1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
28  *                          only, and any IPv4 addresses if not IPv6 only
29  * match_wildcard == false: addresses must be exactly the same, i.e.
30  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
31  *                          and 0.0.0.0 equals to 0.0.0.0 only
32  */
33 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
34 				 const struct in6_addr *sk2_rcv_saddr6,
35 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
36 				 bool sk1_ipv6only, bool sk2_ipv6only,
37 				 bool match_wildcard)
38 {
39 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
40 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
41 
42 	/* if both are mapped, treat as IPv4 */
43 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
44 		if (!sk2_ipv6only) {
45 			if (sk1_rcv_saddr == sk2_rcv_saddr)
46 				return true;
47 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
48 				return match_wildcard;
49 		}
50 		return false;
51 	}
52 
53 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
54 		return true;
55 
56 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
57 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
58 		return true;
59 
60 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
61 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
62 		return true;
63 
64 	if (sk2_rcv_saddr6 &&
65 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
66 		return true;
67 
68 	return false;
69 }
70 #endif
71 
72 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
73  * match_wildcard == false: addresses must be exactly the same, i.e.
74  *                          0.0.0.0 only equals to 0.0.0.0
75  */
76 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
77 				 bool sk2_ipv6only, bool match_wildcard)
78 {
79 	if (!sk2_ipv6only) {
80 		if (sk1_rcv_saddr == sk2_rcv_saddr)
81 			return true;
82 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
83 			return match_wildcard;
84 	}
85 	return false;
86 }
87 
88 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
89 			  bool match_wildcard)
90 {
91 #if IS_ENABLED(CONFIG_IPV6)
92 	if (sk->sk_family == AF_INET6)
93 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
94 					    inet6_rcv_saddr(sk2),
95 					    sk->sk_rcv_saddr,
96 					    sk2->sk_rcv_saddr,
97 					    ipv6_only_sock(sk),
98 					    ipv6_only_sock(sk2),
99 					    match_wildcard);
100 #endif
101 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
102 				    ipv6_only_sock(sk2), match_wildcard);
103 }
104 EXPORT_SYMBOL(inet_rcv_saddr_equal);
105 
106 bool inet_rcv_saddr_any(const struct sock *sk)
107 {
108 #if IS_ENABLED(CONFIG_IPV6)
109 	if (sk->sk_family == AF_INET6)
110 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
111 #endif
112 	return !sk->sk_rcv_saddr;
113 }
114 
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 	unsigned int seq;
118 
119 	do {
120 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121 
122 		*low = net->ipv4.ip_local_ports.range[0];
123 		*high = net->ipv4.ip_local_ports.range[1];
124 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127 
128 static int inet_csk_bind_conflict(const struct sock *sk,
129 				  const struct inet_bind_bucket *tb,
130 				  bool relax, bool reuseport_ok)
131 {
132 	struct sock *sk2;
133 	bool reuse = sk->sk_reuse;
134 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 	kuid_t uid = sock_i_uid((struct sock *)sk);
136 
137 	/*
138 	 * Unlike other sk lookup places we do not check
139 	 * for sk_net here, since _all_ the socks listed
140 	 * in tb->owners list belong to the same net - the
141 	 * one this bucket belongs to.
142 	 */
143 
144 	sk_for_each_bound(sk2, &tb->owners) {
145 		if (sk != sk2 &&
146 		    (!sk->sk_bound_dev_if ||
147 		     !sk2->sk_bound_dev_if ||
148 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 			if ((!reuse || !sk2->sk_reuse ||
150 			    sk2->sk_state == TCP_LISTEN) &&
151 			    (!reuseport || !sk2->sk_reuseport ||
152 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
153 			     (sk2->sk_state != TCP_TIME_WAIT &&
154 			     !uid_eq(uid, sock_i_uid(sk2))))) {
155 				if (inet_rcv_saddr_equal(sk, sk2, true))
156 					break;
157 			}
158 			if (!relax && reuse && sk2->sk_reuse &&
159 			    sk2->sk_state != TCP_LISTEN) {
160 				if (inet_rcv_saddr_equal(sk, sk2, true))
161 					break;
162 			}
163 		}
164 	}
165 	return sk2 != NULL;
166 }
167 
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 	int port = 0;
177 	struct inet_bind_hashbucket *head;
178 	struct net *net = sock_net(sk);
179 	int i, low, high, attempt_half;
180 	struct inet_bind_bucket *tb;
181 	u32 remaining, offset;
182 	int l3mdev;
183 
184 	l3mdev = inet_sk_bound_l3mdev(sk);
185 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
186 other_half_scan:
187 	inet_get_local_port_range(net, &low, &high);
188 	high++; /* [32768, 60999] -> [32768, 61000[ */
189 	if (high - low < 4)
190 		attempt_half = 0;
191 	if (attempt_half) {
192 		int half = low + (((high - low) >> 2) << 1);
193 
194 		if (attempt_half == 1)
195 			high = half;
196 		else
197 			low = half;
198 	}
199 	remaining = high - low;
200 	if (likely(remaining > 1))
201 		remaining &= ~1U;
202 
203 	offset = prandom_u32() % remaining;
204 	/* __inet_hash_connect() favors ports having @low parity
205 	 * We do the opposite to not pollute connect() users.
206 	 */
207 	offset |= 1U;
208 
209 other_parity_scan:
210 	port = low + offset;
211 	for (i = 0; i < remaining; i += 2, port += 2) {
212 		if (unlikely(port >= high))
213 			port -= remaining;
214 		if (inet_is_local_reserved_port(net, port))
215 			continue;
216 		head = &hinfo->bhash[inet_bhashfn(net, port,
217 						  hinfo->bhash_size)];
218 		spin_lock_bh(&head->lock);
219 		inet_bind_bucket_for_each(tb, &head->chain)
220 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
221 			    tb->port == port) {
222 				if (!inet_csk_bind_conflict(sk, tb, false, false))
223 					goto success;
224 				goto next_port;
225 			}
226 		tb = NULL;
227 		goto success;
228 next_port:
229 		spin_unlock_bh(&head->lock);
230 		cond_resched();
231 	}
232 
233 	offset--;
234 	if (!(offset & 1))
235 		goto other_parity_scan;
236 
237 	if (attempt_half == 1) {
238 		/* OK we now try the upper half of the range */
239 		attempt_half = 2;
240 		goto other_half_scan;
241 	}
242 	return NULL;
243 success:
244 	*port_ret = port;
245 	*tb_ret = tb;
246 	return head;
247 }
248 
249 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
250 				     struct sock *sk)
251 {
252 	kuid_t uid = sock_i_uid(sk);
253 
254 	if (tb->fastreuseport <= 0)
255 		return 0;
256 	if (!sk->sk_reuseport)
257 		return 0;
258 	if (rcu_access_pointer(sk->sk_reuseport_cb))
259 		return 0;
260 	if (!uid_eq(tb->fastuid, uid))
261 		return 0;
262 	/* We only need to check the rcv_saddr if this tb was once marked
263 	 * without fastreuseport and then was reset, as we can only know that
264 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
265 	 * owners list.
266 	 */
267 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
268 		return 1;
269 #if IS_ENABLED(CONFIG_IPV6)
270 	if (tb->fast_sk_family == AF_INET6)
271 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
272 					    inet6_rcv_saddr(sk),
273 					    tb->fast_rcv_saddr,
274 					    sk->sk_rcv_saddr,
275 					    tb->fast_ipv6_only,
276 					    ipv6_only_sock(sk), true);
277 #endif
278 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
279 				    ipv6_only_sock(sk), true);
280 }
281 
282 /* Obtain a reference to a local port for the given sock,
283  * if snum is zero it means select any available local port.
284  * We try to allocate an odd port (and leave even ports for connect())
285  */
286 int inet_csk_get_port(struct sock *sk, unsigned short snum)
287 {
288 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
289 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
290 	int ret = 1, port = snum;
291 	struct inet_bind_hashbucket *head;
292 	struct net *net = sock_net(sk);
293 	struct inet_bind_bucket *tb = NULL;
294 	kuid_t uid = sock_i_uid(sk);
295 	int l3mdev;
296 
297 	l3mdev = inet_sk_bound_l3mdev(sk);
298 
299 	if (!port) {
300 		head = inet_csk_find_open_port(sk, &tb, &port);
301 		if (!head)
302 			return ret;
303 		if (!tb)
304 			goto tb_not_found;
305 		goto success;
306 	}
307 	head = &hinfo->bhash[inet_bhashfn(net, port,
308 					  hinfo->bhash_size)];
309 	spin_lock_bh(&head->lock);
310 	inet_bind_bucket_for_each(tb, &head->chain)
311 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
312 		    tb->port == port)
313 			goto tb_found;
314 tb_not_found:
315 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
316 				     net, head, port, l3mdev);
317 	if (!tb)
318 		goto fail_unlock;
319 tb_found:
320 	if (!hlist_empty(&tb->owners)) {
321 		if (sk->sk_reuse == SK_FORCE_REUSE)
322 			goto success;
323 
324 		if ((tb->fastreuse > 0 && reuse) ||
325 		    sk_reuseport_match(tb, sk))
326 			goto success;
327 		if (inet_csk_bind_conflict(sk, tb, true, true))
328 			goto fail_unlock;
329 	}
330 success:
331 	if (hlist_empty(&tb->owners)) {
332 		tb->fastreuse = reuse;
333 		if (sk->sk_reuseport) {
334 			tb->fastreuseport = FASTREUSEPORT_ANY;
335 			tb->fastuid = uid;
336 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
337 			tb->fast_ipv6_only = ipv6_only_sock(sk);
338 			tb->fast_sk_family = sk->sk_family;
339 #if IS_ENABLED(CONFIG_IPV6)
340 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
341 #endif
342 		} else {
343 			tb->fastreuseport = 0;
344 		}
345 	} else {
346 		if (!reuse)
347 			tb->fastreuse = 0;
348 		if (sk->sk_reuseport) {
349 			/* We didn't match or we don't have fastreuseport set on
350 			 * the tb, but we have sk_reuseport set on this socket
351 			 * and we know that there are no bind conflicts with
352 			 * this socket in this tb, so reset our tb's reuseport
353 			 * settings so that any subsequent sockets that match
354 			 * our current socket will be put on the fast path.
355 			 *
356 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
357 			 * do extra checking for all subsequent sk_reuseport
358 			 * socks.
359 			 */
360 			if (!sk_reuseport_match(tb, sk)) {
361 				tb->fastreuseport = FASTREUSEPORT_STRICT;
362 				tb->fastuid = uid;
363 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
364 				tb->fast_ipv6_only = ipv6_only_sock(sk);
365 				tb->fast_sk_family = sk->sk_family;
366 #if IS_ENABLED(CONFIG_IPV6)
367 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
368 #endif
369 			}
370 		} else {
371 			tb->fastreuseport = 0;
372 		}
373 	}
374 	if (!inet_csk(sk)->icsk_bind_hash)
375 		inet_bind_hash(sk, tb, port);
376 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
377 	ret = 0;
378 
379 fail_unlock:
380 	spin_unlock_bh(&head->lock);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(inet_csk_get_port);
384 
385 /*
386  * Wait for an incoming connection, avoid race conditions. This must be called
387  * with the socket locked.
388  */
389 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
390 {
391 	struct inet_connection_sock *icsk = inet_csk(sk);
392 	DEFINE_WAIT(wait);
393 	int err;
394 
395 	/*
396 	 * True wake-one mechanism for incoming connections: only
397 	 * one process gets woken up, not the 'whole herd'.
398 	 * Since we do not 'race & poll' for established sockets
399 	 * anymore, the common case will execute the loop only once.
400 	 *
401 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
402 	 * after any current non-exclusive waiters, and we know that
403 	 * it will always _stay_ after any new non-exclusive waiters
404 	 * because all non-exclusive waiters are added at the
405 	 * beginning of the wait-queue. As such, it's ok to "drop"
406 	 * our exclusiveness temporarily when we get woken up without
407 	 * having to remove and re-insert us on the wait queue.
408 	 */
409 	for (;;) {
410 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
411 					  TASK_INTERRUPTIBLE);
412 		release_sock(sk);
413 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
414 			timeo = schedule_timeout(timeo);
415 		sched_annotate_sleep();
416 		lock_sock(sk);
417 		err = 0;
418 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
419 			break;
420 		err = -EINVAL;
421 		if (sk->sk_state != TCP_LISTEN)
422 			break;
423 		err = sock_intr_errno(timeo);
424 		if (signal_pending(current))
425 			break;
426 		err = -EAGAIN;
427 		if (!timeo)
428 			break;
429 	}
430 	finish_wait(sk_sleep(sk), &wait);
431 	return err;
432 }
433 
434 /*
435  * This will accept the next outstanding connection.
436  */
437 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
438 {
439 	struct inet_connection_sock *icsk = inet_csk(sk);
440 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
441 	struct request_sock *req;
442 	struct sock *newsk;
443 	int error;
444 
445 	lock_sock(sk);
446 
447 	/* We need to make sure that this socket is listening,
448 	 * and that it has something pending.
449 	 */
450 	error = -EINVAL;
451 	if (sk->sk_state != TCP_LISTEN)
452 		goto out_err;
453 
454 	/* Find already established connection */
455 	if (reqsk_queue_empty(queue)) {
456 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
457 
458 		/* If this is a non blocking socket don't sleep */
459 		error = -EAGAIN;
460 		if (!timeo)
461 			goto out_err;
462 
463 		error = inet_csk_wait_for_connect(sk, timeo);
464 		if (error)
465 			goto out_err;
466 	}
467 	req = reqsk_queue_remove(queue, sk);
468 	newsk = req->sk;
469 
470 	if (sk->sk_protocol == IPPROTO_TCP &&
471 	    tcp_rsk(req)->tfo_listener) {
472 		spin_lock_bh(&queue->fastopenq.lock);
473 		if (tcp_rsk(req)->tfo_listener) {
474 			/* We are still waiting for the final ACK from 3WHS
475 			 * so can't free req now. Instead, we set req->sk to
476 			 * NULL to signify that the child socket is taken
477 			 * so reqsk_fastopen_remove() will free the req
478 			 * when 3WHS finishes (or is aborted).
479 			 */
480 			req->sk = NULL;
481 			req = NULL;
482 		}
483 		spin_unlock_bh(&queue->fastopenq.lock);
484 	}
485 out:
486 	release_sock(sk);
487 	if (req)
488 		reqsk_put(req);
489 	return newsk;
490 out_err:
491 	newsk = NULL;
492 	req = NULL;
493 	*err = error;
494 	goto out;
495 }
496 EXPORT_SYMBOL(inet_csk_accept);
497 
498 /*
499  * Using different timers for retransmit, delayed acks and probes
500  * We may wish use just one timer maintaining a list of expire jiffies
501  * to optimize.
502  */
503 void inet_csk_init_xmit_timers(struct sock *sk,
504 			       void (*retransmit_handler)(struct timer_list *t),
505 			       void (*delack_handler)(struct timer_list *t),
506 			       void (*keepalive_handler)(struct timer_list *t))
507 {
508 	struct inet_connection_sock *icsk = inet_csk(sk);
509 
510 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
511 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
512 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
513 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
514 }
515 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
516 
517 void inet_csk_clear_xmit_timers(struct sock *sk)
518 {
519 	struct inet_connection_sock *icsk = inet_csk(sk);
520 
521 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
522 
523 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
524 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
525 	sk_stop_timer(sk, &sk->sk_timer);
526 }
527 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
528 
529 void inet_csk_delete_keepalive_timer(struct sock *sk)
530 {
531 	sk_stop_timer(sk, &sk->sk_timer);
532 }
533 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
534 
535 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
536 {
537 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
538 }
539 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
540 
541 struct dst_entry *inet_csk_route_req(const struct sock *sk,
542 				     struct flowi4 *fl4,
543 				     const struct request_sock *req)
544 {
545 	const struct inet_request_sock *ireq = inet_rsk(req);
546 	struct net *net = read_pnet(&ireq->ireq_net);
547 	struct ip_options_rcu *opt;
548 	struct rtable *rt;
549 
550 	rcu_read_lock();
551 	opt = rcu_dereference(ireq->ireq_opt);
552 
553 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
554 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
555 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
556 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
557 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
558 			   htons(ireq->ir_num), sk->sk_uid);
559 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
560 	rt = ip_route_output_flow(net, fl4, sk);
561 	if (IS_ERR(rt))
562 		goto no_route;
563 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
564 		goto route_err;
565 	rcu_read_unlock();
566 	return &rt->dst;
567 
568 route_err:
569 	ip_rt_put(rt);
570 no_route:
571 	rcu_read_unlock();
572 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
573 	return NULL;
574 }
575 EXPORT_SYMBOL_GPL(inet_csk_route_req);
576 
577 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
578 					    struct sock *newsk,
579 					    const struct request_sock *req)
580 {
581 	const struct inet_request_sock *ireq = inet_rsk(req);
582 	struct net *net = read_pnet(&ireq->ireq_net);
583 	struct inet_sock *newinet = inet_sk(newsk);
584 	struct ip_options_rcu *opt;
585 	struct flowi4 *fl4;
586 	struct rtable *rt;
587 
588 	opt = rcu_dereference(ireq->ireq_opt);
589 	fl4 = &newinet->cork.fl.u.ip4;
590 
591 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
592 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
593 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
594 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
595 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
596 			   htons(ireq->ir_num), sk->sk_uid);
597 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
598 	rt = ip_route_output_flow(net, fl4, sk);
599 	if (IS_ERR(rt))
600 		goto no_route;
601 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
602 		goto route_err;
603 	return &rt->dst;
604 
605 route_err:
606 	ip_rt_put(rt);
607 no_route:
608 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
609 	return NULL;
610 }
611 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
612 
613 /* Decide when to expire the request and when to resend SYN-ACK */
614 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
615 				  const int max_retries,
616 				  const u8 rskq_defer_accept,
617 				  int *expire, int *resend)
618 {
619 	if (!rskq_defer_accept) {
620 		*expire = req->num_timeout >= thresh;
621 		*resend = 1;
622 		return;
623 	}
624 	*expire = req->num_timeout >= thresh &&
625 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
626 	/*
627 	 * Do not resend while waiting for data after ACK,
628 	 * start to resend on end of deferring period to give
629 	 * last chance for data or ACK to create established socket.
630 	 */
631 	*resend = !inet_rsk(req)->acked ||
632 		  req->num_timeout >= rskq_defer_accept - 1;
633 }
634 
635 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
636 {
637 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
638 
639 	if (!err)
640 		req->num_retrans++;
641 	return err;
642 }
643 EXPORT_SYMBOL(inet_rtx_syn_ack);
644 
645 /* return true if req was found in the ehash table */
646 static bool reqsk_queue_unlink(struct request_sock *req)
647 {
648 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
649 	bool found = false;
650 
651 	if (sk_hashed(req_to_sk(req))) {
652 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
653 
654 		spin_lock(lock);
655 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
656 		spin_unlock(lock);
657 	}
658 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
659 		reqsk_put(req);
660 	return found;
661 }
662 
663 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
664 {
665 	if (reqsk_queue_unlink(req)) {
666 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
667 		reqsk_put(req);
668 	}
669 }
670 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
671 
672 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
673 {
674 	inet_csk_reqsk_queue_drop(sk, req);
675 	reqsk_put(req);
676 }
677 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
678 
679 static void reqsk_timer_handler(struct timer_list *t)
680 {
681 	struct request_sock *req = from_timer(req, t, rsk_timer);
682 	struct sock *sk_listener = req->rsk_listener;
683 	struct net *net = sock_net(sk_listener);
684 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
685 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
686 	int qlen, expire = 0, resend = 0;
687 	int max_retries, thresh;
688 	u8 defer_accept;
689 
690 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
691 		goto drop;
692 
693 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
694 	thresh = max_retries;
695 	/* Normally all the openreqs are young and become mature
696 	 * (i.e. converted to established socket) for first timeout.
697 	 * If synack was not acknowledged for 1 second, it means
698 	 * one of the following things: synack was lost, ack was lost,
699 	 * rtt is high or nobody planned to ack (i.e. synflood).
700 	 * When server is a bit loaded, queue is populated with old
701 	 * open requests, reducing effective size of queue.
702 	 * When server is well loaded, queue size reduces to zero
703 	 * after several minutes of work. It is not synflood,
704 	 * it is normal operation. The solution is pruning
705 	 * too old entries overriding normal timeout, when
706 	 * situation becomes dangerous.
707 	 *
708 	 * Essentially, we reserve half of room for young
709 	 * embrions; and abort old ones without pity, if old
710 	 * ones are about to clog our table.
711 	 */
712 	qlen = reqsk_queue_len(queue);
713 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
714 		int young = reqsk_queue_len_young(queue) << 1;
715 
716 		while (thresh > 2) {
717 			if (qlen < young)
718 				break;
719 			thresh--;
720 			young <<= 1;
721 		}
722 	}
723 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
724 	if (defer_accept)
725 		max_retries = defer_accept;
726 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
727 		       &expire, &resend);
728 	req->rsk_ops->syn_ack_timeout(req);
729 	if (!expire &&
730 	    (!resend ||
731 	     !inet_rtx_syn_ack(sk_listener, req) ||
732 	     inet_rsk(req)->acked)) {
733 		unsigned long timeo;
734 
735 		if (req->num_timeout++ == 0)
736 			atomic_dec(&queue->young);
737 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
738 		mod_timer(&req->rsk_timer, jiffies + timeo);
739 		return;
740 	}
741 drop:
742 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
743 }
744 
745 static void reqsk_queue_hash_req(struct request_sock *req,
746 				 unsigned long timeout)
747 {
748 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
749 	mod_timer(&req->rsk_timer, jiffies + timeout);
750 
751 	inet_ehash_insert(req_to_sk(req), NULL);
752 	/* before letting lookups find us, make sure all req fields
753 	 * are committed to memory and refcnt initialized.
754 	 */
755 	smp_wmb();
756 	refcount_set(&req->rsk_refcnt, 2 + 1);
757 }
758 
759 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
760 				   unsigned long timeout)
761 {
762 	reqsk_queue_hash_req(req, timeout);
763 	inet_csk_reqsk_queue_added(sk);
764 }
765 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
766 
767 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
768 			   const gfp_t priority)
769 {
770 	struct inet_connection_sock *icsk = inet_csk(newsk);
771 
772 	if (!icsk->icsk_ulp_ops)
773 		return;
774 
775 	if (icsk->icsk_ulp_ops->clone)
776 		icsk->icsk_ulp_ops->clone(req, newsk, priority);
777 }
778 
779 /**
780  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
781  *	@sk: the socket to clone
782  *	@req: request_sock
783  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
784  *
785  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
786  */
787 struct sock *inet_csk_clone_lock(const struct sock *sk,
788 				 const struct request_sock *req,
789 				 const gfp_t priority)
790 {
791 	struct sock *newsk = sk_clone_lock(sk, priority);
792 
793 	if (newsk) {
794 		struct inet_connection_sock *newicsk = inet_csk(newsk);
795 
796 		inet_sk_set_state(newsk, TCP_SYN_RECV);
797 		newicsk->icsk_bind_hash = NULL;
798 
799 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
800 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
801 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
802 
803 		/* listeners have SOCK_RCU_FREE, not the children */
804 		sock_reset_flag(newsk, SOCK_RCU_FREE);
805 
806 		inet_sk(newsk)->mc_list = NULL;
807 
808 		newsk->sk_mark = inet_rsk(req)->ir_mark;
809 		atomic64_set(&newsk->sk_cookie,
810 			     atomic64_read(&inet_rsk(req)->ir_cookie));
811 
812 		newicsk->icsk_retransmits = 0;
813 		newicsk->icsk_backoff	  = 0;
814 		newicsk->icsk_probes_out  = 0;
815 
816 		/* Deinitialize accept_queue to trap illegal accesses. */
817 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
818 
819 		inet_clone_ulp(req, newsk, priority);
820 
821 		security_inet_csk_clone(newsk, req);
822 	}
823 	return newsk;
824 }
825 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
826 
827 /*
828  * At this point, there should be no process reference to this
829  * socket, and thus no user references at all.  Therefore we
830  * can assume the socket waitqueue is inactive and nobody will
831  * try to jump onto it.
832  */
833 void inet_csk_destroy_sock(struct sock *sk)
834 {
835 	WARN_ON(sk->sk_state != TCP_CLOSE);
836 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
837 
838 	/* It cannot be in hash table! */
839 	WARN_ON(!sk_unhashed(sk));
840 
841 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
842 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
843 
844 	sk->sk_prot->destroy(sk);
845 
846 	sk_stream_kill_queues(sk);
847 
848 	xfrm_sk_free_policy(sk);
849 
850 	sk_refcnt_debug_release(sk);
851 
852 	percpu_counter_dec(sk->sk_prot->orphan_count);
853 
854 	sock_put(sk);
855 }
856 EXPORT_SYMBOL(inet_csk_destroy_sock);
857 
858 /* This function allows to force a closure of a socket after the call to
859  * tcp/dccp_create_openreq_child().
860  */
861 void inet_csk_prepare_forced_close(struct sock *sk)
862 	__releases(&sk->sk_lock.slock)
863 {
864 	/* sk_clone_lock locked the socket and set refcnt to 2 */
865 	bh_unlock_sock(sk);
866 	sock_put(sk);
867 
868 	/* The below has to be done to allow calling inet_csk_destroy_sock */
869 	sock_set_flag(sk, SOCK_DEAD);
870 	percpu_counter_inc(sk->sk_prot->orphan_count);
871 	inet_sk(sk)->inet_num = 0;
872 }
873 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
874 
875 int inet_csk_listen_start(struct sock *sk, int backlog)
876 {
877 	struct inet_connection_sock *icsk = inet_csk(sk);
878 	struct inet_sock *inet = inet_sk(sk);
879 	int err = -EADDRINUSE;
880 
881 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
882 
883 	sk->sk_ack_backlog = 0;
884 	inet_csk_delack_init(sk);
885 
886 	/* There is race window here: we announce ourselves listening,
887 	 * but this transition is still not validated by get_port().
888 	 * It is OK, because this socket enters to hash table only
889 	 * after validation is complete.
890 	 */
891 	inet_sk_state_store(sk, TCP_LISTEN);
892 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
893 		inet->inet_sport = htons(inet->inet_num);
894 
895 		sk_dst_reset(sk);
896 		err = sk->sk_prot->hash(sk);
897 
898 		if (likely(!err))
899 			return 0;
900 	}
901 
902 	inet_sk_set_state(sk, TCP_CLOSE);
903 	return err;
904 }
905 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
906 
907 static void inet_child_forget(struct sock *sk, struct request_sock *req,
908 			      struct sock *child)
909 {
910 	sk->sk_prot->disconnect(child, O_NONBLOCK);
911 
912 	sock_orphan(child);
913 
914 	percpu_counter_inc(sk->sk_prot->orphan_count);
915 
916 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
917 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
918 		BUG_ON(sk != req->rsk_listener);
919 
920 		/* Paranoid, to prevent race condition if
921 		 * an inbound pkt destined for child is
922 		 * blocked by sock lock in tcp_v4_rcv().
923 		 * Also to satisfy an assertion in
924 		 * tcp_v4_destroy_sock().
925 		 */
926 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
927 	}
928 	inet_csk_destroy_sock(child);
929 }
930 
931 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
932 				      struct request_sock *req,
933 				      struct sock *child)
934 {
935 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
936 
937 	spin_lock(&queue->rskq_lock);
938 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
939 		inet_child_forget(sk, req, child);
940 		child = NULL;
941 	} else {
942 		req->sk = child;
943 		req->dl_next = NULL;
944 		if (queue->rskq_accept_head == NULL)
945 			WRITE_ONCE(queue->rskq_accept_head, req);
946 		else
947 			queue->rskq_accept_tail->dl_next = req;
948 		queue->rskq_accept_tail = req;
949 		sk_acceptq_added(sk);
950 	}
951 	spin_unlock(&queue->rskq_lock);
952 	return child;
953 }
954 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
955 
956 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
957 					 struct request_sock *req, bool own_req)
958 {
959 	if (own_req) {
960 		inet_csk_reqsk_queue_drop(sk, req);
961 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
962 		if (inet_csk_reqsk_queue_add(sk, req, child))
963 			return child;
964 	}
965 	/* Too bad, another child took ownership of the request, undo. */
966 	bh_unlock_sock(child);
967 	sock_put(child);
968 	return NULL;
969 }
970 EXPORT_SYMBOL(inet_csk_complete_hashdance);
971 
972 /*
973  *	This routine closes sockets which have been at least partially
974  *	opened, but not yet accepted.
975  */
976 void inet_csk_listen_stop(struct sock *sk)
977 {
978 	struct inet_connection_sock *icsk = inet_csk(sk);
979 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
980 	struct request_sock *next, *req;
981 
982 	/* Following specs, it would be better either to send FIN
983 	 * (and enter FIN-WAIT-1, it is normal close)
984 	 * or to send active reset (abort).
985 	 * Certainly, it is pretty dangerous while synflood, but it is
986 	 * bad justification for our negligence 8)
987 	 * To be honest, we are not able to make either
988 	 * of the variants now.			--ANK
989 	 */
990 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
991 		struct sock *child = req->sk;
992 
993 		local_bh_disable();
994 		bh_lock_sock(child);
995 		WARN_ON(sock_owned_by_user(child));
996 		sock_hold(child);
997 
998 		inet_child_forget(sk, req, child);
999 		reqsk_put(req);
1000 		bh_unlock_sock(child);
1001 		local_bh_enable();
1002 		sock_put(child);
1003 
1004 		cond_resched();
1005 	}
1006 	if (queue->fastopenq.rskq_rst_head) {
1007 		/* Free all the reqs queued in rskq_rst_head. */
1008 		spin_lock_bh(&queue->fastopenq.lock);
1009 		req = queue->fastopenq.rskq_rst_head;
1010 		queue->fastopenq.rskq_rst_head = NULL;
1011 		spin_unlock_bh(&queue->fastopenq.lock);
1012 		while (req != NULL) {
1013 			next = req->dl_next;
1014 			reqsk_put(req);
1015 			req = next;
1016 		}
1017 	}
1018 	WARN_ON_ONCE(sk->sk_ack_backlog);
1019 }
1020 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1021 
1022 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1023 {
1024 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1025 	const struct inet_sock *inet = inet_sk(sk);
1026 
1027 	sin->sin_family		= AF_INET;
1028 	sin->sin_addr.s_addr	= inet->inet_daddr;
1029 	sin->sin_port		= inet->inet_dport;
1030 }
1031 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1032 
1033 #ifdef CONFIG_COMPAT
1034 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1035 			       char __user *optval, int __user *optlen)
1036 {
1037 	const struct inet_connection_sock *icsk = inet_csk(sk);
1038 
1039 	if (icsk->icsk_af_ops->compat_getsockopt)
1040 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1041 							    optval, optlen);
1042 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1043 					     optval, optlen);
1044 }
1045 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1046 
1047 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1048 			       char __user *optval, unsigned int optlen)
1049 {
1050 	const struct inet_connection_sock *icsk = inet_csk(sk);
1051 
1052 	if (icsk->icsk_af_ops->compat_setsockopt)
1053 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1054 							    optval, optlen);
1055 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1056 					     optval, optlen);
1057 }
1058 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1059 #endif
1060 
1061 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1062 {
1063 	const struct inet_sock *inet = inet_sk(sk);
1064 	const struct ip_options_rcu *inet_opt;
1065 	__be32 daddr = inet->inet_daddr;
1066 	struct flowi4 *fl4;
1067 	struct rtable *rt;
1068 
1069 	rcu_read_lock();
1070 	inet_opt = rcu_dereference(inet->inet_opt);
1071 	if (inet_opt && inet_opt->opt.srr)
1072 		daddr = inet_opt->opt.faddr;
1073 	fl4 = &fl->u.ip4;
1074 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1075 				   inet->inet_saddr, inet->inet_dport,
1076 				   inet->inet_sport, sk->sk_protocol,
1077 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1078 	if (IS_ERR(rt))
1079 		rt = NULL;
1080 	if (rt)
1081 		sk_setup_caps(sk, &rt->dst);
1082 	rcu_read_unlock();
1083 
1084 	return &rt->dst;
1085 }
1086 
1087 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1088 {
1089 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1090 	struct inet_sock *inet = inet_sk(sk);
1091 
1092 	if (!dst) {
1093 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1094 		if (!dst)
1095 			goto out;
1096 	}
1097 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1098 
1099 	dst = __sk_dst_check(sk, 0);
1100 	if (!dst)
1101 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1102 out:
1103 	return dst;
1104 }
1105 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1106