1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Support for INET connection oriented protocols. 8 * 9 * Authors: See the TCP sources 10 */ 11 12 #include <linux/module.h> 13 #include <linux/jhash.h> 14 15 #include <net/inet_connection_sock.h> 16 #include <net/inet_hashtables.h> 17 #include <net/inet_timewait_sock.h> 18 #include <net/ip.h> 19 #include <net/route.h> 20 #include <net/tcp_states.h> 21 #include <net/xfrm.h> 22 #include <net/tcp.h> 23 #include <net/sock_reuseport.h> 24 #include <net/addrconf.h> 25 26 #if IS_ENABLED(CONFIG_IPV6) 27 /* match_sk*_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses 28 * if IPv6 only, and any IPv4 addresses 29 * if not IPv6 only 30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 31 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 32 * and 0.0.0.0 equals to 0.0.0.0 only 33 */ 34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 35 const struct in6_addr *sk2_rcv_saddr6, 36 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 37 bool sk1_ipv6only, bool sk2_ipv6only, 38 bool match_sk1_wildcard, 39 bool match_sk2_wildcard) 40 { 41 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 42 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 43 44 /* if both are mapped, treat as IPv4 */ 45 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 46 if (!sk2_ipv6only) { 47 if (sk1_rcv_saddr == sk2_rcv_saddr) 48 return true; 49 return (match_sk1_wildcard && !sk1_rcv_saddr) || 50 (match_sk2_wildcard && !sk2_rcv_saddr); 51 } 52 return false; 53 } 54 55 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 56 return true; 57 58 if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard && 59 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 60 return true; 61 62 if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard && 63 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 64 return true; 65 66 if (sk2_rcv_saddr6 && 67 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 68 return true; 69 70 return false; 71 } 72 #endif 73 74 /* match_sk*_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e. 76 * 0.0.0.0 only equals to 0.0.0.0 77 */ 78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 79 bool sk2_ipv6only, bool match_sk1_wildcard, 80 bool match_sk2_wildcard) 81 { 82 if (!sk2_ipv6only) { 83 if (sk1_rcv_saddr == sk2_rcv_saddr) 84 return true; 85 return (match_sk1_wildcard && !sk1_rcv_saddr) || 86 (match_sk2_wildcard && !sk2_rcv_saddr); 87 } 88 return false; 89 } 90 91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 92 bool match_wildcard) 93 { 94 #if IS_ENABLED(CONFIG_IPV6) 95 if (sk->sk_family == AF_INET6) 96 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 97 inet6_rcv_saddr(sk2), 98 sk->sk_rcv_saddr, 99 sk2->sk_rcv_saddr, 100 ipv6_only_sock(sk), 101 ipv6_only_sock(sk2), 102 match_wildcard, 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard, 107 match_wildcard); 108 } 109 EXPORT_SYMBOL(inet_rcv_saddr_equal); 110 111 bool inet_rcv_saddr_any(const struct sock *sk) 112 { 113 #if IS_ENABLED(CONFIG_IPV6) 114 if (sk->sk_family == AF_INET6) 115 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 116 #endif 117 return !sk->sk_rcv_saddr; 118 } 119 120 void inet_get_local_port_range(const struct net *net, int *low, int *high) 121 { 122 unsigned int seq; 123 124 do { 125 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 126 127 *low = net->ipv4.ip_local_ports.range[0]; 128 *high = net->ipv4.ip_local_ports.range[1]; 129 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 130 } 131 EXPORT_SYMBOL(inet_get_local_port_range); 132 133 void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high) 134 { 135 const struct inet_sock *inet = inet_sk(sk); 136 const struct net *net = sock_net(sk); 137 int lo, hi, sk_lo, sk_hi; 138 139 inet_get_local_port_range(net, &lo, &hi); 140 141 sk_lo = inet->local_port_range.lo; 142 sk_hi = inet->local_port_range.hi; 143 144 if (unlikely(lo <= sk_lo && sk_lo <= hi)) 145 lo = sk_lo; 146 if (unlikely(lo <= sk_hi && sk_hi <= hi)) 147 hi = sk_hi; 148 149 *low = lo; 150 *high = hi; 151 } 152 EXPORT_SYMBOL(inet_sk_get_local_port_range); 153 154 static bool inet_use_bhash2_on_bind(const struct sock *sk) 155 { 156 #if IS_ENABLED(CONFIG_IPV6) 157 if (sk->sk_family == AF_INET6) { 158 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr); 159 160 return addr_type != IPV6_ADDR_ANY && 161 addr_type != IPV6_ADDR_MAPPED; 162 } 163 #endif 164 return sk->sk_rcv_saddr != htonl(INADDR_ANY); 165 } 166 167 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2, 168 kuid_t sk_uid, bool relax, 169 bool reuseport_cb_ok, bool reuseport_ok) 170 { 171 int bound_dev_if2; 172 173 if (sk == sk2) 174 return false; 175 176 bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if); 177 178 if (!sk->sk_bound_dev_if || !bound_dev_if2 || 179 sk->sk_bound_dev_if == bound_dev_if2) { 180 if (sk->sk_reuse && sk2->sk_reuse && 181 sk2->sk_state != TCP_LISTEN) { 182 if (!relax || (!reuseport_ok && sk->sk_reuseport && 183 sk2->sk_reuseport && reuseport_cb_ok && 184 (sk2->sk_state == TCP_TIME_WAIT || 185 uid_eq(sk_uid, sock_i_uid(sk2))))) 186 return true; 187 } else if (!reuseport_ok || !sk->sk_reuseport || 188 !sk2->sk_reuseport || !reuseport_cb_ok || 189 (sk2->sk_state != TCP_TIME_WAIT && 190 !uid_eq(sk_uid, sock_i_uid(sk2)))) { 191 return true; 192 } 193 } 194 return false; 195 } 196 197 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2, 198 kuid_t sk_uid, bool relax, 199 bool reuseport_cb_ok, bool reuseport_ok) 200 { 201 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2)) 202 return false; 203 204 return inet_bind_conflict(sk, sk2, sk_uid, relax, 205 reuseport_cb_ok, reuseport_ok); 206 } 207 208 static bool inet_bhash2_conflict(const struct sock *sk, 209 const struct inet_bind2_bucket *tb2, 210 kuid_t sk_uid, 211 bool relax, bool reuseport_cb_ok, 212 bool reuseport_ok) 213 { 214 struct inet_timewait_sock *tw2; 215 struct sock *sk2; 216 217 sk_for_each_bound_bhash2(sk2, &tb2->owners) { 218 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 219 reuseport_cb_ok, reuseport_ok)) 220 return true; 221 } 222 223 twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) { 224 sk2 = (struct sock *)tw2; 225 226 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax, 227 reuseport_cb_ok, reuseport_ok)) 228 return true; 229 } 230 231 return false; 232 } 233 234 /* This should be called only when the tb and tb2 hashbuckets' locks are held */ 235 static int inet_csk_bind_conflict(const struct sock *sk, 236 const struct inet_bind_bucket *tb, 237 const struct inet_bind2_bucket *tb2, /* may be null */ 238 bool relax, bool reuseport_ok) 239 { 240 bool reuseport_cb_ok; 241 struct sock_reuseport *reuseport_cb; 242 kuid_t uid = sock_i_uid((struct sock *)sk); 243 244 rcu_read_lock(); 245 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 246 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 247 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 248 rcu_read_unlock(); 249 250 /* 251 * Unlike other sk lookup places we do not check 252 * for sk_net here, since _all_ the socks listed 253 * in tb->owners and tb2->owners list belong 254 * to the same net - the one this bucket belongs to. 255 */ 256 257 if (!inet_use_bhash2_on_bind(sk)) { 258 struct sock *sk2; 259 260 sk_for_each_bound(sk2, &tb->owners) 261 if (inet_bind_conflict(sk, sk2, uid, relax, 262 reuseport_cb_ok, reuseport_ok) && 263 inet_rcv_saddr_equal(sk, sk2, true)) 264 return true; 265 266 return false; 267 } 268 269 /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if 270 * ipv4) should have been checked already. We need to do these two 271 * checks separately because their spinlocks have to be acquired/released 272 * independently of each other, to prevent possible deadlocks 273 */ 274 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, 275 reuseport_ok); 276 } 277 278 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or 279 * INADDR_ANY (if ipv4) socket. 280 * 281 * Caller must hold bhash hashbucket lock with local bh disabled, to protect 282 * against concurrent binds on the port for addr any 283 */ 284 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev, 285 bool relax, bool reuseport_ok) 286 { 287 kuid_t uid = sock_i_uid((struct sock *)sk); 288 const struct net *net = sock_net(sk); 289 struct sock_reuseport *reuseport_cb; 290 struct inet_bind_hashbucket *head2; 291 struct inet_bind2_bucket *tb2; 292 bool conflict = false; 293 bool reuseport_cb_ok; 294 295 rcu_read_lock(); 296 reuseport_cb = rcu_dereference(sk->sk_reuseport_cb); 297 /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */ 298 reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks); 299 rcu_read_unlock(); 300 301 head2 = inet_bhash2_addr_any_hashbucket(sk, net, port); 302 303 spin_lock(&head2->lock); 304 305 inet_bind_bucket_for_each(tb2, &head2->chain) { 306 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk)) 307 continue; 308 309 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok)) 310 continue; 311 312 conflict = true; 313 break; 314 } 315 316 spin_unlock(&head2->lock); 317 318 return conflict; 319 } 320 321 /* 322 * Find an open port number for the socket. Returns with the 323 * inet_bind_hashbucket locks held if successful. 324 */ 325 static struct inet_bind_hashbucket * 326 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret, 327 struct inet_bind2_bucket **tb2_ret, 328 struct inet_bind_hashbucket **head2_ret, int *port_ret) 329 { 330 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 331 int i, low, high, attempt_half, port, l3mdev; 332 struct inet_bind_hashbucket *head, *head2; 333 struct net *net = sock_net(sk); 334 struct inet_bind2_bucket *tb2; 335 struct inet_bind_bucket *tb; 336 u32 remaining, offset; 337 bool relax = false; 338 339 l3mdev = inet_sk_bound_l3mdev(sk); 340 ports_exhausted: 341 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 342 other_half_scan: 343 inet_sk_get_local_port_range(sk, &low, &high); 344 high++; /* [32768, 60999] -> [32768, 61000[ */ 345 if (high - low < 4) 346 attempt_half = 0; 347 if (attempt_half) { 348 int half = low + (((high - low) >> 2) << 1); 349 350 if (attempt_half == 1) 351 high = half; 352 else 353 low = half; 354 } 355 remaining = high - low; 356 if (likely(remaining > 1)) 357 remaining &= ~1U; 358 359 offset = get_random_u32_below(remaining); 360 /* __inet_hash_connect() favors ports having @low parity 361 * We do the opposite to not pollute connect() users. 362 */ 363 offset |= 1U; 364 365 other_parity_scan: 366 port = low + offset; 367 for (i = 0; i < remaining; i += 2, port += 2) { 368 if (unlikely(port >= high)) 369 port -= remaining; 370 if (inet_is_local_reserved_port(net, port)) 371 continue; 372 head = &hinfo->bhash[inet_bhashfn(net, port, 373 hinfo->bhash_size)]; 374 spin_lock_bh(&head->lock); 375 if (inet_use_bhash2_on_bind(sk)) { 376 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false)) 377 goto next_port; 378 } 379 380 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 381 spin_lock(&head2->lock); 382 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 383 inet_bind_bucket_for_each(tb, &head->chain) 384 if (inet_bind_bucket_match(tb, net, port, l3mdev)) { 385 if (!inet_csk_bind_conflict(sk, tb, tb2, 386 relax, false)) 387 goto success; 388 spin_unlock(&head2->lock); 389 goto next_port; 390 } 391 tb = NULL; 392 goto success; 393 next_port: 394 spin_unlock_bh(&head->lock); 395 cond_resched(); 396 } 397 398 offset--; 399 if (!(offset & 1)) 400 goto other_parity_scan; 401 402 if (attempt_half == 1) { 403 /* OK we now try the upper half of the range */ 404 attempt_half = 2; 405 goto other_half_scan; 406 } 407 408 if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) { 409 /* We still have a chance to connect to different destinations */ 410 relax = true; 411 goto ports_exhausted; 412 } 413 return NULL; 414 success: 415 *port_ret = port; 416 *tb_ret = tb; 417 *tb2_ret = tb2; 418 *head2_ret = head2; 419 return head; 420 } 421 422 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 423 struct sock *sk) 424 { 425 kuid_t uid = sock_i_uid(sk); 426 427 if (tb->fastreuseport <= 0) 428 return 0; 429 if (!sk->sk_reuseport) 430 return 0; 431 if (rcu_access_pointer(sk->sk_reuseport_cb)) 432 return 0; 433 if (!uid_eq(tb->fastuid, uid)) 434 return 0; 435 /* We only need to check the rcv_saddr if this tb was once marked 436 * without fastreuseport and then was reset, as we can only know that 437 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 438 * owners list. 439 */ 440 if (tb->fastreuseport == FASTREUSEPORT_ANY) 441 return 1; 442 #if IS_ENABLED(CONFIG_IPV6) 443 if (tb->fast_sk_family == AF_INET6) 444 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 445 inet6_rcv_saddr(sk), 446 tb->fast_rcv_saddr, 447 sk->sk_rcv_saddr, 448 tb->fast_ipv6_only, 449 ipv6_only_sock(sk), true, false); 450 #endif 451 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 452 ipv6_only_sock(sk), true, false); 453 } 454 455 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb, 456 struct sock *sk) 457 { 458 kuid_t uid = sock_i_uid(sk); 459 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 460 461 if (hlist_empty(&tb->owners)) { 462 tb->fastreuse = reuse; 463 if (sk->sk_reuseport) { 464 tb->fastreuseport = FASTREUSEPORT_ANY; 465 tb->fastuid = uid; 466 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 467 tb->fast_ipv6_only = ipv6_only_sock(sk); 468 tb->fast_sk_family = sk->sk_family; 469 #if IS_ENABLED(CONFIG_IPV6) 470 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 471 #endif 472 } else { 473 tb->fastreuseport = 0; 474 } 475 } else { 476 if (!reuse) 477 tb->fastreuse = 0; 478 if (sk->sk_reuseport) { 479 /* We didn't match or we don't have fastreuseport set on 480 * the tb, but we have sk_reuseport set on this socket 481 * and we know that there are no bind conflicts with 482 * this socket in this tb, so reset our tb's reuseport 483 * settings so that any subsequent sockets that match 484 * our current socket will be put on the fast path. 485 * 486 * If we reset we need to set FASTREUSEPORT_STRICT so we 487 * do extra checking for all subsequent sk_reuseport 488 * socks. 489 */ 490 if (!sk_reuseport_match(tb, sk)) { 491 tb->fastreuseport = FASTREUSEPORT_STRICT; 492 tb->fastuid = uid; 493 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 494 tb->fast_ipv6_only = ipv6_only_sock(sk); 495 tb->fast_sk_family = sk->sk_family; 496 #if IS_ENABLED(CONFIG_IPV6) 497 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 498 #endif 499 } 500 } else { 501 tb->fastreuseport = 0; 502 } 503 } 504 } 505 506 /* Obtain a reference to a local port for the given sock, 507 * if snum is zero it means select any available local port. 508 * We try to allocate an odd port (and leave even ports for connect()) 509 */ 510 int inet_csk_get_port(struct sock *sk, unsigned short snum) 511 { 512 struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk); 513 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 514 bool found_port = false, check_bind_conflict = true; 515 bool bhash_created = false, bhash2_created = false; 516 int ret = -EADDRINUSE, port = snum, l3mdev; 517 struct inet_bind_hashbucket *head, *head2; 518 struct inet_bind2_bucket *tb2 = NULL; 519 struct inet_bind_bucket *tb = NULL; 520 bool head2_lock_acquired = false; 521 struct net *net = sock_net(sk); 522 523 l3mdev = inet_sk_bound_l3mdev(sk); 524 525 if (!port) { 526 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port); 527 if (!head) 528 return ret; 529 530 head2_lock_acquired = true; 531 532 if (tb && tb2) 533 goto success; 534 found_port = true; 535 } else { 536 head = &hinfo->bhash[inet_bhashfn(net, port, 537 hinfo->bhash_size)]; 538 spin_lock_bh(&head->lock); 539 inet_bind_bucket_for_each(tb, &head->chain) 540 if (inet_bind_bucket_match(tb, net, port, l3mdev)) 541 break; 542 } 543 544 if (!tb) { 545 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net, 546 head, port, l3mdev); 547 if (!tb) 548 goto fail_unlock; 549 bhash_created = true; 550 } 551 552 if (!found_port) { 553 if (!hlist_empty(&tb->owners)) { 554 if (sk->sk_reuse == SK_FORCE_REUSE || 555 (tb->fastreuse > 0 && reuse) || 556 sk_reuseport_match(tb, sk)) 557 check_bind_conflict = false; 558 } 559 560 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) { 561 if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true)) 562 goto fail_unlock; 563 } 564 565 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port); 566 spin_lock(&head2->lock); 567 head2_lock_acquired = true; 568 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk); 569 } 570 571 if (!tb2) { 572 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep, 573 net, head2, port, l3mdev, sk); 574 if (!tb2) 575 goto fail_unlock; 576 bhash2_created = true; 577 } 578 579 if (!found_port && check_bind_conflict) { 580 if (inet_csk_bind_conflict(sk, tb, tb2, true, true)) 581 goto fail_unlock; 582 } 583 584 success: 585 inet_csk_update_fastreuse(tb, sk); 586 587 if (!inet_csk(sk)->icsk_bind_hash) 588 inet_bind_hash(sk, tb, tb2, port); 589 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 590 WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); 591 ret = 0; 592 593 fail_unlock: 594 if (ret) { 595 if (bhash_created) 596 inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb); 597 if (bhash2_created) 598 inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, 599 tb2); 600 } 601 if (head2_lock_acquired) 602 spin_unlock(&head2->lock); 603 spin_unlock_bh(&head->lock); 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(inet_csk_get_port); 607 608 /* 609 * Wait for an incoming connection, avoid race conditions. This must be called 610 * with the socket locked. 611 */ 612 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 613 { 614 struct inet_connection_sock *icsk = inet_csk(sk); 615 DEFINE_WAIT(wait); 616 int err; 617 618 /* 619 * True wake-one mechanism for incoming connections: only 620 * one process gets woken up, not the 'whole herd'. 621 * Since we do not 'race & poll' for established sockets 622 * anymore, the common case will execute the loop only once. 623 * 624 * Subtle issue: "add_wait_queue_exclusive()" will be added 625 * after any current non-exclusive waiters, and we know that 626 * it will always _stay_ after any new non-exclusive waiters 627 * because all non-exclusive waiters are added at the 628 * beginning of the wait-queue. As such, it's ok to "drop" 629 * our exclusiveness temporarily when we get woken up without 630 * having to remove and re-insert us on the wait queue. 631 */ 632 for (;;) { 633 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 634 TASK_INTERRUPTIBLE); 635 release_sock(sk); 636 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 637 timeo = schedule_timeout(timeo); 638 sched_annotate_sleep(); 639 lock_sock(sk); 640 err = 0; 641 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 642 break; 643 err = -EINVAL; 644 if (sk->sk_state != TCP_LISTEN) 645 break; 646 err = sock_intr_errno(timeo); 647 if (signal_pending(current)) 648 break; 649 err = -EAGAIN; 650 if (!timeo) 651 break; 652 } 653 finish_wait(sk_sleep(sk), &wait); 654 return err; 655 } 656 657 /* 658 * This will accept the next outstanding connection. 659 */ 660 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 661 { 662 struct inet_connection_sock *icsk = inet_csk(sk); 663 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 664 struct request_sock *req; 665 struct sock *newsk; 666 int error; 667 668 lock_sock(sk); 669 670 /* We need to make sure that this socket is listening, 671 * and that it has something pending. 672 */ 673 error = -EINVAL; 674 if (sk->sk_state != TCP_LISTEN) 675 goto out_err; 676 677 /* Find already established connection */ 678 if (reqsk_queue_empty(queue)) { 679 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 680 681 /* If this is a non blocking socket don't sleep */ 682 error = -EAGAIN; 683 if (!timeo) 684 goto out_err; 685 686 error = inet_csk_wait_for_connect(sk, timeo); 687 if (error) 688 goto out_err; 689 } 690 req = reqsk_queue_remove(queue, sk); 691 newsk = req->sk; 692 693 if (sk->sk_protocol == IPPROTO_TCP && 694 tcp_rsk(req)->tfo_listener) { 695 spin_lock_bh(&queue->fastopenq.lock); 696 if (tcp_rsk(req)->tfo_listener) { 697 /* We are still waiting for the final ACK from 3WHS 698 * so can't free req now. Instead, we set req->sk to 699 * NULL to signify that the child socket is taken 700 * so reqsk_fastopen_remove() will free the req 701 * when 3WHS finishes (or is aborted). 702 */ 703 req->sk = NULL; 704 req = NULL; 705 } 706 spin_unlock_bh(&queue->fastopenq.lock); 707 } 708 709 out: 710 release_sock(sk); 711 if (newsk && mem_cgroup_sockets_enabled) { 712 int amt = 0; 713 714 /* atomically get the memory usage, set and charge the 715 * newsk->sk_memcg. 716 */ 717 lock_sock(newsk); 718 719 mem_cgroup_sk_alloc(newsk); 720 if (newsk->sk_memcg) { 721 /* The socket has not been accepted yet, no need 722 * to look at newsk->sk_wmem_queued. 723 */ 724 amt = sk_mem_pages(newsk->sk_forward_alloc + 725 atomic_read(&newsk->sk_rmem_alloc)); 726 } 727 728 if (amt) 729 mem_cgroup_charge_skmem(newsk->sk_memcg, amt, 730 GFP_KERNEL | __GFP_NOFAIL); 731 732 release_sock(newsk); 733 } 734 if (req) 735 reqsk_put(req); 736 737 if (newsk) 738 inet_init_csk_locks(newsk); 739 740 return newsk; 741 out_err: 742 newsk = NULL; 743 req = NULL; 744 *err = error; 745 goto out; 746 } 747 EXPORT_SYMBOL(inet_csk_accept); 748 749 /* 750 * Using different timers for retransmit, delayed acks and probes 751 * We may wish use just one timer maintaining a list of expire jiffies 752 * to optimize. 753 */ 754 void inet_csk_init_xmit_timers(struct sock *sk, 755 void (*retransmit_handler)(struct timer_list *t), 756 void (*delack_handler)(struct timer_list *t), 757 void (*keepalive_handler)(struct timer_list *t)) 758 { 759 struct inet_connection_sock *icsk = inet_csk(sk); 760 761 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 762 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 763 timer_setup(&sk->sk_timer, keepalive_handler, 0); 764 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 765 } 766 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 767 768 void inet_csk_clear_xmit_timers(struct sock *sk) 769 { 770 struct inet_connection_sock *icsk = inet_csk(sk); 771 772 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 773 774 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 775 sk_stop_timer(sk, &icsk->icsk_delack_timer); 776 sk_stop_timer(sk, &sk->sk_timer); 777 } 778 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 779 780 void inet_csk_clear_xmit_timers_sync(struct sock *sk) 781 { 782 struct inet_connection_sock *icsk = inet_csk(sk); 783 784 /* ongoing timer handlers need to acquire socket lock. */ 785 sock_not_owned_by_me(sk); 786 787 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 788 789 sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer); 790 sk_stop_timer_sync(sk, &icsk->icsk_delack_timer); 791 sk_stop_timer_sync(sk, &sk->sk_timer); 792 } 793 794 void inet_csk_delete_keepalive_timer(struct sock *sk) 795 { 796 sk_stop_timer(sk, &sk->sk_timer); 797 } 798 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 799 800 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 801 { 802 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 803 } 804 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 805 806 struct dst_entry *inet_csk_route_req(const struct sock *sk, 807 struct flowi4 *fl4, 808 const struct request_sock *req) 809 { 810 const struct inet_request_sock *ireq = inet_rsk(req); 811 struct net *net = read_pnet(&ireq->ireq_net); 812 struct ip_options_rcu *opt; 813 struct rtable *rt; 814 815 rcu_read_lock(); 816 opt = rcu_dereference(ireq->ireq_opt); 817 818 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 819 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 820 sk->sk_protocol, inet_sk_flowi_flags(sk), 821 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 822 ireq->ir_loc_addr, ireq->ir_rmt_port, 823 htons(ireq->ir_num), sk->sk_uid); 824 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 825 rt = ip_route_output_flow(net, fl4, sk); 826 if (IS_ERR(rt)) 827 goto no_route; 828 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 829 goto route_err; 830 rcu_read_unlock(); 831 return &rt->dst; 832 833 route_err: 834 ip_rt_put(rt); 835 no_route: 836 rcu_read_unlock(); 837 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 838 return NULL; 839 } 840 EXPORT_SYMBOL_GPL(inet_csk_route_req); 841 842 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 843 struct sock *newsk, 844 const struct request_sock *req) 845 { 846 const struct inet_request_sock *ireq = inet_rsk(req); 847 struct net *net = read_pnet(&ireq->ireq_net); 848 struct inet_sock *newinet = inet_sk(newsk); 849 struct ip_options_rcu *opt; 850 struct flowi4 *fl4; 851 struct rtable *rt; 852 853 opt = rcu_dereference(ireq->ireq_opt); 854 fl4 = &newinet->cork.fl.u.ip4; 855 856 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 857 ip_sock_rt_tos(sk), ip_sock_rt_scope(sk), 858 sk->sk_protocol, inet_sk_flowi_flags(sk), 859 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 860 ireq->ir_loc_addr, ireq->ir_rmt_port, 861 htons(ireq->ir_num), sk->sk_uid); 862 security_req_classify_flow(req, flowi4_to_flowi_common(fl4)); 863 rt = ip_route_output_flow(net, fl4, sk); 864 if (IS_ERR(rt)) 865 goto no_route; 866 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 867 goto route_err; 868 return &rt->dst; 869 870 route_err: 871 ip_rt_put(rt); 872 no_route: 873 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 874 return NULL; 875 } 876 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 877 878 /* Decide when to expire the request and when to resend SYN-ACK */ 879 static void syn_ack_recalc(struct request_sock *req, 880 const int max_syn_ack_retries, 881 const u8 rskq_defer_accept, 882 int *expire, int *resend) 883 { 884 if (!rskq_defer_accept) { 885 *expire = req->num_timeout >= max_syn_ack_retries; 886 *resend = 1; 887 return; 888 } 889 *expire = req->num_timeout >= max_syn_ack_retries && 890 (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept); 891 /* Do not resend while waiting for data after ACK, 892 * start to resend on end of deferring period to give 893 * last chance for data or ACK to create established socket. 894 */ 895 *resend = !inet_rsk(req)->acked || 896 req->num_timeout >= rskq_defer_accept - 1; 897 } 898 899 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 900 { 901 int err = req->rsk_ops->rtx_syn_ack(parent, req); 902 903 if (!err) 904 req->num_retrans++; 905 return err; 906 } 907 EXPORT_SYMBOL(inet_rtx_syn_ack); 908 909 static struct request_sock *inet_reqsk_clone(struct request_sock *req, 910 struct sock *sk) 911 { 912 struct sock *req_sk, *nreq_sk; 913 struct request_sock *nreq; 914 915 nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN); 916 if (!nreq) { 917 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 918 919 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */ 920 sock_put(sk); 921 return NULL; 922 } 923 924 req_sk = req_to_sk(req); 925 nreq_sk = req_to_sk(nreq); 926 927 memcpy(nreq_sk, req_sk, 928 offsetof(struct sock, sk_dontcopy_begin)); 929 memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end, 930 req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end)); 931 932 sk_node_init(&nreq_sk->sk_node); 933 nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping; 934 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING 935 nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping; 936 #endif 937 nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu; 938 939 nreq->rsk_listener = sk; 940 941 /* We need not acquire fastopenq->lock 942 * because the child socket is locked in inet_csk_listen_stop(). 943 */ 944 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener) 945 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq); 946 947 return nreq; 948 } 949 950 static void reqsk_queue_migrated(struct request_sock_queue *queue, 951 const struct request_sock *req) 952 { 953 if (req->num_timeout == 0) 954 atomic_inc(&queue->young); 955 atomic_inc(&queue->qlen); 956 } 957 958 static void reqsk_migrate_reset(struct request_sock *req) 959 { 960 req->saved_syn = NULL; 961 #if IS_ENABLED(CONFIG_IPV6) 962 inet_rsk(req)->ipv6_opt = NULL; 963 inet_rsk(req)->pktopts = NULL; 964 #else 965 inet_rsk(req)->ireq_opt = NULL; 966 #endif 967 } 968 969 /* return true if req was found in the ehash table */ 970 static bool reqsk_queue_unlink(struct request_sock *req) 971 { 972 struct sock *sk = req_to_sk(req); 973 bool found = false; 974 975 if (sk_hashed(sk)) { 976 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk); 977 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 978 979 spin_lock(lock); 980 found = __sk_nulls_del_node_init_rcu(sk); 981 spin_unlock(lock); 982 } 983 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 984 reqsk_put(req); 985 return found; 986 } 987 988 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 989 { 990 bool unlinked = reqsk_queue_unlink(req); 991 992 if (unlinked) { 993 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 994 reqsk_put(req); 995 } 996 return unlinked; 997 } 998 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 999 1000 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 1001 { 1002 inet_csk_reqsk_queue_drop(sk, req); 1003 reqsk_put(req); 1004 } 1005 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 1006 1007 static void reqsk_timer_handler(struct timer_list *t) 1008 { 1009 struct request_sock *req = from_timer(req, t, rsk_timer); 1010 struct request_sock *nreq = NULL, *oreq = req; 1011 struct sock *sk_listener = req->rsk_listener; 1012 struct inet_connection_sock *icsk; 1013 struct request_sock_queue *queue; 1014 struct net *net; 1015 int max_syn_ack_retries, qlen, expire = 0, resend = 0; 1016 1017 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) { 1018 struct sock *nsk; 1019 1020 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL); 1021 if (!nsk) 1022 goto drop; 1023 1024 nreq = inet_reqsk_clone(req, nsk); 1025 if (!nreq) 1026 goto drop; 1027 1028 /* The new timer for the cloned req can decrease the 2 1029 * by calling inet_csk_reqsk_queue_drop_and_put(), so 1030 * hold another count to prevent use-after-free and 1031 * call reqsk_put() just before return. 1032 */ 1033 refcount_set(&nreq->rsk_refcnt, 2 + 1); 1034 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1035 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req); 1036 1037 req = nreq; 1038 sk_listener = nsk; 1039 } 1040 1041 icsk = inet_csk(sk_listener); 1042 net = sock_net(sk_listener); 1043 max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? : 1044 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries); 1045 /* Normally all the openreqs are young and become mature 1046 * (i.e. converted to established socket) for first timeout. 1047 * If synack was not acknowledged for 1 second, it means 1048 * one of the following things: synack was lost, ack was lost, 1049 * rtt is high or nobody planned to ack (i.e. synflood). 1050 * When server is a bit loaded, queue is populated with old 1051 * open requests, reducing effective size of queue. 1052 * When server is well loaded, queue size reduces to zero 1053 * after several minutes of work. It is not synflood, 1054 * it is normal operation. The solution is pruning 1055 * too old entries overriding normal timeout, when 1056 * situation becomes dangerous. 1057 * 1058 * Essentially, we reserve half of room for young 1059 * embrions; and abort old ones without pity, if old 1060 * ones are about to clog our table. 1061 */ 1062 queue = &icsk->icsk_accept_queue; 1063 qlen = reqsk_queue_len(queue); 1064 if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) { 1065 int young = reqsk_queue_len_young(queue) << 1; 1066 1067 while (max_syn_ack_retries > 2) { 1068 if (qlen < young) 1069 break; 1070 max_syn_ack_retries--; 1071 young <<= 1; 1072 } 1073 } 1074 syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept), 1075 &expire, &resend); 1076 req->rsk_ops->syn_ack_timeout(req); 1077 if (!expire && 1078 (!resend || 1079 !inet_rtx_syn_ack(sk_listener, req) || 1080 inet_rsk(req)->acked)) { 1081 if (req->num_timeout++ == 0) 1082 atomic_dec(&queue->young); 1083 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX)); 1084 1085 if (!nreq) 1086 return; 1087 1088 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) { 1089 /* delete timer */ 1090 inet_csk_reqsk_queue_drop(sk_listener, nreq); 1091 goto no_ownership; 1092 } 1093 1094 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS); 1095 reqsk_migrate_reset(oreq); 1096 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq); 1097 reqsk_put(oreq); 1098 1099 reqsk_put(nreq); 1100 return; 1101 } 1102 1103 /* Even if we can clone the req, we may need not retransmit any more 1104 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another 1105 * CPU may win the "own_req" race so that inet_ehash_insert() fails. 1106 */ 1107 if (nreq) { 1108 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE); 1109 no_ownership: 1110 reqsk_migrate_reset(nreq); 1111 reqsk_queue_removed(queue, nreq); 1112 __reqsk_free(nreq); 1113 } 1114 1115 drop: 1116 inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq); 1117 } 1118 1119 static void reqsk_queue_hash_req(struct request_sock *req, 1120 unsigned long timeout) 1121 { 1122 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 1123 mod_timer(&req->rsk_timer, jiffies + timeout); 1124 1125 inet_ehash_insert(req_to_sk(req), NULL, NULL); 1126 /* before letting lookups find us, make sure all req fields 1127 * are committed to memory and refcnt initialized. 1128 */ 1129 smp_wmb(); 1130 refcount_set(&req->rsk_refcnt, 2 + 1); 1131 } 1132 1133 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 1134 unsigned long timeout) 1135 { 1136 reqsk_queue_hash_req(req, timeout); 1137 inet_csk_reqsk_queue_added(sk); 1138 } 1139 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 1140 1141 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk, 1142 const gfp_t priority) 1143 { 1144 struct inet_connection_sock *icsk = inet_csk(newsk); 1145 1146 if (!icsk->icsk_ulp_ops) 1147 return; 1148 1149 icsk->icsk_ulp_ops->clone(req, newsk, priority); 1150 } 1151 1152 /** 1153 * inet_csk_clone_lock - clone an inet socket, and lock its clone 1154 * @sk: the socket to clone 1155 * @req: request_sock 1156 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 1157 * 1158 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 1159 */ 1160 struct sock *inet_csk_clone_lock(const struct sock *sk, 1161 const struct request_sock *req, 1162 const gfp_t priority) 1163 { 1164 struct sock *newsk = sk_clone_lock(sk, priority); 1165 1166 if (newsk) { 1167 struct inet_connection_sock *newicsk = inet_csk(newsk); 1168 1169 inet_sk_set_state(newsk, TCP_SYN_RECV); 1170 newicsk->icsk_bind_hash = NULL; 1171 newicsk->icsk_bind2_hash = NULL; 1172 1173 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 1174 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 1175 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 1176 1177 /* listeners have SOCK_RCU_FREE, not the children */ 1178 sock_reset_flag(newsk, SOCK_RCU_FREE); 1179 1180 inet_sk(newsk)->mc_list = NULL; 1181 1182 newsk->sk_mark = inet_rsk(req)->ir_mark; 1183 atomic64_set(&newsk->sk_cookie, 1184 atomic64_read(&inet_rsk(req)->ir_cookie)); 1185 1186 newicsk->icsk_retransmits = 0; 1187 newicsk->icsk_backoff = 0; 1188 newicsk->icsk_probes_out = 0; 1189 newicsk->icsk_probes_tstamp = 0; 1190 1191 /* Deinitialize accept_queue to trap illegal accesses. */ 1192 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 1193 1194 inet_clone_ulp(req, newsk, priority); 1195 1196 security_inet_csk_clone(newsk, req); 1197 } 1198 return newsk; 1199 } 1200 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 1201 1202 /* 1203 * At this point, there should be no process reference to this 1204 * socket, and thus no user references at all. Therefore we 1205 * can assume the socket waitqueue is inactive and nobody will 1206 * try to jump onto it. 1207 */ 1208 void inet_csk_destroy_sock(struct sock *sk) 1209 { 1210 WARN_ON(sk->sk_state != TCP_CLOSE); 1211 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 1212 1213 /* It cannot be in hash table! */ 1214 WARN_ON(!sk_unhashed(sk)); 1215 1216 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 1217 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 1218 1219 sk->sk_prot->destroy(sk); 1220 1221 sk_stream_kill_queues(sk); 1222 1223 xfrm_sk_free_policy(sk); 1224 1225 this_cpu_dec(*sk->sk_prot->orphan_count); 1226 1227 sock_put(sk); 1228 } 1229 EXPORT_SYMBOL(inet_csk_destroy_sock); 1230 1231 /* This function allows to force a closure of a socket after the call to 1232 * tcp/dccp_create_openreq_child(). 1233 */ 1234 void inet_csk_prepare_forced_close(struct sock *sk) 1235 __releases(&sk->sk_lock.slock) 1236 { 1237 /* sk_clone_lock locked the socket and set refcnt to 2 */ 1238 bh_unlock_sock(sk); 1239 sock_put(sk); 1240 inet_csk_prepare_for_destroy_sock(sk); 1241 inet_sk(sk)->inet_num = 0; 1242 } 1243 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 1244 1245 static int inet_ulp_can_listen(const struct sock *sk) 1246 { 1247 const struct inet_connection_sock *icsk = inet_csk(sk); 1248 1249 if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone) 1250 return -EINVAL; 1251 1252 return 0; 1253 } 1254 1255 int inet_csk_listen_start(struct sock *sk) 1256 { 1257 struct inet_connection_sock *icsk = inet_csk(sk); 1258 struct inet_sock *inet = inet_sk(sk); 1259 int err; 1260 1261 err = inet_ulp_can_listen(sk); 1262 if (unlikely(err)) 1263 return err; 1264 1265 reqsk_queue_alloc(&icsk->icsk_accept_queue); 1266 1267 sk->sk_ack_backlog = 0; 1268 inet_csk_delack_init(sk); 1269 1270 /* There is race window here: we announce ourselves listening, 1271 * but this transition is still not validated by get_port(). 1272 * It is OK, because this socket enters to hash table only 1273 * after validation is complete. 1274 */ 1275 inet_sk_state_store(sk, TCP_LISTEN); 1276 err = sk->sk_prot->get_port(sk, inet->inet_num); 1277 if (!err) { 1278 inet->inet_sport = htons(inet->inet_num); 1279 1280 sk_dst_reset(sk); 1281 err = sk->sk_prot->hash(sk); 1282 1283 if (likely(!err)) 1284 return 0; 1285 } 1286 1287 inet_sk_set_state(sk, TCP_CLOSE); 1288 return err; 1289 } 1290 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 1291 1292 static void inet_child_forget(struct sock *sk, struct request_sock *req, 1293 struct sock *child) 1294 { 1295 sk->sk_prot->disconnect(child, O_NONBLOCK); 1296 1297 sock_orphan(child); 1298 1299 this_cpu_inc(*sk->sk_prot->orphan_count); 1300 1301 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 1302 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req); 1303 BUG_ON(sk != req->rsk_listener); 1304 1305 /* Paranoid, to prevent race condition if 1306 * an inbound pkt destined for child is 1307 * blocked by sock lock in tcp_v4_rcv(). 1308 * Also to satisfy an assertion in 1309 * tcp_v4_destroy_sock(). 1310 */ 1311 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL); 1312 } 1313 inet_csk_destroy_sock(child); 1314 } 1315 1316 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 1317 struct request_sock *req, 1318 struct sock *child) 1319 { 1320 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 1321 1322 spin_lock(&queue->rskq_lock); 1323 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1324 inet_child_forget(sk, req, child); 1325 child = NULL; 1326 } else { 1327 req->sk = child; 1328 req->dl_next = NULL; 1329 if (queue->rskq_accept_head == NULL) 1330 WRITE_ONCE(queue->rskq_accept_head, req); 1331 else 1332 queue->rskq_accept_tail->dl_next = req; 1333 queue->rskq_accept_tail = req; 1334 sk_acceptq_added(sk); 1335 } 1336 spin_unlock(&queue->rskq_lock); 1337 return child; 1338 } 1339 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 1340 1341 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 1342 struct request_sock *req, bool own_req) 1343 { 1344 if (own_req) { 1345 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 1346 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req); 1347 1348 if (sk != req->rsk_listener) { 1349 /* another listening sk has been selected, 1350 * migrate the req to it. 1351 */ 1352 struct request_sock *nreq; 1353 1354 /* hold a refcnt for the nreq->rsk_listener 1355 * which is assigned in inet_reqsk_clone() 1356 */ 1357 sock_hold(sk); 1358 nreq = inet_reqsk_clone(req, sk); 1359 if (!nreq) { 1360 inet_child_forget(sk, req, child); 1361 goto child_put; 1362 } 1363 1364 refcount_set(&nreq->rsk_refcnt, 1); 1365 if (inet_csk_reqsk_queue_add(sk, nreq, child)) { 1366 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS); 1367 reqsk_migrate_reset(req); 1368 reqsk_put(req); 1369 return child; 1370 } 1371 1372 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE); 1373 reqsk_migrate_reset(nreq); 1374 __reqsk_free(nreq); 1375 } else if (inet_csk_reqsk_queue_add(sk, req, child)) { 1376 return child; 1377 } 1378 } 1379 /* Too bad, another child took ownership of the request, undo. */ 1380 child_put: 1381 bh_unlock_sock(child); 1382 sock_put(child); 1383 return NULL; 1384 } 1385 EXPORT_SYMBOL(inet_csk_complete_hashdance); 1386 1387 /* 1388 * This routine closes sockets which have been at least partially 1389 * opened, but not yet accepted. 1390 */ 1391 void inet_csk_listen_stop(struct sock *sk) 1392 { 1393 struct inet_connection_sock *icsk = inet_csk(sk); 1394 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 1395 struct request_sock *next, *req; 1396 1397 /* Following specs, it would be better either to send FIN 1398 * (and enter FIN-WAIT-1, it is normal close) 1399 * or to send active reset (abort). 1400 * Certainly, it is pretty dangerous while synflood, but it is 1401 * bad justification for our negligence 8) 1402 * To be honest, we are not able to make either 1403 * of the variants now. --ANK 1404 */ 1405 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 1406 struct sock *child = req->sk, *nsk; 1407 struct request_sock *nreq; 1408 1409 local_bh_disable(); 1410 bh_lock_sock(child); 1411 WARN_ON(sock_owned_by_user(child)); 1412 sock_hold(child); 1413 1414 nsk = reuseport_migrate_sock(sk, child, NULL); 1415 if (nsk) { 1416 nreq = inet_reqsk_clone(req, nsk); 1417 if (nreq) { 1418 refcount_set(&nreq->rsk_refcnt, 1); 1419 1420 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) { 1421 __NET_INC_STATS(sock_net(nsk), 1422 LINUX_MIB_TCPMIGRATEREQSUCCESS); 1423 reqsk_migrate_reset(req); 1424 } else { 1425 __NET_INC_STATS(sock_net(nsk), 1426 LINUX_MIB_TCPMIGRATEREQFAILURE); 1427 reqsk_migrate_reset(nreq); 1428 __reqsk_free(nreq); 1429 } 1430 1431 /* inet_csk_reqsk_queue_add() has already 1432 * called inet_child_forget() on failure case. 1433 */ 1434 goto skip_child_forget; 1435 } 1436 } 1437 1438 inet_child_forget(sk, req, child); 1439 skip_child_forget: 1440 reqsk_put(req); 1441 bh_unlock_sock(child); 1442 local_bh_enable(); 1443 sock_put(child); 1444 1445 cond_resched(); 1446 } 1447 if (queue->fastopenq.rskq_rst_head) { 1448 /* Free all the reqs queued in rskq_rst_head. */ 1449 spin_lock_bh(&queue->fastopenq.lock); 1450 req = queue->fastopenq.rskq_rst_head; 1451 queue->fastopenq.rskq_rst_head = NULL; 1452 spin_unlock_bh(&queue->fastopenq.lock); 1453 while (req != NULL) { 1454 next = req->dl_next; 1455 reqsk_put(req); 1456 req = next; 1457 } 1458 } 1459 WARN_ON_ONCE(sk->sk_ack_backlog); 1460 } 1461 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1462 1463 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1464 { 1465 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1466 const struct inet_sock *inet = inet_sk(sk); 1467 1468 sin->sin_family = AF_INET; 1469 sin->sin_addr.s_addr = inet->inet_daddr; 1470 sin->sin_port = inet->inet_dport; 1471 } 1472 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1473 1474 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1475 { 1476 const struct inet_sock *inet = inet_sk(sk); 1477 const struct ip_options_rcu *inet_opt; 1478 __be32 daddr = inet->inet_daddr; 1479 struct flowi4 *fl4; 1480 struct rtable *rt; 1481 1482 rcu_read_lock(); 1483 inet_opt = rcu_dereference(inet->inet_opt); 1484 if (inet_opt && inet_opt->opt.srr) 1485 daddr = inet_opt->opt.faddr; 1486 fl4 = &fl->u.ip4; 1487 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1488 inet->inet_saddr, inet->inet_dport, 1489 inet->inet_sport, sk->sk_protocol, 1490 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1491 if (IS_ERR(rt)) 1492 rt = NULL; 1493 if (rt) 1494 sk_setup_caps(sk, &rt->dst); 1495 rcu_read_unlock(); 1496 1497 return &rt->dst; 1498 } 1499 1500 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1501 { 1502 struct dst_entry *dst = __sk_dst_check(sk, 0); 1503 struct inet_sock *inet = inet_sk(sk); 1504 1505 if (!dst) { 1506 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1507 if (!dst) 1508 goto out; 1509 } 1510 dst->ops->update_pmtu(dst, sk, NULL, mtu, true); 1511 1512 dst = __sk_dst_check(sk, 0); 1513 if (!dst) 1514 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1515 out: 1516 return dst; 1517 } 1518 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1519