kuid_t uid = sock_i_uid((struct sock *)sk); 136 137 /* 138 * Unlike other sk lookup places we do not check 139 * for sk_net here, since _all_ the socks listed 140 * in tb->owners list belong to the same net - the 141 * one this bucket belongs to. 142 */ 143 144 sk_for_each_bound(sk2, &tb->owners) { 145 if (sk != sk2 && 146 (!sk->sk_bound_dev_if || 147 !sk2->sk_bound_dev_if || 148 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 149 if ((!reuse || !sk2->sk_reuse || 150 sk2->sk_state == TCP_LISTEN) && 151 (!reuseport || !sk2->sk_reuseport || 152 rcu_access_pointer(sk->sk_reuseport_cb) || 153 (sk2->sk_state != TCP_TIME_WAIT && 154 !uid_eq(uid, sock_i_uid(sk2))))) { 155 if (inet_rcv_saddr_equal(sk, sk2, true)) 156 break; 157 } 158 if (!relax && reuse && sk2->sk_reuse && 159 sk2->sk_state != TCP_LISTEN) { 160 if (inet_rcv_saddr_equal(sk, sk2, true)) 161 break; 162 } 163 } 164 } 165 return sk2 != NULL; 166 } 167 168 /* 169 * Find an open port number for the socket. Returns with the 170 * inet_bind_hashbucket lock held. 171 */ 172 static struct inet_bind_hashbucket * 173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 174 { 175 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 176 int port = 0; 177 struct inet_bind_hashbucket *head; 178 struct net *net = sock_net(sk); 179 int i, low, high, attempt_half; 180 struct inet_bind_bucket *tb; 181 u32 remaining, offset; 182 int l3mdev; 183 184 l3mdev = inet_sk_bound_l3mdev(sk); 185 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 186 other_half_scan: 187 inet_get_local_port_range(net, &low, &high); 188 high++; /* [32768, 60999] -> [32768, 61000[ */ 189 if (high - low < 4) 190 attempt_half = 0; 191 if (attempt_half) { 192 int half = low + (((high - low) >> 2) << 1); 193 194 if (attempt_half == 1) 195 high = half; 196 else 197 low = half; 198 } 199 remaining = high - low; 200 if (likely(remaining > 1)) 201 remaining &= ~1U; 202 203 offset = prandom_u32() % remaining; 204 /* __inet_hash_connect() favors ports having @low parity 205 * We do the opposite to not pollute connect() users. 206 */ 207 offset |= 1U; 208 209 other_parity_scan: 210 port = low + offset; 211 for (i = 0; i < remaining; i += 2, port += 2) { 212 if (unlikely(port >= high)) 213 port -= remaining; 214 if (inet_is_local_reserved_port(net, port)) 215 continue; 216 head = &hinfo->bhash[inet_bhashfn(net, port, 217 hinfo->bhash_size)]; 218 spin_lock_bh(&head->lock); 219 inet_bind_bucket_for_each(tb, &head->chain) 220 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 221 tb->port == port) { 222 if (!inet_csk_bind_conflict(sk, tb, false, false)) 223 goto success; 224 goto next_port; 225 } 226 tb = NULL; 227 goto success; 228 next_port: 229 spin_unlock_bh(&head->lock); 230 cond_resched(); 231 } 232 233 offset--; 234 if (!(offset & 1)) 235 goto other_parity_scan; 236 237 if (attempt_half == 1) { 238 /* OK we now try the upper half of the range */ 239 attempt_half = 2; 240 goto other_half_scan; 241 } 242 return NULL; 243 success: 244 *port_ret = port; 245 *tb_ret = tb; 246 return head; 247 } 248 249 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 250 struct sock *sk) 251 { 252 kuid_t uid = sock_i_uid(sk); 253 254 if (tb->fastreuseport <= 0) 255 return 0; 256 if (!sk->sk_reuseport) 257 return 0; 258 if (rcu_access_pointer(sk->sk_reuseport_cb)) 259 return 0; 260 if (!uid_eq(tb->fastuid, uid)) 261 return 0; 262 /* We only need to check the rcv_saddr if this tb was once marked 263 * without fastreuseport and then was reset, as we can only know that 264 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 265 * owners list. 266 */ 267 if (tb->fastreuseport == FASTREUSEPORT_ANY) 268 return 1; 269 #if IS_ENABLED(CONFIG_IPV6) 270 if (tb->fast_sk_family == AF_INET6) 271 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 272 inet6_rcv_saddr(sk), 273 tb->fast_rcv_saddr, 274 sk->sk_rcv_saddr, 275 tb->fast_ipv6_only, 276 ipv6_only_sock(sk), true); 277 #endif 278 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 279 ipv6_only_sock(sk), true); 280 } 281 282 /* Obtain a reference to a local port for the given sock, 283 * if snum is zero it means select any available local port. 284 * We try to allocate an odd port (and leave even ports for connect()) 285 */ 286 int inet_csk_get_port(struct sock *sk, unsigned short snum) 287 { 288 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 289 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 290 int ret = 1, port = snum; 291 struct inet_bind_hashbucket *head; 292 struct net *net = sock_net(sk); 293 struct inet_bind_bucket *tb = NULL; 294 kuid_t uid = sock_i_uid(sk); 295 int l3mdev; 296 297 l3mdev = inet_sk_bound_l3mdev(sk); 298 299 if (!port) { 300 head = inet_csk_find_open_port(sk, &tb, &port); 301 if (!head) 302 return ret; 303 if (!tb) 304 goto tb_not_found; 305 goto success; 306 } 307 head = &hinfo->bhash[inet_bhashfn(net, port, 308 hinfo->bhash_size)]; 309 spin_lock_bh(&head->lock); 310 inet_bind_bucket_for_each(tb, &head->chain) 311 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 312 tb->port == port) 313 goto tb_found; 314 tb_not_found: 315 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 316 net, head, port, l3mdev); 317 if (!tb) 318 goto fail_unlock; 319 tb_found: 320 if (!hlist_empty(&tb->owners)) { 321 if (sk->sk_reuse == SK_FORCE_REUSE) 322 goto success; 323 324 if ((tb->fastreuse > 0 && reuse) || 325 sk_reuseport_match(tb, sk)) 326 goto success; 327 if (inet_csk_bind_conflict(sk, tb, true, true)) 328 goto fail_unlock; 329 } 330 success: 331 if (hlist_empty(&tb->owners)) { 332 tb->fastreuse = reuse; 333 if (sk->sk_reuseport) { 334 tb->fastreuseport = FASTREUSEPORT_ANY; 335 tb->fastuid = uid; 336 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 337 tb->fast_ipv6_only = ipv6_only_sock(sk); 338 tb->fast_sk_family = sk->sk_family; 339 #if IS_ENABLED(CONFIG_IPV6) 340 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 341 #endif 342 } else { 343 tb->fastreuseport = 0; 344 } 345 } else { 346 if (!reuse) 347 tb->fastreuse = 0; 348 if (sk->sk_reuseport) { 349 /* We didn't match or we don't have fastreuseport set on 350 * the tb, but we have sk_reuseport set on this socket 351 * and we know that there are no bind conflicts with 352 * this socket in this tb, so reset our tb's reuseport 353 * settings so that any subsequent sockets that match 354 * our current socket will be put on the fast path. 355 * 356 * If we reset we need to set FASTREUSEPORT_STRICT so we 357 * do extra checking for all subsequent sk_reuseport 358 * socks. 359 */ 360 if (!sk_reuseport_match(tb, sk)) { 361 tb->fastreuseport = FASTREUSEPORT_STRICT; 362 tb->fastuid = uid; 363 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 364 tb->fast_ipv6_only = ipv6_only_sock(sk); 365 tb->fast_sk_family = sk->sk_family; 366 #if IS_ENABLED(CONFIG_IPV6) 367 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 368 #endif 369 } 370 } else { 371 tb->fastreuseport = 0; 372 } 373 } 374 if (!inet_csk(sk)->icsk_bind_hash) 375 inet_bind_hash(sk, tb, port); 376 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 377 ret = 0; 378 379 fail_unlock: 380 spin_unlock_bh(&head->lock); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(inet_csk_get_port); 384 385 /* 386 * Wait for an incoming connection, avoid race conditions. This must be called 387 * with the socket locked. 388 */ 389 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 390 { 391 struct inet_connection_sock *icsk = inet_csk(sk); 392 DEFINE_WAIT(wait); 393 int err; 394 395 /* 396 * True wake-one mechanism for incoming connections: only 397 * one process gets woken up, not the 'whole herd'. 398 * Since we do not 'race & poll' for established sockets 399 * anymore, the common case will execute the loop only once. 400 * 401 * Subtle issue: "add_wait_queue_exclusive()" will be added 402 * after any current non-exclusive waiters, and we know that 403 * it will always _stay_ after any new non-exclusive waiters 404 * because all non-exclusive waiters are added at the 405 * beginning of the wait-queue. As such, it's ok to "drop" 406 * our exclusiveness temporarily when we get woken up without 407 * having to remove and re-insert us on the wait queue. 408 */ 409 for (;;) { 410 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 411 TASK_INTERRUPTIBLE); 412 release_sock(sk); 413 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 414 timeo = schedule_timeout(timeo); 415 sched_annotate_sleep(); 416 lock_sock(sk); 417 err = 0; 418 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 419 break; 420 err = -EINVAL; 421 if (sk->sk_state != TCP_LISTEN) 422 break; 423 err = sock_intr_errno(timeo); 424 if (signal_pending(current)) 425 break; 426 err = -EAGAIN; 427 if (!timeo) 428 break; 429 } 430 finish_wait(sk_sleep(sk), &wait); 431 return err; 432 } 433 434 /* 435 * This will accept the next outstanding connection. 436 */ 437 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 438 { 439 struct inet_connection_sock *icsk = inet_csk(sk); 440 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 441 struct request_sock *req; 442 struct sock *newsk; 443 int error; 444 445 lock_sock(sk); 446 447 /* We need to make sure that this socket is listening, 448 * and that it has something pending. 449 */ 450 error = -EINVAL; 451 if (sk->sk_state != TCP_LISTEN) 452 goto out_err; 453 454 /* Find already established connection */ 455 if (reqsk_queue_empty(queue)) { 456 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 457 458 /* If this is a non blocking socket don't sleep */ 459 error = -EAGAIN; 460 if (!timeo) 461 goto out_err; 462 463 error = inet_csk_wait_for_connect(sk, timeo); 464 if (error) 465 goto out_err; 466 } 467 req = reqsk_queue_remove(queue, sk); 468 newsk = req->sk; 469 470 if (sk->sk_protocol == IPPROTO_TCP && 471 tcp_rsk(req)->tfo_listener) { 472 spin_lock_bh(&queue->fastopenq.lock); 473 if (tcp_rsk(req)->tfo_listener) { 474 /* We are still waiting for the final ACK from 3WHS 475 * so can't free req now. Instead, we set req->sk to 476 * NULL to signify that the child socket is taken 477 * so reqsk_fastopen_remove() will free the req 478 * when 3WHS finishes (or is aborted). 479 */ 480 req->sk = NULL; 481 req = NULL; 482 } 483 spin_unlock_bh(&queue->fastopenq.lock); 484 } 485 out: 486 release_sock(sk); 487 if (req) 488 reqsk_put(req); 489 return newsk; 490 out_err: 491 newsk = NULL; 492 req = NULL; 493 *err = error; 494 goto out; 495 } 496 EXPORT_SYMBOL(inet_csk_accept); 497 498 /* 499 * Using different timers for retransmit, delayed acks and probes 500 * We may wish use just one timer maintaining a list of expire jiffies 501 * to optimize. 502 */ 503 void inet_csk_init_xmit_timers(struct sock *sk, 504 void (*retransmit_handler)(struct timer_list *t), 505 void (*delack_handler)(struct timer_list *t), 506 void (*keepalive_handler)(struct timer_list *t)) 507 { 508 struct inet_connection_sock *icsk = inet_csk(sk); 509 510 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 511 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 512 timer_setup(&sk->sk_timer, keepalive_handler, 0); 513 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 514 } 515 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 516 517 void inet_csk_clear_xmit_timers(struct sock *sk) 518 { 519 struct inet_connection_sock *icsk = inet_csk(sk); 520 521 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 522 523 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 524 sk_stop_timer(sk, &icsk->icsk_delack_timer); 525 sk_stop_timer(sk, &sk->sk_timer); 526 } 527 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 528 529 void inet_csk_delete_keepalive_timer(struct sock *sk) 530 { 531 sk_stop_timer(sk, &sk->sk_timer); 532 } 533 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 534 535 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 536 { 537 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 538 } 539 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 540 541 struct dst_entry *inet_csk_route_req(const struct sock *sk, 542 struct flowi4 *fl4, 543 const struct request_sock *req) 544 { 545 const struct inet_request_sock *ireq = inet_rsk(req); 546 struct net *net = read_pnet(&ireq->ireq_net); 547 struct ip_options_rcu *opt; 548 struct rtable *rt; 549 550 rcu_read_lock(); 551 opt = rcu_dereference(ireq->ireq_opt); 552 553 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 554 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 555 sk->sk_protocol, inet_sk_flowi_flags(sk), 556 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 557 ireq->ir_loc_addr, ireq->ir_rmt_port, 558 htons(ireq->ir_num), sk->sk_uid); 559 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 560 rt = ip_route_output_flow(net, fl4, sk); 561 if (IS_ERR(rt)) 562 goto no_route; 563 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 564 goto route_err; 565 rcu_read_unlock(); 566 return &rt->dst; 567 568 route_err: 569 ip_rt_put(rt); 570 no_route: 571 rcu_read_unlock(); 572 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 573 return NULL; 574 } 575 EXPORT_SYMBOL_GPL(inet_csk_route_req); 576 577 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 578 struct sock *newsk, 579 const struct request_sock *req) 580 { 581 const struct inet_request_sock *ireq = inet_rsk(req); 582 struct net *net = read_pnet(&ireq->ireq_net); 583 struct inet_sock *newinet = inet_sk(newsk); 584 struct ip_options_rcu *opt; 585 struct flowi4 *fl4; 586 struct rtable *rt; 587 588 opt = rcu_dereference(ireq->ireq_opt); 589 fl4 = &newinet->cork.fl.u.ip4; 590 591 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 592 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 593 sk->sk_protocol, inet_sk_flowi_flags(sk), 594 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 595 ireq->ir_loc_addr, ireq->ir_rmt_port, 596 htons(ireq->ir_num), sk->sk_uid); 597 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 598 rt = ip_route_output_flow(net, fl4, sk); 599 if (IS_ERR(rt)) 600 goto no_route; 601 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 602 goto route_err; 603 return &rt->dst; 604 605 route_err: 606 ip_rt_put(rt); 607 no_route: 608 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 609 return NULL; 610 } 611 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 612 613 /* Decide when to expire the request and when to resend SYN-ACK */ 614 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 615 const int max_retries, 616 const u8 rskq_defer_accept, 617 int *expire, int *resend) 618 { 619 if (!rskq_defer_accept) { 620 *expire = req->num_timeout >= thresh; 621 *resend = 1; 622 return; 623 } 624 *expire = req->num_timeout >= thresh && 625 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 626 /* 627 * Do not resend while waiting for data after ACK, 628 * start to resend on end of deferring period to give 629 * last chance for data or ACK to create established socket. 630 */ 631 *resend = !inet_rsk(req)->acked || 632 req->num_timeout >= rskq_defer_accept - 1; 633 } 634 635 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 636 { 637 int err = req->rsk_ops->rtx_syn_ack(parent, req); 638 639 if (!err) 640 req->num_retrans++; 641 return err; 642 } 643 EXPORT_SYMBOL(inet_rtx_syn_ack); 644 645 /* return true if req was found in the ehash table */ 646 static bool reqsk_queue_unlink(struct request_sock *req) 647 { 648 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 649 bool found = false; 650 651 if (sk_hashed(req_to_sk(req))) { 652 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 653 654 spin_lock(lock); 655 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 656 spin_unlock(lock); 657 } 658 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 659 reqsk_put(req); 660 return found; 661 } 662 663 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 664 { 665 if (reqsk_queue_unlink(req)) { 666 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 667 reqsk_put(req); 668 } 669 } 670 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 671 672 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 673 { 674 inet_csk_reqsk_queue_drop(sk, req); 675 reqsk_put(req); 676 } 677 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 678 679 static void reqsk_timer_handler(struct timer_list *t) 680 { 681 struct request_sock *req = from_timer(req, t, rsk_timer); 682 struct sock *sk_listener = req->rsk_listener; 683 struct net *net = sock_net(sk_listener); 684 struct inet_connection_sock *icsk = inet_csk(sk_listener); 685 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 686 int qlen, expire = 0, resend = 0; 687 int max_retries, thresh; 688 u8 defer_accept; 689 690 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) 691 goto drop; 692 693 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 694 thresh = max_retries; 695 /* Normally all the openreqs are young and become mature 696 * (i.e. converted to established socket) for first timeout. 697 * If synack was not acknowledged for 1 second, it means 698 * one of the following things: synack was lost, ack was lost, 699 * rtt is high or nobody planned to ack (i.e. synflood). 700 * When server is a bit loaded, queue is populated with old 701 * open requests, reducing effective size of queue. 702 * When server is well loaded, queue size reduces to zero 703 * after several minutes of work. It is not synflood, 704 * it is normal operation. The solution is pruning 705 * too old entries overriding normal timeout, when 706 * situation becomes dangerous. 707 * 708 * Essentially, we reserve half of room for young 709 * embrions; and abort old ones without pity, if old 710 * ones are about to clog our table. 711 */ 712 qlen = reqsk_queue_len(queue); 713 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 714 int young = reqsk_queue_len_young(queue) << 1; 715 716 while (thresh > 2) { 717 if (qlen < young) 718 break; 719 thresh--; 720 young <<= 1; 721 } 722 } 723 defer_accept = READ_ONCE(queue->rskq_defer_accept); 724 if (defer_accept) 725 max_retries = defer_accept; 726 syn_ack_recalc(req, thresh, max_retries, defer_accept, 727 &expire, &resend); 728 req->rsk_ops->syn_ack_timeout(req); 729 if (!expire && 730 (!resend || 731 !inet_rtx_syn_ack(sk_listener, req) || 732 inet_rsk(req)->acked)) { 733 unsigned long timeo; 734 735 if (req->num_timeout++ == 0) 736 atomic_dec(&queue->young); 737 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 738 mod_timer(&req->rsk_timer, jiffies + timeo); 739 return; 740 } 741 drop: 742 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 743 } 744 745 static void reqsk_queue_hash_req(struct request_sock *req, 746 unsigned long timeout) 747 { 748 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 749 mod_timer(&req->rsk_timer, jiffies + timeout); 750 751 inet_ehash_insert(req_to_sk(req), NULL); 752 /* before letting lookups find us, make sure all req fields 753 * are committed to memory and refcnt initialized. 754 */ 755 smp_wmb(); 756 refcount_set(&req->rsk_refcnt, 2 + 1); 757 } 758 759 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 760 unsigned long timeout) 761 { 762 reqsk_queue_hash_req(req, timeout); 763 inet_csk_reqsk_queue_added(sk); 764 } 765 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 766 767 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 768 const gfp_t priority) 769 { 770 struct inet_connection_sock *icsk = inet_csk(newsk); 771 772 if (!icsk->icsk_ulp_ops) 773 return; 774 775 if (icsk->icsk_ulp_ops->clone) 776 icsk->icsk_ulp_ops->clone(req, newsk, priority); 777 } 778 779 /** 780 * inet_csk_clone_lock - clone an inet socket, and lock its clone 781 * @sk: the socket to clone 782 * @req: request_sock 783 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 784 * 785 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 786 */ 787 struct sock *inet_csk_clone_lock(const struct sock *sk, 788 const struct request_sock *req, 789 const gfp_t priority) 790 { 791 struct sock *newsk = sk_clone_lock(sk, priority); 792 793 if (newsk) { 794 struct inet_connection_sock *newicsk = inet_csk(newsk); 795 796 inet_sk_set_state(newsk, TCP_SYN_RECV); 797 newicsk->icsk_bind_hash = NULL; 798 799 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 800 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 801 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 802 803 /* listeners have SOCK_RCU_FREE, not the children */ 804 sock_reset_flag(newsk, SOCK_RCU_FREE); 805 806 inet_sk(newsk)->mc_list = NULL; 807 808 newsk->sk_mark = inet_rsk(req)->ir_mark; 809 atomic64_set(&newsk->sk_cookie, 810 atomic64_read(&inet_rsk(req)->ir_cookie)); 811 812 newicsk->icsk_retransmits = 0; 813 newicsk->icsk_backoff = 0; 814 newicsk->icsk_probes_out = 0; 815 816 /* Deinitialize accept_queue to trap illegal accesses. */ 817 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 818 819 inet_clone_ulp(req, newsk, priority); 820 821 security_inet_csk_clone(newsk, req); 822 } 823 return newsk; 824 } 825 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 826 827 /* 828 * At this point, there should be no process reference to this 829 * socket, and thus no user references at all. Therefore we 830 * can assume the socket waitqueue is inactive and nobody will 831 * try to jump onto it. 832 */ 833 void inet_csk_destroy_sock(struct sock *sk) 834 { 835 WARN_ON(sk->sk_state != TCP_CLOSE); 836 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 837 838 /* It cannot be in hash table! */ 839 WARN_ON(!sk_unhashed(sk)); 840 841 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 842 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 843 844 sk->sk_prot->destroy(sk); 845 846 sk_stream_kill_queues(sk); 847 848 xfrm_sk_free_policy(sk); 849 850 sk_refcnt_debug_release(sk); 851 852 percpu_counter_dec(sk->sk_prot->orphan_count); 853 854 sock_put(sk); 855 } 856 EXPORT_SYMBOL(inet_csk_destroy_sock); 857 858 /* This function allows to force a closure of a socket after the call to 859 * tcp/dccp_create_openreq_child(). 860 */ 861 void inet_csk_prepare_forced_close(struct sock *sk) 862 __releases(&sk->sk_lock.slock) 863 { 864 /* sk_clone_lock locked the socket and set refcnt to 2 */ 865 bh_unlock_sock(sk); 866 sock_put(sk); 867 868 /* The below has to be done to allow calling inet_csk_destroy_sock */ 869 sock_set_flag(sk, SOCK_DEAD); 870 percpu_counter_inc(sk->sk_prot->orphan_count); 871 inet_sk(sk)->inet_num = 0; 872 } 873 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 874 875 int inet_csk_listen_start(struct sock *sk, int backlog) 876 { 877 struct inet_connection_sock *icsk = inet_csk(sk); 878 struct inet_sock *inet = inet_sk(sk); 879 int err = -EADDRINUSE; 880 881 reqsk_queue_alloc(&icsk->icsk_accept_queue); 882 883 sk->sk_ack_backlog = 0; 884 inet_csk_delack_init(sk); 885 886 /* There is race window here: we announce ourselves listening, 887 * but this transition is still not validated by get_port(). 888 * It is OK, because this socket enters to hash table only 889 * after validation is complete. 890 */ 891 inet_sk_state_store(sk, TCP_LISTEN); 892 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 893 inet->inet_sport = htons(inet->inet_num); 894 895 sk_dst_reset(sk); 896 err = sk->sk_prot->hash(sk); 897 898 if (likely(!err)) 899 return 0; 900 } 901 902 inet_sk_set_state(sk, TCP_CLOSE); 903 return err; 904 } 905 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 906 907 static void inet_child_forget(struct sock *sk, struct request_sock *req, 908 struct sock *child) 909 { 910 sk->sk_prot->disconnect(child, O_NONBLOCK); 911 912 sock_orphan(child); 913 914 percpu_counter_inc(sk->sk_prot->orphan_count); 915 916 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 917 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 918 BUG_ON(sk != req->rsk_listener); 919 920 /* Paranoid, to prevent race condition if 921 * an inbound pkt destined for child is 922 * blocked by sock lock in tcp_v4_rcv(). 923 * Also to satisfy an assertion in 924 * tcp_v4_destroy_sock(). 925 */ 926 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 927 } 928 inet_csk_destroy_sock(child); 929 } 930 931 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 932 struct request_sock *req, 933 struct sock *child) 934 { 935 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 936 937 spin_lock(&queue->rskq_lock); 938 if (unlikely(sk->sk_state != TCP_LISTEN)) { 939 inet_child_forget(sk, req, child); 940 child = NULL; 941 } else { 942 req->sk = child; 943 req->dl_next = NULL; 944 if (queue->rskq_accept_head == NULL) 945 WRITE_ONCE(queue->rskq_accept_head, req); 946 else 947 queue->rskq_accept_tail->dl_next = req; 948 queue->rskq_accept_tail = req; 949 sk_acceptq_added(sk); 950 } 951 spin_unlock(&queue->rskq_lock); 952 return child; 953 } 954 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 955 956 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 957 struct request_sock *req, bool own_req) 958 { 959 if (own_req) { 960 inet_csk_reqsk_queue_drop(sk, req); 961 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 962 if (inet_csk_reqsk_queue_add(sk, req, child)) 963 return child; 964 } 965 /* Too bad, another child took ownership of the request, undo. */ 966 bh_unlock_sock(child); 967 sock_put(child); 968 return NULL; 969 } 970 EXPORT_SYMBOL(inet_csk_complete_hashdance); 971 972 /* 973 * This routine closes sockets which have been at least partially 974 * opened, but not yet accepted. 975 */ 976 void inet_csk_listen_stop(struct sock *sk) 977 { 978 struct inet_connection_sock *icsk = inet_csk(sk); 979 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 980 struct request_sock *next, *req; 981 982 /* Following specs, it would be better either to send FIN 983 * (and enter FIN-WAIT-1, it is normal close) 984 * or to send active reset (abort). 985 * Certainly, it is pretty dangerous while synflood, but it is 986 * bad justification for our negligence 8) 987 * To be honest, we are not able to make either 988 * of the variants now. --ANK 989 */ 990 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 991 struct sock *child = req->sk; 992 993 local_bh_disable(); 994 bh_lock_sock(child); 995 WARN_ON(sock_owned_by_user(child)); 996 sock_hold(child); 997 998 inet_child_forget(sk, req, child); 999 reqsk_put(req); 1000 bh_unlock_sock(child); 1001 local_bh_enable(); 1002 sock_put(child); 1003 1004 cond_resched(); 1005 } 1006 if (queue->fastopenq.rskq_rst_head) { 1007 /* Free all the reqs queued in rskq_rst_head. */ 1008 spin_lock_bh(&queue->fastopenq.lock); 1009 req = queue->fastopenq.rskq_rst_head; 1010 queue->fastopenq.rskq_rst_head = NULL; 1011 spin_unlock_bh(&queue->fastopenq.lock); 1012 while (req != NULL) { 1013 next = req->dl_next; 1014 reqsk_put(req); 1015 req = next; 1016 } 1017 } 1018 WARN_ON_ONCE(sk->sk_ack_backlog); 1019 } 1020 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1021 1022 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1023 { 1024 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1025 const struct inet_sock *inet = inet_sk(sk); 1026 1027 sin->sin_family = AF_INET; 1028 sin->sin_addr.s_addr = inet->inet_daddr; 1029 sin->sin_port = inet->inet_dport; 1030 } 1031 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1032 1033 #ifdef CONFIG_COMPAT 1034 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1035 char __user *optval, int __user *optlen) 1036 { 1037 const struct inet_connection_sock *icsk = inet_csk(sk); 1038 1039 if (icsk->icsk_af_ops->compat_getsockopt) 1040 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1041 optval, optlen); 1042 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1043 optval, optlen); 1044 } 1045 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1046 1047 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1048 char __user *optval, unsigned int optlen) 1049 { 1050 const struct inet_connection_sock *icsk = inet_csk(sk); 1051 1052 if (icsk->icsk_af_ops->compat_setsockopt) 1053 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1054 optval, optlen); 1055 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1056 optval, optlen); 1057 } 1058 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1059 #endif 1060 1061 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1062 { 1063 const struct inet_sock *inet = inet_sk(sk); 1064 const struct ip_options_rcu *inet_opt; 1065 __be32 daddr = inet->inet_daddr; 1066 struct flowi4 *fl4; 1067 struct rtable *rt; 1068 1069 rcu_read_lock(); 1070 inet_opt = rcu_dereference(inet->inet_opt); 1071 if (inet_opt && inet_opt->opt.srr) 1072 daddr = inet_opt->opt.faddr; 1073 fl4 = &fl->u.ip4; 1074 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1075 inet->inet_saddr, inet->inet_dport, 1076 inet->inet_sport, sk->sk_protocol, 1077 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1078 if (IS_ERR(rt)) 1079 rt = NULL; 1080 if (rt) 1081 sk_setup_caps(sk, &rt->dst); 1082 rcu_read_unlock(); 1083 1084 return &rt->dst; 1085 } 1086 1087 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1088 { 1089 struct dst_entry *dst = __sk_dst_check(sk, 0); 1090 struct inet_sock *inet = inet_sk(sk); 1091 1092 if (!dst) { 1093 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1094 if (!dst) 1095 goto out; 1096 } 1097 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1098 1099 dst = __sk_dst_check(sk, 0); 1100 if (!dst) 1101 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1102 out: 1103 return dst; 1104 } 1105 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1106