1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Support for INET connection oriented protocols.
7  *
8  * Authors:	See the TCP sources
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or(at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18 
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29 
30 #ifdef INET_CSK_DEBUG
31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33 #endif
34 
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37  *                          only, and any IPv4 addresses if not IPv6 only
38  * match_wildcard == false: addresses must be exactly the same, i.e.
39  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40  *                          and 0.0.0.0 equals to 0.0.0.0 only
41  */
42 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43 				const struct in6_addr *sk2_rcv_saddr6,
44 				__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45 				bool sk1_ipv6only, bool sk2_ipv6only,
46 				bool match_wildcard)
47 {
48 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50 
51 	/* if both are mapped, treat as IPv4 */
52 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53 		if (!sk2_ipv6only) {
54 			if (sk1_rcv_saddr == sk2_rcv_saddr)
55 				return 1;
56 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57 				return match_wildcard;
58 		}
59 		return 0;
60 	}
61 
62 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63 		return 1;
64 
65 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67 		return 1;
68 
69 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71 		return 1;
72 
73 	if (sk2_rcv_saddr6 &&
74 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75 		return 1;
76 
77 	return 0;
78 }
79 #endif
80 
81 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
82  * match_wildcard == false: addresses must be exactly the same, i.e.
83  *                          0.0.0.0 only equals to 0.0.0.0
84  */
85 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86 				bool sk2_ipv6only, bool match_wildcard)
87 {
88 	if (!sk2_ipv6only) {
89 		if (sk1_rcv_saddr == sk2_rcv_saddr)
90 			return 1;
91 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92 			return match_wildcard;
93 	}
94 	return 0;
95 }
96 
97 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98 			 bool match_wildcard)
99 {
100 #if IS_ENABLED(CONFIG_IPV6)
101 	if (sk->sk_family == AF_INET6)
102 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103 					    inet6_rcv_saddr(sk2),
104 					    sk->sk_rcv_saddr,
105 					    sk2->sk_rcv_saddr,
106 					    ipv6_only_sock(sk),
107 					    ipv6_only_sock(sk2),
108 					    match_wildcard);
109 #endif
110 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111 				    ipv6_only_sock(sk2), match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114 
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117 	unsigned int seq;
118 
119 	do {
120 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121 
122 		*low = net->ipv4.ip_local_ports.range[0];
123 		*high = net->ipv4.ip_local_ports.range[1];
124 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127 
128 static int inet_csk_bind_conflict(const struct sock *sk,
129 				  const struct inet_bind_bucket *tb,
130 				  bool relax, bool reuseport_ok)
131 {
132 	struct sock *sk2;
133 	bool reuse = sk->sk_reuse;
134 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135 	kuid_t uid = sock_i_uid((struct sock *)sk);
136 
137 	/*
138 	 * Unlike other sk lookup places we do not check
139 	 * for sk_net here, since _all_ the socks listed
140 	 * in tb->owners list belong to the same net - the
141 	 * one this bucket belongs to.
142 	 */
143 
144 	sk_for_each_bound(sk2, &tb->owners) {
145 		if (sk != sk2 &&
146 		    (!sk->sk_bound_dev_if ||
147 		     !sk2->sk_bound_dev_if ||
148 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149 			if ((!reuse || !sk2->sk_reuse ||
150 			    sk2->sk_state == TCP_LISTEN) &&
151 			    (!reuseport || !sk2->sk_reuseport ||
152 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
153 			     (sk2->sk_state != TCP_TIME_WAIT &&
154 			     !uid_eq(uid, sock_i_uid(sk2))))) {
155 				if (inet_rcv_saddr_equal(sk, sk2, true))
156 					break;
157 			}
158 			if (!relax && reuse && sk2->sk_reuse &&
159 			    sk2->sk_state != TCP_LISTEN) {
160 				if (inet_rcv_saddr_equal(sk, sk2, true))
161 					break;
162 			}
163 		}
164 	}
165 	return sk2 != NULL;
166 }
167 
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176 	int port = 0;
177 	struct inet_bind_hashbucket *head;
178 	struct net *net = sock_net(sk);
179 	int i, low, high, attempt_half;
180 	struct inet_bind_bucket *tb;
181 	u32 remaining, offset;
182 
183 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184 other_half_scan:
185 	inet_get_local_port_range(net, &low, &high);
186 	high++; /* [32768, 60999] -> [32768, 61000[ */
187 	if (high - low < 4)
188 		attempt_half = 0;
189 	if (attempt_half) {
190 		int half = low + (((high - low) >> 2) << 1);
191 
192 		if (attempt_half == 1)
193 			high = half;
194 		else
195 			low = half;
196 	}
197 	remaining = high - low;
198 	if (likely(remaining > 1))
199 		remaining &= ~1U;
200 
201 	offset = prandom_u32() % remaining;
202 	/* __inet_hash_connect() favors ports having @low parity
203 	 * We do the opposite to not pollute connect() users.
204 	 */
205 	offset |= 1U;
206 
207 other_parity_scan:
208 	port = low + offset;
209 	for (i = 0; i < remaining; i += 2, port += 2) {
210 		if (unlikely(port >= high))
211 			port -= remaining;
212 		if (inet_is_local_reserved_port(net, port))
213 			continue;
214 		head = &hinfo->bhash[inet_bhashfn(net, port,
215 						  hinfo->bhash_size)];
216 		spin_lock_bh(&head->lock);
217 		inet_bind_bucket_for_each(tb, &head->chain)
218 			if (net_eq(ib_net(tb), net) && tb->port == port) {
219 				if (!inet_csk_bind_conflict(sk, tb, false, false))
220 					goto success;
221 				goto next_port;
222 			}
223 		tb = NULL;
224 		goto success;
225 next_port:
226 		spin_unlock_bh(&head->lock);
227 		cond_resched();
228 	}
229 
230 	offset--;
231 	if (!(offset & 1))
232 		goto other_parity_scan;
233 
234 	if (attempt_half == 1) {
235 		/* OK we now try the upper half of the range */
236 		attempt_half = 2;
237 		goto other_half_scan;
238 	}
239 	return NULL;
240 success:
241 	*port_ret = port;
242 	*tb_ret = tb;
243 	return head;
244 }
245 
246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247 				     struct sock *sk)
248 {
249 	kuid_t uid = sock_i_uid(sk);
250 
251 	if (tb->fastreuseport <= 0)
252 		return 0;
253 	if (!sk->sk_reuseport)
254 		return 0;
255 	if (rcu_access_pointer(sk->sk_reuseport_cb))
256 		return 0;
257 	if (!uid_eq(tb->fastuid, uid))
258 		return 0;
259 	/* We only need to check the rcv_saddr if this tb was once marked
260 	 * without fastreuseport and then was reset, as we can only know that
261 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262 	 * owners list.
263 	 */
264 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
265 		return 1;
266 #if IS_ENABLED(CONFIG_IPV6)
267 	if (tb->fast_sk_family == AF_INET6)
268 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269 					    inet6_rcv_saddr(sk),
270 					    tb->fast_rcv_saddr,
271 					    sk->sk_rcv_saddr,
272 					    tb->fast_ipv6_only,
273 					    ipv6_only_sock(sk), true);
274 #endif
275 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276 				    ipv6_only_sock(sk), true);
277 }
278 
279 /* Obtain a reference to a local port for the given sock,
280  * if snum is zero it means select any available local port.
281  * We try to allocate an odd port (and leave even ports for connect())
282  */
283 int inet_csk_get_port(struct sock *sk, unsigned short snum)
284 {
285 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287 	int ret = 1, port = snum;
288 	struct inet_bind_hashbucket *head;
289 	struct net *net = sock_net(sk);
290 	struct inet_bind_bucket *tb = NULL;
291 	kuid_t uid = sock_i_uid(sk);
292 
293 	if (!port) {
294 		head = inet_csk_find_open_port(sk, &tb, &port);
295 		if (!head)
296 			return ret;
297 		if (!tb)
298 			goto tb_not_found;
299 		goto success;
300 	}
301 	head = &hinfo->bhash[inet_bhashfn(net, port,
302 					  hinfo->bhash_size)];
303 	spin_lock_bh(&head->lock);
304 	inet_bind_bucket_for_each(tb, &head->chain)
305 		if (net_eq(ib_net(tb), net) && tb->port == port)
306 			goto tb_found;
307 tb_not_found:
308 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309 				     net, head, port);
310 	if (!tb)
311 		goto fail_unlock;
312 tb_found:
313 	if (!hlist_empty(&tb->owners)) {
314 		if (sk->sk_reuse == SK_FORCE_REUSE)
315 			goto success;
316 
317 		if ((tb->fastreuse > 0 && reuse) ||
318 		    sk_reuseport_match(tb, sk))
319 			goto success;
320 		if (inet_csk_bind_conflict(sk, tb, true, true))
321 			goto fail_unlock;
322 	}
323 success:
324 	if (hlist_empty(&tb->owners)) {
325 		tb->fastreuse = reuse;
326 		if (sk->sk_reuseport) {
327 			tb->fastreuseport = FASTREUSEPORT_ANY;
328 			tb->fastuid = uid;
329 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330 			tb->fast_ipv6_only = ipv6_only_sock(sk);
331 			tb->fast_sk_family = sk->sk_family;
332 #if IS_ENABLED(CONFIG_IPV6)
333 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
334 #endif
335 		} else {
336 			tb->fastreuseport = 0;
337 		}
338 	} else {
339 		if (!reuse)
340 			tb->fastreuse = 0;
341 		if (sk->sk_reuseport) {
342 			/* We didn't match or we don't have fastreuseport set on
343 			 * the tb, but we have sk_reuseport set on this socket
344 			 * and we know that there are no bind conflicts with
345 			 * this socket in this tb, so reset our tb's reuseport
346 			 * settings so that any subsequent sockets that match
347 			 * our current socket will be put on the fast path.
348 			 *
349 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
350 			 * do extra checking for all subsequent sk_reuseport
351 			 * socks.
352 			 */
353 			if (!sk_reuseport_match(tb, sk)) {
354 				tb->fastreuseport = FASTREUSEPORT_STRICT;
355 				tb->fastuid = uid;
356 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
357 				tb->fast_ipv6_only = ipv6_only_sock(sk);
358 				tb->fast_sk_family = sk->sk_family;
359 #if IS_ENABLED(CONFIG_IPV6)
360 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
361 #endif
362 			}
363 		} else {
364 			tb->fastreuseport = 0;
365 		}
366 	}
367 	if (!inet_csk(sk)->icsk_bind_hash)
368 		inet_bind_hash(sk, tb, port);
369 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
370 	ret = 0;
371 
372 fail_unlock:
373 	spin_unlock_bh(&head->lock);
374 	return ret;
375 }
376 EXPORT_SYMBOL_GPL(inet_csk_get_port);
377 
378 /*
379  * Wait for an incoming connection, avoid race conditions. This must be called
380  * with the socket locked.
381  */
382 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
383 {
384 	struct inet_connection_sock *icsk = inet_csk(sk);
385 	DEFINE_WAIT(wait);
386 	int err;
387 
388 	/*
389 	 * True wake-one mechanism for incoming connections: only
390 	 * one process gets woken up, not the 'whole herd'.
391 	 * Since we do not 'race & poll' for established sockets
392 	 * anymore, the common case will execute the loop only once.
393 	 *
394 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
395 	 * after any current non-exclusive waiters, and we know that
396 	 * it will always _stay_ after any new non-exclusive waiters
397 	 * because all non-exclusive waiters are added at the
398 	 * beginning of the wait-queue. As such, it's ok to "drop"
399 	 * our exclusiveness temporarily when we get woken up without
400 	 * having to remove and re-insert us on the wait queue.
401 	 */
402 	for (;;) {
403 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
404 					  TASK_INTERRUPTIBLE);
405 		release_sock(sk);
406 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
407 			timeo = schedule_timeout(timeo);
408 		sched_annotate_sleep();
409 		lock_sock(sk);
410 		err = 0;
411 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
412 			break;
413 		err = -EINVAL;
414 		if (sk->sk_state != TCP_LISTEN)
415 			break;
416 		err = sock_intr_errno(timeo);
417 		if (signal_pending(current))
418 			break;
419 		err = -EAGAIN;
420 		if (!timeo)
421 			break;
422 	}
423 	finish_wait(sk_sleep(sk), &wait);
424 	return err;
425 }
426 
427 /*
428  * This will accept the next outstanding connection.
429  */
430 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
431 {
432 	struct inet_connection_sock *icsk = inet_csk(sk);
433 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
434 	struct request_sock *req;
435 	struct sock *newsk;
436 	int error;
437 
438 	lock_sock(sk);
439 
440 	/* We need to make sure that this socket is listening,
441 	 * and that it has something pending.
442 	 */
443 	error = -EINVAL;
444 	if (sk->sk_state != TCP_LISTEN)
445 		goto out_err;
446 
447 	/* Find already established connection */
448 	if (reqsk_queue_empty(queue)) {
449 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
450 
451 		/* If this is a non blocking socket don't sleep */
452 		error = -EAGAIN;
453 		if (!timeo)
454 			goto out_err;
455 
456 		error = inet_csk_wait_for_connect(sk, timeo);
457 		if (error)
458 			goto out_err;
459 	}
460 	req = reqsk_queue_remove(queue, sk);
461 	newsk = req->sk;
462 
463 	if (sk->sk_protocol == IPPROTO_TCP &&
464 	    tcp_rsk(req)->tfo_listener) {
465 		spin_lock_bh(&queue->fastopenq.lock);
466 		if (tcp_rsk(req)->tfo_listener) {
467 			/* We are still waiting for the final ACK from 3WHS
468 			 * so can't free req now. Instead, we set req->sk to
469 			 * NULL to signify that the child socket is taken
470 			 * so reqsk_fastopen_remove() will free the req
471 			 * when 3WHS finishes (or is aborted).
472 			 */
473 			req->sk = NULL;
474 			req = NULL;
475 		}
476 		spin_unlock_bh(&queue->fastopenq.lock);
477 	}
478 out:
479 	release_sock(sk);
480 	if (req)
481 		reqsk_put(req);
482 	return newsk;
483 out_err:
484 	newsk = NULL;
485 	req = NULL;
486 	*err = error;
487 	goto out;
488 }
489 EXPORT_SYMBOL(inet_csk_accept);
490 
491 /*
492  * Using different timers for retransmit, delayed acks and probes
493  * We may wish use just one timer maintaining a list of expire jiffies
494  * to optimize.
495  */
496 void inet_csk_init_xmit_timers(struct sock *sk,
497 			       void (*retransmit_handler)(unsigned long),
498 			       void (*delack_handler)(unsigned long),
499 			       void (*keepalive_handler)(unsigned long))
500 {
501 	struct inet_connection_sock *icsk = inet_csk(sk);
502 
503 	setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler,
504 			(unsigned long)sk);
505 	setup_timer(&icsk->icsk_delack_timer, delack_handler,
506 			(unsigned long)sk);
507 	setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk);
508 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
509 }
510 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
511 
512 void inet_csk_clear_xmit_timers(struct sock *sk)
513 {
514 	struct inet_connection_sock *icsk = inet_csk(sk);
515 
516 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
517 
518 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
519 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
520 	sk_stop_timer(sk, &sk->sk_timer);
521 }
522 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
523 
524 void inet_csk_delete_keepalive_timer(struct sock *sk)
525 {
526 	sk_stop_timer(sk, &sk->sk_timer);
527 }
528 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
529 
530 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
531 {
532 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
533 }
534 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
535 
536 struct dst_entry *inet_csk_route_req(const struct sock *sk,
537 				     struct flowi4 *fl4,
538 				     const struct request_sock *req)
539 {
540 	const struct inet_request_sock *ireq = inet_rsk(req);
541 	struct net *net = read_pnet(&ireq->ireq_net);
542 	struct ip_options_rcu *opt = ireq->opt;
543 	struct rtable *rt;
544 
545 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
546 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
547 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
548 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
549 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
550 			   htons(ireq->ir_num), sk->sk_uid);
551 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
552 	rt = ip_route_output_flow(net, fl4, sk);
553 	if (IS_ERR(rt))
554 		goto no_route;
555 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
556 		goto route_err;
557 	return &rt->dst;
558 
559 route_err:
560 	ip_rt_put(rt);
561 no_route:
562 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
563 	return NULL;
564 }
565 EXPORT_SYMBOL_GPL(inet_csk_route_req);
566 
567 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
568 					    struct sock *newsk,
569 					    const struct request_sock *req)
570 {
571 	const struct inet_request_sock *ireq = inet_rsk(req);
572 	struct net *net = read_pnet(&ireq->ireq_net);
573 	struct inet_sock *newinet = inet_sk(newsk);
574 	struct ip_options_rcu *opt;
575 	struct flowi4 *fl4;
576 	struct rtable *rt;
577 
578 	fl4 = &newinet->cork.fl.u.ip4;
579 
580 	rcu_read_lock();
581 	opt = rcu_dereference(newinet->inet_opt);
582 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
583 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
584 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
585 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
586 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
587 			   htons(ireq->ir_num), sk->sk_uid);
588 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
589 	rt = ip_route_output_flow(net, fl4, sk);
590 	if (IS_ERR(rt))
591 		goto no_route;
592 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
593 		goto route_err;
594 	rcu_read_unlock();
595 	return &rt->dst;
596 
597 route_err:
598 	ip_rt_put(rt);
599 no_route:
600 	rcu_read_unlock();
601 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
602 	return NULL;
603 }
604 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
605 
606 #if IS_ENABLED(CONFIG_IPV6)
607 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
608 #else
609 #define AF_INET_FAMILY(fam) true
610 #endif
611 
612 /* Decide when to expire the request and when to resend SYN-ACK */
613 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
614 				  const int max_retries,
615 				  const u8 rskq_defer_accept,
616 				  int *expire, int *resend)
617 {
618 	if (!rskq_defer_accept) {
619 		*expire = req->num_timeout >= thresh;
620 		*resend = 1;
621 		return;
622 	}
623 	*expire = req->num_timeout >= thresh &&
624 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
625 	/*
626 	 * Do not resend while waiting for data after ACK,
627 	 * start to resend on end of deferring period to give
628 	 * last chance for data or ACK to create established socket.
629 	 */
630 	*resend = !inet_rsk(req)->acked ||
631 		  req->num_timeout >= rskq_defer_accept - 1;
632 }
633 
634 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
635 {
636 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
637 
638 	if (!err)
639 		req->num_retrans++;
640 	return err;
641 }
642 EXPORT_SYMBOL(inet_rtx_syn_ack);
643 
644 /* return true if req was found in the ehash table */
645 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
646 			       struct request_sock *req)
647 {
648 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
649 	bool found = false;
650 
651 	if (sk_hashed(req_to_sk(req))) {
652 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
653 
654 		spin_lock(lock);
655 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
656 		spin_unlock(lock);
657 	}
658 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
659 		reqsk_put(req);
660 	return found;
661 }
662 
663 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
664 {
665 	if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
666 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
667 		reqsk_put(req);
668 	}
669 }
670 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
671 
672 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
673 {
674 	inet_csk_reqsk_queue_drop(sk, req);
675 	reqsk_put(req);
676 }
677 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
678 
679 static void reqsk_timer_handler(unsigned long data)
680 {
681 	struct request_sock *req = (struct request_sock *)data;
682 	struct sock *sk_listener = req->rsk_listener;
683 	struct net *net = sock_net(sk_listener);
684 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
685 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
686 	int qlen, expire = 0, resend = 0;
687 	int max_retries, thresh;
688 	u8 defer_accept;
689 
690 	if (sk_state_load(sk_listener) != TCP_LISTEN)
691 		goto drop;
692 
693 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
694 	thresh = max_retries;
695 	/* Normally all the openreqs are young and become mature
696 	 * (i.e. converted to established socket) for first timeout.
697 	 * If synack was not acknowledged for 1 second, it means
698 	 * one of the following things: synack was lost, ack was lost,
699 	 * rtt is high or nobody planned to ack (i.e. synflood).
700 	 * When server is a bit loaded, queue is populated with old
701 	 * open requests, reducing effective size of queue.
702 	 * When server is well loaded, queue size reduces to zero
703 	 * after several minutes of work. It is not synflood,
704 	 * it is normal operation. The solution is pruning
705 	 * too old entries overriding normal timeout, when
706 	 * situation becomes dangerous.
707 	 *
708 	 * Essentially, we reserve half of room for young
709 	 * embrions; and abort old ones without pity, if old
710 	 * ones are about to clog our table.
711 	 */
712 	qlen = reqsk_queue_len(queue);
713 	if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
714 		int young = reqsk_queue_len_young(queue) << 1;
715 
716 		while (thresh > 2) {
717 			if (qlen < young)
718 				break;
719 			thresh--;
720 			young <<= 1;
721 		}
722 	}
723 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
724 	if (defer_accept)
725 		max_retries = defer_accept;
726 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
727 		       &expire, &resend);
728 	req->rsk_ops->syn_ack_timeout(req);
729 	if (!expire &&
730 	    (!resend ||
731 	     !inet_rtx_syn_ack(sk_listener, req) ||
732 	     inet_rsk(req)->acked)) {
733 		unsigned long timeo;
734 
735 		if (req->num_timeout++ == 0)
736 			atomic_dec(&queue->young);
737 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
738 		mod_timer(&req->rsk_timer, jiffies + timeo);
739 		return;
740 	}
741 drop:
742 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
743 }
744 
745 static void reqsk_queue_hash_req(struct request_sock *req,
746 				 unsigned long timeout)
747 {
748 	req->num_retrans = 0;
749 	req->num_timeout = 0;
750 	req->sk = NULL;
751 
752 	setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler,
753 			    (unsigned long)req);
754 	mod_timer(&req->rsk_timer, jiffies + timeout);
755 
756 	inet_ehash_insert(req_to_sk(req), NULL);
757 	/* before letting lookups find us, make sure all req fields
758 	 * are committed to memory and refcnt initialized.
759 	 */
760 	smp_wmb();
761 	refcount_set(&req->rsk_refcnt, 2 + 1);
762 }
763 
764 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
765 				   unsigned long timeout)
766 {
767 	reqsk_queue_hash_req(req, timeout);
768 	inet_csk_reqsk_queue_added(sk);
769 }
770 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
771 
772 /**
773  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
774  *	@sk: the socket to clone
775  *	@req: request_sock
776  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
777  *
778  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
779  */
780 struct sock *inet_csk_clone_lock(const struct sock *sk,
781 				 const struct request_sock *req,
782 				 const gfp_t priority)
783 {
784 	struct sock *newsk = sk_clone_lock(sk, priority);
785 
786 	if (newsk) {
787 		struct inet_connection_sock *newicsk = inet_csk(newsk);
788 
789 		newsk->sk_state = TCP_SYN_RECV;
790 		newicsk->icsk_bind_hash = NULL;
791 
792 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
793 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
794 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
795 
796 		/* listeners have SOCK_RCU_FREE, not the children */
797 		sock_reset_flag(newsk, SOCK_RCU_FREE);
798 
799 		inet_sk(newsk)->mc_list = NULL;
800 
801 		newsk->sk_mark = inet_rsk(req)->ir_mark;
802 		atomic64_set(&newsk->sk_cookie,
803 			     atomic64_read(&inet_rsk(req)->ir_cookie));
804 
805 		newicsk->icsk_retransmits = 0;
806 		newicsk->icsk_backoff	  = 0;
807 		newicsk->icsk_probes_out  = 0;
808 
809 		/* Deinitialize accept_queue to trap illegal accesses. */
810 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
811 
812 		security_inet_csk_clone(newsk, req);
813 	}
814 	return newsk;
815 }
816 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
817 
818 /*
819  * At this point, there should be no process reference to this
820  * socket, and thus no user references at all.  Therefore we
821  * can assume the socket waitqueue is inactive and nobody will
822  * try to jump onto it.
823  */
824 void inet_csk_destroy_sock(struct sock *sk)
825 {
826 	WARN_ON(sk->sk_state != TCP_CLOSE);
827 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
828 
829 	/* It cannot be in hash table! */
830 	WARN_ON(!sk_unhashed(sk));
831 
832 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
833 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
834 
835 	sk->sk_prot->destroy(sk);
836 
837 	sk_stream_kill_queues(sk);
838 
839 	xfrm_sk_free_policy(sk);
840 
841 	sk_refcnt_debug_release(sk);
842 
843 	percpu_counter_dec(sk->sk_prot->orphan_count);
844 
845 	sock_put(sk);
846 }
847 EXPORT_SYMBOL(inet_csk_destroy_sock);
848 
849 /* This function allows to force a closure of a socket after the call to
850  * tcp/dccp_create_openreq_child().
851  */
852 void inet_csk_prepare_forced_close(struct sock *sk)
853 	__releases(&sk->sk_lock.slock)
854 {
855 	/* sk_clone_lock locked the socket and set refcnt to 2 */
856 	bh_unlock_sock(sk);
857 	sock_put(sk);
858 
859 	/* The below has to be done to allow calling inet_csk_destroy_sock */
860 	sock_set_flag(sk, SOCK_DEAD);
861 	percpu_counter_inc(sk->sk_prot->orphan_count);
862 	inet_sk(sk)->inet_num = 0;
863 }
864 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
865 
866 int inet_csk_listen_start(struct sock *sk, int backlog)
867 {
868 	struct inet_connection_sock *icsk = inet_csk(sk);
869 	struct inet_sock *inet = inet_sk(sk);
870 	int err = -EADDRINUSE;
871 
872 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
873 
874 	sk->sk_max_ack_backlog = backlog;
875 	sk->sk_ack_backlog = 0;
876 	inet_csk_delack_init(sk);
877 
878 	/* There is race window here: we announce ourselves listening,
879 	 * but this transition is still not validated by get_port().
880 	 * It is OK, because this socket enters to hash table only
881 	 * after validation is complete.
882 	 */
883 	sk_state_store(sk, TCP_LISTEN);
884 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
885 		inet->inet_sport = htons(inet->inet_num);
886 
887 		sk_dst_reset(sk);
888 		err = sk->sk_prot->hash(sk);
889 
890 		if (likely(!err))
891 			return 0;
892 	}
893 
894 	sk->sk_state = TCP_CLOSE;
895 	return err;
896 }
897 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
898 
899 static void inet_child_forget(struct sock *sk, struct request_sock *req,
900 			      struct sock *child)
901 {
902 	sk->sk_prot->disconnect(child, O_NONBLOCK);
903 
904 	sock_orphan(child);
905 
906 	percpu_counter_inc(sk->sk_prot->orphan_count);
907 
908 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
909 		BUG_ON(tcp_sk(child)->fastopen_rsk != req);
910 		BUG_ON(sk != req->rsk_listener);
911 
912 		/* Paranoid, to prevent race condition if
913 		 * an inbound pkt destined for child is
914 		 * blocked by sock lock in tcp_v4_rcv().
915 		 * Also to satisfy an assertion in
916 		 * tcp_v4_destroy_sock().
917 		 */
918 		tcp_sk(child)->fastopen_rsk = NULL;
919 	}
920 	inet_csk_destroy_sock(child);
921 }
922 
923 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
924 				      struct request_sock *req,
925 				      struct sock *child)
926 {
927 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
928 
929 	spin_lock(&queue->rskq_lock);
930 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
931 		inet_child_forget(sk, req, child);
932 		child = NULL;
933 	} else {
934 		req->sk = child;
935 		req->dl_next = NULL;
936 		if (queue->rskq_accept_head == NULL)
937 			queue->rskq_accept_head = req;
938 		else
939 			queue->rskq_accept_tail->dl_next = req;
940 		queue->rskq_accept_tail = req;
941 		sk_acceptq_added(sk);
942 	}
943 	spin_unlock(&queue->rskq_lock);
944 	return child;
945 }
946 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
947 
948 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
949 					 struct request_sock *req, bool own_req)
950 {
951 	if (own_req) {
952 		inet_csk_reqsk_queue_drop(sk, req);
953 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
954 		if (inet_csk_reqsk_queue_add(sk, req, child))
955 			return child;
956 	}
957 	/* Too bad, another child took ownership of the request, undo. */
958 	bh_unlock_sock(child);
959 	sock_put(child);
960 	return NULL;
961 }
962 EXPORT_SYMBOL(inet_csk_complete_hashdance);
963 
964 /*
965  *	This routine closes sockets which have been at least partially
966  *	opened, but not yet accepted.
967  */
968 void inet_csk_listen_stop(struct sock *sk)
969 {
970 	struct inet_connection_sock *icsk = inet_csk(sk);
971 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
972 	struct request_sock *next, *req;
973 
974 	/* Following specs, it would be better either to send FIN
975 	 * (and enter FIN-WAIT-1, it is normal close)
976 	 * or to send active reset (abort).
977 	 * Certainly, it is pretty dangerous while synflood, but it is
978 	 * bad justification for our negligence 8)
979 	 * To be honest, we are not able to make either
980 	 * of the variants now.			--ANK
981 	 */
982 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
983 		struct sock *child = req->sk;
984 
985 		local_bh_disable();
986 		bh_lock_sock(child);
987 		WARN_ON(sock_owned_by_user(child));
988 		sock_hold(child);
989 
990 		inet_child_forget(sk, req, child);
991 		reqsk_put(req);
992 		bh_unlock_sock(child);
993 		local_bh_enable();
994 		sock_put(child);
995 
996 		cond_resched();
997 	}
998 	if (queue->fastopenq.rskq_rst_head) {
999 		/* Free all the reqs queued in rskq_rst_head. */
1000 		spin_lock_bh(&queue->fastopenq.lock);
1001 		req = queue->fastopenq.rskq_rst_head;
1002 		queue->fastopenq.rskq_rst_head = NULL;
1003 		spin_unlock_bh(&queue->fastopenq.lock);
1004 		while (req != NULL) {
1005 			next = req->dl_next;
1006 			reqsk_put(req);
1007 			req = next;
1008 		}
1009 	}
1010 	WARN_ON_ONCE(sk->sk_ack_backlog);
1011 }
1012 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1013 
1014 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1015 {
1016 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1017 	const struct inet_sock *inet = inet_sk(sk);
1018 
1019 	sin->sin_family		= AF_INET;
1020 	sin->sin_addr.s_addr	= inet->inet_daddr;
1021 	sin->sin_port		= inet->inet_dport;
1022 }
1023 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1024 
1025 #ifdef CONFIG_COMPAT
1026 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1027 			       char __user *optval, int __user *optlen)
1028 {
1029 	const struct inet_connection_sock *icsk = inet_csk(sk);
1030 
1031 	if (icsk->icsk_af_ops->compat_getsockopt)
1032 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1033 							    optval, optlen);
1034 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1035 					     optval, optlen);
1036 }
1037 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1038 
1039 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1040 			       char __user *optval, unsigned int optlen)
1041 {
1042 	const struct inet_connection_sock *icsk = inet_csk(sk);
1043 
1044 	if (icsk->icsk_af_ops->compat_setsockopt)
1045 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1046 							    optval, optlen);
1047 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1048 					     optval, optlen);
1049 }
1050 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1051 #endif
1052 
1053 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1054 {
1055 	const struct inet_sock *inet = inet_sk(sk);
1056 	const struct ip_options_rcu *inet_opt;
1057 	__be32 daddr = inet->inet_daddr;
1058 	struct flowi4 *fl4;
1059 	struct rtable *rt;
1060 
1061 	rcu_read_lock();
1062 	inet_opt = rcu_dereference(inet->inet_opt);
1063 	if (inet_opt && inet_opt->opt.srr)
1064 		daddr = inet_opt->opt.faddr;
1065 	fl4 = &fl->u.ip4;
1066 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1067 				   inet->inet_saddr, inet->inet_dport,
1068 				   inet->inet_sport, sk->sk_protocol,
1069 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1070 	if (IS_ERR(rt))
1071 		rt = NULL;
1072 	if (rt)
1073 		sk_setup_caps(sk, &rt->dst);
1074 	rcu_read_unlock();
1075 
1076 	return &rt->dst;
1077 }
1078 
1079 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1080 {
1081 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1082 	struct inet_sock *inet = inet_sk(sk);
1083 
1084 	if (!dst) {
1085 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1086 		if (!dst)
1087 			goto out;
1088 	}
1089 	dst->ops->update_pmtu(dst, sk, NULL, mtu);
1090 
1091 	dst = __sk_dst_check(sk, 0);
1092 	if (!dst)
1093 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1094 out:
1095 	return dst;
1096 }
1097 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1098