1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Support for INET connection oriented protocols.
7  *
8  * Authors:	See the TCP sources
9  *
10  *		This program is free software; you can redistribute it and/or
11  *		modify it under the terms of the GNU General Public License
12  *		as published by the Free Software Foundation; either version
13  *		2 of the License, or(at your option) any later version.
14  */
15 
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18 
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29 
30 #if IS_ENABLED(CONFIG_IPV6)
31 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
32  *                          only, and any IPv4 addresses if not IPv6 only
33  * match_wildcard == false: addresses must be exactly the same, i.e.
34  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
35  *                          and 0.0.0.0 equals to 0.0.0.0 only
36  */
37 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
38 				 const struct in6_addr *sk2_rcv_saddr6,
39 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
40 				 bool sk1_ipv6only, bool sk2_ipv6only,
41 				 bool match_wildcard)
42 {
43 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
44 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
45 
46 	/* if both are mapped, treat as IPv4 */
47 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
48 		if (!sk2_ipv6only) {
49 			if (sk1_rcv_saddr == sk2_rcv_saddr)
50 				return true;
51 			if (!sk1_rcv_saddr || !sk2_rcv_saddr)
52 				return match_wildcard;
53 		}
54 		return false;
55 	}
56 
57 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
58 		return true;
59 
60 	if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
61 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
62 		return true;
63 
64 	if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
65 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
66 		return true;
67 
68 	if (sk2_rcv_saddr6 &&
69 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
70 		return true;
71 
72 	return false;
73 }
74 #endif
75 
76 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
77  * match_wildcard == false: addresses must be exactly the same, i.e.
78  *                          0.0.0.0 only equals to 0.0.0.0
79  */
80 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
81 				 bool sk2_ipv6only, bool match_wildcard)
82 {
83 	if (!sk2_ipv6only) {
84 		if (sk1_rcv_saddr == sk2_rcv_saddr)
85 			return true;
86 		if (!sk1_rcv_saddr || !sk2_rcv_saddr)
87 			return match_wildcard;
88 	}
89 	return false;
90 }
91 
92 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
93 			  bool match_wildcard)
94 {
95 #if IS_ENABLED(CONFIG_IPV6)
96 	if (sk->sk_family == AF_INET6)
97 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
98 					    inet6_rcv_saddr(sk2),
99 					    sk->sk_rcv_saddr,
100 					    sk2->sk_rcv_saddr,
101 					    ipv6_only_sock(sk),
102 					    ipv6_only_sock(sk2),
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard);
107 }
108 EXPORT_SYMBOL(inet_rcv_saddr_equal);
109 
110 bool inet_rcv_saddr_any(const struct sock *sk)
111 {
112 #if IS_ENABLED(CONFIG_IPV6)
113 	if (sk->sk_family == AF_INET6)
114 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
115 #endif
116 	return !sk->sk_rcv_saddr;
117 }
118 
119 void inet_get_local_port_range(struct net *net, int *low, int *high)
120 {
121 	unsigned int seq;
122 
123 	do {
124 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
125 
126 		*low = net->ipv4.ip_local_ports.range[0];
127 		*high = net->ipv4.ip_local_ports.range[1];
128 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
129 }
130 EXPORT_SYMBOL(inet_get_local_port_range);
131 
132 static int inet_csk_bind_conflict(const struct sock *sk,
133 				  const struct inet_bind_bucket *tb,
134 				  bool relax, bool reuseport_ok)
135 {
136 	struct sock *sk2;
137 	bool reuse = sk->sk_reuse;
138 	bool reuseport = !!sk->sk_reuseport && reuseport_ok;
139 	kuid_t uid = sock_i_uid((struct sock *)sk);
140 
141 	/*
142 	 * Unlike other sk lookup places we do not check
143 	 * for sk_net here, since _all_ the socks listed
144 	 * in tb->owners list belong to the same net - the
145 	 * one this bucket belongs to.
146 	 */
147 
148 	sk_for_each_bound(sk2, &tb->owners) {
149 		if (sk != sk2 &&
150 		    (!sk->sk_bound_dev_if ||
151 		     !sk2->sk_bound_dev_if ||
152 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
153 			if ((!reuse || !sk2->sk_reuse ||
154 			    sk2->sk_state == TCP_LISTEN) &&
155 			    (!reuseport || !sk2->sk_reuseport ||
156 			     rcu_access_pointer(sk->sk_reuseport_cb) ||
157 			     (sk2->sk_state != TCP_TIME_WAIT &&
158 			     !uid_eq(uid, sock_i_uid(sk2))))) {
159 				if (inet_rcv_saddr_equal(sk, sk2, true))
160 					break;
161 			}
162 			if (!relax && reuse && sk2->sk_reuse &&
163 			    sk2->sk_state != TCP_LISTEN) {
164 				if (inet_rcv_saddr_equal(sk, sk2, true))
165 					break;
166 			}
167 		}
168 	}
169 	return sk2 != NULL;
170 }
171 
172 /*
173  * Find an open port number for the socket.  Returns with the
174  * inet_bind_hashbucket lock held.
175  */
176 static struct inet_bind_hashbucket *
177 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
178 {
179 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
180 	int port = 0;
181 	struct inet_bind_hashbucket *head;
182 	struct net *net = sock_net(sk);
183 	int i, low, high, attempt_half;
184 	struct inet_bind_bucket *tb;
185 	u32 remaining, offset;
186 	int l3mdev;
187 
188 	l3mdev = inet_sk_bound_l3mdev(sk);
189 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
190 other_half_scan:
191 	inet_get_local_port_range(net, &low, &high);
192 	high++; /* [32768, 60999] -> [32768, 61000[ */
193 	if (high - low < 4)
194 		attempt_half = 0;
195 	if (attempt_half) {
196 		int half = low + (((high - low) >> 2) << 1);
197 
198 		if (attempt_half == 1)
199 			high = half;
200 		else
201 			low = half;
202 	}
203 	remaining = high - low;
204 	if (likely(remaining > 1))
205 		remaining &= ~1U;
206 
207 	offset = prandom_u32() % remaining;
208 	/* __inet_hash_connect() favors ports having @low parity
209 	 * We do the opposite to not pollute connect() users.
210 	 */
211 	offset |= 1U;
212 
213 other_parity_scan:
214 	port = low + offset;
215 	for (i = 0; i < remaining; i += 2, port += 2) {
216 		if (unlikely(port >= high))
217 			port -= remaining;
218 		if (inet_is_local_reserved_port(net, port))
219 			continue;
220 		head = &hinfo->bhash[inet_bhashfn(net, port,
221 						  hinfo->bhash_size)];
222 		spin_lock_bh(&head->lock);
223 		inet_bind_bucket_for_each(tb, &head->chain)
224 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
225 			    tb->port == port) {
226 				if (!inet_csk_bind_conflict(sk, tb, false, false))
227 					goto success;
228 				goto next_port;
229 			}
230 		tb = NULL;
231 		goto success;
232 next_port:
233 		spin_unlock_bh(&head->lock);
234 		cond_resched();
235 	}
236 
237 	offset--;
238 	if (!(offset & 1))
239 		goto other_parity_scan;
240 
241 	if (attempt_half == 1) {
242 		/* OK we now try the upper half of the range */
243 		attempt_half = 2;
244 		goto other_half_scan;
245 	}
246 	return NULL;
247 success:
248 	*port_ret = port;
249 	*tb_ret = tb;
250 	return head;
251 }
252 
253 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
254 				     struct sock *sk)
255 {
256 	kuid_t uid = sock_i_uid(sk);
257 
258 	if (tb->fastreuseport <= 0)
259 		return 0;
260 	if (!sk->sk_reuseport)
261 		return 0;
262 	if (rcu_access_pointer(sk->sk_reuseport_cb))
263 		return 0;
264 	if (!uid_eq(tb->fastuid, uid))
265 		return 0;
266 	/* We only need to check the rcv_saddr if this tb was once marked
267 	 * without fastreuseport and then was reset, as we can only know that
268 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
269 	 * owners list.
270 	 */
271 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
272 		return 1;
273 #if IS_ENABLED(CONFIG_IPV6)
274 	if (tb->fast_sk_family == AF_INET6)
275 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
276 					    inet6_rcv_saddr(sk),
277 					    tb->fast_rcv_saddr,
278 					    sk->sk_rcv_saddr,
279 					    tb->fast_ipv6_only,
280 					    ipv6_only_sock(sk), true);
281 #endif
282 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
283 				    ipv6_only_sock(sk), true);
284 }
285 
286 /* Obtain a reference to a local port for the given sock,
287  * if snum is zero it means select any available local port.
288  * We try to allocate an odd port (and leave even ports for connect())
289  */
290 int inet_csk_get_port(struct sock *sk, unsigned short snum)
291 {
292 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
293 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
294 	int ret = 1, port = snum;
295 	struct inet_bind_hashbucket *head;
296 	struct net *net = sock_net(sk);
297 	struct inet_bind_bucket *tb = NULL;
298 	kuid_t uid = sock_i_uid(sk);
299 	int l3mdev;
300 
301 	l3mdev = inet_sk_bound_l3mdev(sk);
302 
303 	if (!port) {
304 		head = inet_csk_find_open_port(sk, &tb, &port);
305 		if (!head)
306 			return ret;
307 		if (!tb)
308 			goto tb_not_found;
309 		goto success;
310 	}
311 	head = &hinfo->bhash[inet_bhashfn(net, port,
312 					  hinfo->bhash_size)];
313 	spin_lock_bh(&head->lock);
314 	inet_bind_bucket_for_each(tb, &head->chain)
315 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
316 		    tb->port == port)
317 			goto tb_found;
318 tb_not_found:
319 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
320 				     net, head, port, l3mdev);
321 	if (!tb)
322 		goto fail_unlock;
323 tb_found:
324 	if (!hlist_empty(&tb->owners)) {
325 		if (sk->sk_reuse == SK_FORCE_REUSE)
326 			goto success;
327 
328 		if ((tb->fastreuse > 0 && reuse) ||
329 		    sk_reuseport_match(tb, sk))
330 			goto success;
331 		if (inet_csk_bind_conflict(sk, tb, true, true))
332 			goto fail_unlock;
333 	}
334 success:
335 	if (hlist_empty(&tb->owners)) {
336 		tb->fastreuse = reuse;
337 		if (sk->sk_reuseport) {
338 			tb->fastreuseport = FASTREUSEPORT_ANY;
339 			tb->fastuid = uid;
340 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
341 			tb->fast_ipv6_only = ipv6_only_sock(sk);
342 			tb->fast_sk_family = sk->sk_family;
343 #if IS_ENABLED(CONFIG_IPV6)
344 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
345 #endif
346 		} else {
347 			tb->fastreuseport = 0;
348 		}
349 	} else {
350 		if (!reuse)
351 			tb->fastreuse = 0;
352 		if (sk->sk_reuseport) {
353 			/* We didn't match or we don't have fastreuseport set on
354 			 * the tb, but we have sk_reuseport set on this socket
355 			 * and we know that there are no bind conflicts with
356 			 * this socket in this tb, so reset our tb's reuseport
357 			 * settings so that any subsequent sockets that match
358 			 * our current socket will be put on the fast path.
359 			 *
360 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
361 			 * do extra checking for all subsequent sk_reuseport
362 			 * socks.
363 			 */
364 			if (!sk_reuseport_match(tb, sk)) {
365 				tb->fastreuseport = FASTREUSEPORT_STRICT;
366 				tb->fastuid = uid;
367 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
368 				tb->fast_ipv6_only = ipv6_only_sock(sk);
369 				tb->fast_sk_family = sk->sk_family;
370 #if IS_ENABLED(CONFIG_IPV6)
371 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
372 #endif
373 			}
374 		} else {
375 			tb->fastreuseport = 0;
376 		}
377 	}
378 	if (!inet_csk(sk)->icsk_bind_hash)
379 		inet_bind_hash(sk, tb, port);
380 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
381 	ret = 0;
382 
383 fail_unlock:
384 	spin_unlock_bh(&head->lock);
385 	return ret;
386 }
387 EXPORT_SYMBOL_GPL(inet_csk_get_port);
388 
389 /*
390  * Wait for an incoming connection, avoid race conditions. This must be called
391  * with the socket locked.
392  */
393 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
394 {
395 	struct inet_connection_sock *icsk = inet_csk(sk);
396 	DEFINE_WAIT(wait);
397 	int err;
398 
399 	/*
400 	 * True wake-one mechanism for incoming connections: only
401 	 * one process gets woken up, not the 'whole herd'.
402 	 * Since we do not 'race & poll' for established sockets
403 	 * anymore, the common case will execute the loop only once.
404 	 *
405 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
406 	 * after any current non-exclusive waiters, and we know that
407 	 * it will always _stay_ after any new non-exclusive waiters
408 	 * because all non-exclusive waiters are added at the
409 	 * beginning of the wait-queue. As such, it's ok to "drop"
410 	 * our exclusiveness temporarily when we get woken up without
411 	 * having to remove and re-insert us on the wait queue.
412 	 */
413 	for (;;) {
414 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
415 					  TASK_INTERRUPTIBLE);
416 		release_sock(sk);
417 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
418 			timeo = schedule_timeout(timeo);
419 		sched_annotate_sleep();
420 		lock_sock(sk);
421 		err = 0;
422 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
423 			break;
424 		err = -EINVAL;
425 		if (sk->sk_state != TCP_LISTEN)
426 			break;
427 		err = sock_intr_errno(timeo);
428 		if (signal_pending(current))
429 			break;
430 		err = -EAGAIN;
431 		if (!timeo)
432 			break;
433 	}
434 	finish_wait(sk_sleep(sk), &wait);
435 	return err;
436 }
437 
438 /*
439  * This will accept the next outstanding connection.
440  */
441 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
442 {
443 	struct inet_connection_sock *icsk = inet_csk(sk);
444 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
445 	struct request_sock *req;
446 	struct sock *newsk;
447 	int error;
448 
449 	lock_sock(sk);
450 
451 	/* We need to make sure that this socket is listening,
452 	 * and that it has something pending.
453 	 */
454 	error = -EINVAL;
455 	if (sk->sk_state != TCP_LISTEN)
456 		goto out_err;
457 
458 	/* Find already established connection */
459 	if (reqsk_queue_empty(queue)) {
460 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
461 
462 		/* If this is a non blocking socket don't sleep */
463 		error = -EAGAIN;
464 		if (!timeo)
465 			goto out_err;
466 
467 		error = inet_csk_wait_for_connect(sk, timeo);
468 		if (error)
469 			goto out_err;
470 	}
471 	req = reqsk_queue_remove(queue, sk);
472 	newsk = req->sk;
473 
474 	if (sk->sk_protocol == IPPROTO_TCP &&
475 	    tcp_rsk(req)->tfo_listener) {
476 		spin_lock_bh(&queue->fastopenq.lock);
477 		if (tcp_rsk(req)->tfo_listener) {
478 			/* We are still waiting for the final ACK from 3WHS
479 			 * so can't free req now. Instead, we set req->sk to
480 			 * NULL to signify that the child socket is taken
481 			 * so reqsk_fastopen_remove() will free the req
482 			 * when 3WHS finishes (or is aborted).
483 			 */
484 			req->sk = NULL;
485 			req = NULL;
486 		}
487 		spin_unlock_bh(&queue->fastopenq.lock);
488 	}
489 out:
490 	release_sock(sk);
491 	if (req)
492 		reqsk_put(req);
493 	return newsk;
494 out_err:
495 	newsk = NULL;
496 	req = NULL;
497 	*err = error;
498 	goto out;
499 }
500 EXPORT_SYMBOL(inet_csk_accept);
501 
502 /*
503  * Using different timers for retransmit, delayed acks and probes
504  * We may wish use just one timer maintaining a list of expire jiffies
505  * to optimize.
506  */
507 void inet_csk_init_xmit_timers(struct sock *sk,
508 			       void (*retransmit_handler)(struct timer_list *t),
509 			       void (*delack_handler)(struct timer_list *t),
510 			       void (*keepalive_handler)(struct timer_list *t))
511 {
512 	struct inet_connection_sock *icsk = inet_csk(sk);
513 
514 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
515 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
516 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
517 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
518 }
519 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
520 
521 void inet_csk_clear_xmit_timers(struct sock *sk)
522 {
523 	struct inet_connection_sock *icsk = inet_csk(sk);
524 
525 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
526 
527 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
528 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
529 	sk_stop_timer(sk, &sk->sk_timer);
530 }
531 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
532 
533 void inet_csk_delete_keepalive_timer(struct sock *sk)
534 {
535 	sk_stop_timer(sk, &sk->sk_timer);
536 }
537 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
538 
539 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
540 {
541 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
542 }
543 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
544 
545 struct dst_entry *inet_csk_route_req(const struct sock *sk,
546 				     struct flowi4 *fl4,
547 				     const struct request_sock *req)
548 {
549 	const struct inet_request_sock *ireq = inet_rsk(req);
550 	struct net *net = read_pnet(&ireq->ireq_net);
551 	struct ip_options_rcu *opt;
552 	struct rtable *rt;
553 
554 	rcu_read_lock();
555 	opt = rcu_dereference(ireq->ireq_opt);
556 
557 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
558 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
559 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
560 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
561 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
562 			   htons(ireq->ir_num), sk->sk_uid);
563 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
564 	rt = ip_route_output_flow(net, fl4, sk);
565 	if (IS_ERR(rt))
566 		goto no_route;
567 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
568 		goto route_err;
569 	rcu_read_unlock();
570 	return &rt->dst;
571 
572 route_err:
573 	ip_rt_put(rt);
574 no_route:
575 	rcu_read_unlock();
576 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
577 	return NULL;
578 }
579 EXPORT_SYMBOL_GPL(inet_csk_route_req);
580 
581 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
582 					    struct sock *newsk,
583 					    const struct request_sock *req)
584 {
585 	const struct inet_request_sock *ireq = inet_rsk(req);
586 	struct net *net = read_pnet(&ireq->ireq_net);
587 	struct inet_sock *newinet = inet_sk(newsk);
588 	struct ip_options_rcu *opt;
589 	struct flowi4 *fl4;
590 	struct rtable *rt;
591 
592 	opt = rcu_dereference(ireq->ireq_opt);
593 	fl4 = &newinet->cork.fl.u.ip4;
594 
595 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
596 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
597 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
598 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
599 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
600 			   htons(ireq->ir_num), sk->sk_uid);
601 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
602 	rt = ip_route_output_flow(net, fl4, sk);
603 	if (IS_ERR(rt))
604 		goto no_route;
605 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
606 		goto route_err;
607 	return &rt->dst;
608 
609 route_err:
610 	ip_rt_put(rt);
611 no_route:
612 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
613 	return NULL;
614 }
615 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
616 
617 #if IS_ENABLED(CONFIG_IPV6)
618 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
619 #else
620 #define AF_INET_FAMILY(fam) true
621 #endif
622 
623 /* Decide when to expire the request and when to resend SYN-ACK */
624 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
625 				  const int max_retries,
626 				  const u8 rskq_defer_accept,
627 				  int *expire, int *resend)
628 {
629 	if (!rskq_defer_accept) {
630 		*expire = req->num_timeout >= thresh;
631 		*resend = 1;
632 		return;
633 	}
634 	*expire = req->num_timeout >= thresh &&
635 		  (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
636 	/*
637 	 * Do not resend while waiting for data after ACK,
638 	 * start to resend on end of deferring period to give
639 	 * last chance for data or ACK to create established socket.
640 	 */
641 	*resend = !inet_rsk(req)->acked ||
642 		  req->num_timeout >= rskq_defer_accept - 1;
643 }
644 
645 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
646 {
647 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
648 
649 	if (!err)
650 		req->num_retrans++;
651 	return err;
652 }
653 EXPORT_SYMBOL(inet_rtx_syn_ack);
654 
655 /* return true if req was found in the ehash table */
656 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
657 			       struct request_sock *req)
658 {
659 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
660 	bool found = false;
661 
662 	if (sk_hashed(req_to_sk(req))) {
663 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
664 
665 		spin_lock(lock);
666 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
667 		spin_unlock(lock);
668 	}
669 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
670 		reqsk_put(req);
671 	return found;
672 }
673 
674 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
675 {
676 	if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
677 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
678 		reqsk_put(req);
679 	}
680 }
681 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
682 
683 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
684 {
685 	inet_csk_reqsk_queue_drop(sk, req);
686 	reqsk_put(req);
687 }
688 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
689 
690 static void reqsk_timer_handler(struct timer_list *t)
691 {
692 	struct request_sock *req = from_timer(req, t, rsk_timer);
693 	struct sock *sk_listener = req->rsk_listener;
694 	struct net *net = sock_net(sk_listener);
695 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
696 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
697 	int qlen, expire = 0, resend = 0;
698 	int max_retries, thresh;
699 	u8 defer_accept;
700 
701 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
702 		goto drop;
703 
704 	max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
705 	thresh = max_retries;
706 	/* Normally all the openreqs are young and become mature
707 	 * (i.e. converted to established socket) for first timeout.
708 	 * If synack was not acknowledged for 1 second, it means
709 	 * one of the following things: synack was lost, ack was lost,
710 	 * rtt is high or nobody planned to ack (i.e. synflood).
711 	 * When server is a bit loaded, queue is populated with old
712 	 * open requests, reducing effective size of queue.
713 	 * When server is well loaded, queue size reduces to zero
714 	 * after several minutes of work. It is not synflood,
715 	 * it is normal operation. The solution is pruning
716 	 * too old entries overriding normal timeout, when
717 	 * situation becomes dangerous.
718 	 *
719 	 * Essentially, we reserve half of room for young
720 	 * embrions; and abort old ones without pity, if old
721 	 * ones are about to clog our table.
722 	 */
723 	qlen = reqsk_queue_len(queue);
724 	if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
725 		int young = reqsk_queue_len_young(queue) << 1;
726 
727 		while (thresh > 2) {
728 			if (qlen < young)
729 				break;
730 			thresh--;
731 			young <<= 1;
732 		}
733 	}
734 	defer_accept = READ_ONCE(queue->rskq_defer_accept);
735 	if (defer_accept)
736 		max_retries = defer_accept;
737 	syn_ack_recalc(req, thresh, max_retries, defer_accept,
738 		       &expire, &resend);
739 	req->rsk_ops->syn_ack_timeout(req);
740 	if (!expire &&
741 	    (!resend ||
742 	     !inet_rtx_syn_ack(sk_listener, req) ||
743 	     inet_rsk(req)->acked)) {
744 		unsigned long timeo;
745 
746 		if (req->num_timeout++ == 0)
747 			atomic_dec(&queue->young);
748 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
749 		mod_timer(&req->rsk_timer, jiffies + timeo);
750 		return;
751 	}
752 drop:
753 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
754 }
755 
756 static void reqsk_queue_hash_req(struct request_sock *req,
757 				 unsigned long timeout)
758 {
759 	req->num_retrans = 0;
760 	req->num_timeout = 0;
761 	req->sk = NULL;
762 
763 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
764 	mod_timer(&req->rsk_timer, jiffies + timeout);
765 
766 	inet_ehash_insert(req_to_sk(req), NULL);
767 	/* before letting lookups find us, make sure all req fields
768 	 * are committed to memory and refcnt initialized.
769 	 */
770 	smp_wmb();
771 	refcount_set(&req->rsk_refcnt, 2 + 1);
772 }
773 
774 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
775 				   unsigned long timeout)
776 {
777 	reqsk_queue_hash_req(req, timeout);
778 	inet_csk_reqsk_queue_added(sk);
779 }
780 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
781 
782 /**
783  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
784  *	@sk: the socket to clone
785  *	@req: request_sock
786  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
787  *
788  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
789  */
790 struct sock *inet_csk_clone_lock(const struct sock *sk,
791 				 const struct request_sock *req,
792 				 const gfp_t priority)
793 {
794 	struct sock *newsk = sk_clone_lock(sk, priority);
795 
796 	if (newsk) {
797 		struct inet_connection_sock *newicsk = inet_csk(newsk);
798 
799 		inet_sk_set_state(newsk, TCP_SYN_RECV);
800 		newicsk->icsk_bind_hash = NULL;
801 
802 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
803 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
804 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
805 
806 		/* listeners have SOCK_RCU_FREE, not the children */
807 		sock_reset_flag(newsk, SOCK_RCU_FREE);
808 
809 		inet_sk(newsk)->mc_list = NULL;
810 
811 		newsk->sk_mark = inet_rsk(req)->ir_mark;
812 		atomic64_set(&newsk->sk_cookie,
813 			     atomic64_read(&inet_rsk(req)->ir_cookie));
814 
815 		newicsk->icsk_retransmits = 0;
816 		newicsk->icsk_backoff	  = 0;
817 		newicsk->icsk_probes_out  = 0;
818 
819 		/* Deinitialize accept_queue to trap illegal accesses. */
820 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
821 
822 		security_inet_csk_clone(newsk, req);
823 	}
824 	return newsk;
825 }
826 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
827 
828 /*
829  * At this point, there should be no process reference to this
830  * socket, and thus no user references at all.  Therefore we
831  * can assume the socket waitqueue is inactive and nobody will
832  * try to jump onto it.
833  */
834 void inet_csk_destroy_sock(struct sock *sk)
835 {
836 	WARN_ON(sk->sk_state != TCP_CLOSE);
837 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
838 
839 	/* It cannot be in hash table! */
840 	WARN_ON(!sk_unhashed(sk));
841 
842 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
843 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
844 
845 	sk->sk_prot->destroy(sk);
846 
847 	sk_stream_kill_queues(sk);
848 
849 	xfrm_sk_free_policy(sk);
850 
851 	sk_refcnt_debug_release(sk);
852 
853 	percpu_counter_dec(sk->sk_prot->orphan_count);
854 
855 	sock_put(sk);
856 }
857 EXPORT_SYMBOL(inet_csk_destroy_sock);
858 
859 /* This function allows to force a closure of a socket after the call to
860  * tcp/dccp_create_openreq_child().
861  */
862 void inet_csk_prepare_forced_close(struct sock *sk)
863 	__releases(&sk->sk_lock.slock)
864 {
865 	/* sk_clone_lock locked the socket and set refcnt to 2 */
866 	bh_unlock_sock(sk);
867 	sock_put(sk);
868 
869 	/* The below has to be done to allow calling inet_csk_destroy_sock */
870 	sock_set_flag(sk, SOCK_DEAD);
871 	percpu_counter_inc(sk->sk_prot->orphan_count);
872 	inet_sk(sk)->inet_num = 0;
873 }
874 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
875 
876 int inet_csk_listen_start(struct sock *sk, int backlog)
877 {
878 	struct inet_connection_sock *icsk = inet_csk(sk);
879 	struct inet_sock *inet = inet_sk(sk);
880 	int err = -EADDRINUSE;
881 
882 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
883 
884 	sk->sk_ack_backlog = 0;
885 	inet_csk_delack_init(sk);
886 
887 	/* There is race window here: we announce ourselves listening,
888 	 * but this transition is still not validated by get_port().
889 	 * It is OK, because this socket enters to hash table only
890 	 * after validation is complete.
891 	 */
892 	inet_sk_state_store(sk, TCP_LISTEN);
893 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
894 		inet->inet_sport = htons(inet->inet_num);
895 
896 		sk_dst_reset(sk);
897 		err = sk->sk_prot->hash(sk);
898 
899 		if (likely(!err))
900 			return 0;
901 	}
902 
903 	inet_sk_set_state(sk, TCP_CLOSE);
904 	return err;
905 }
906 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
907 
908 static void inet_child_forget(struct sock *sk, struct request_sock *req,
909 			      struct sock *child)
910 {
911 	sk->sk_prot->disconnect(child, O_NONBLOCK);
912 
913 	sock_orphan(child);
914 
915 	percpu_counter_inc(sk->sk_prot->orphan_count);
916 
917 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
918 		BUG_ON(tcp_sk(child)->fastopen_rsk != req);
919 		BUG_ON(sk != req->rsk_listener);
920 
921 		/* Paranoid, to prevent race condition if
922 		 * an inbound pkt destined for child is
923 		 * blocked by sock lock in tcp_v4_rcv().
924 		 * Also to satisfy an assertion in
925 		 * tcp_v4_destroy_sock().
926 		 */
927 		tcp_sk(child)->fastopen_rsk = NULL;
928 	}
929 	inet_csk_destroy_sock(child);
930 }
931 
932 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
933 				      struct request_sock *req,
934 				      struct sock *child)
935 {
936 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
937 
938 	spin_lock(&queue->rskq_lock);
939 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
940 		inet_child_forget(sk, req, child);
941 		child = NULL;
942 	} else {
943 		req->sk = child;
944 		req->dl_next = NULL;
945 		if (queue->rskq_accept_head == NULL)
946 			queue->rskq_accept_head = req;
947 		else
948 			queue->rskq_accept_tail->dl_next = req;
949 		queue->rskq_accept_tail = req;
950 		sk_acceptq_added(sk);
951 	}
952 	spin_unlock(&queue->rskq_lock);
953 	return child;
954 }
955 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
956 
957 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
958 					 struct request_sock *req, bool own_req)
959 {
960 	if (own_req) {
961 		inet_csk_reqsk_queue_drop(sk, req);
962 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
963 		if (inet_csk_reqsk_queue_add(sk, req, child))
964 			return child;
965 	}
966 	/* Too bad, another child took ownership of the request, undo. */
967 	bh_unlock_sock(child);
968 	sock_put(child);
969 	return NULL;
970 }
971 EXPORT_SYMBOL(inet_csk_complete_hashdance);
972 
973 /*
974  *	This routine closes sockets which have been at least partially
975  *	opened, but not yet accepted.
976  */
977 void inet_csk_listen_stop(struct sock *sk)
978 {
979 	struct inet_connection_sock *icsk = inet_csk(sk);
980 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
981 	struct request_sock *next, *req;
982 
983 	/* Following specs, it would be better either to send FIN
984 	 * (and enter FIN-WAIT-1, it is normal close)
985 	 * or to send active reset (abort).
986 	 * Certainly, it is pretty dangerous while synflood, but it is
987 	 * bad justification for our negligence 8)
988 	 * To be honest, we are not able to make either
989 	 * of the variants now.			--ANK
990 	 */
991 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
992 		struct sock *child = req->sk;
993 
994 		local_bh_disable();
995 		bh_lock_sock(child);
996 		WARN_ON(sock_owned_by_user(child));
997 		sock_hold(child);
998 
999 		inet_child_forget(sk, req, child);
1000 		reqsk_put(req);
1001 		bh_unlock_sock(child);
1002 		local_bh_enable();
1003 		sock_put(child);
1004 
1005 		cond_resched();
1006 	}
1007 	if (queue->fastopenq.rskq_rst_head) {
1008 		/* Free all the reqs queued in rskq_rst_head. */
1009 		spin_lock_bh(&queue->fastopenq.lock);
1010 		req = queue->fastopenq.rskq_rst_head;
1011 		queue->fastopenq.rskq_rst_head = NULL;
1012 		spin_unlock_bh(&queue->fastopenq.lock);
1013 		while (req != NULL) {
1014 			next = req->dl_next;
1015 			reqsk_put(req);
1016 			req = next;
1017 		}
1018 	}
1019 	WARN_ON_ONCE(sk->sk_ack_backlog);
1020 }
1021 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1022 
1023 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1024 {
1025 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1026 	const struct inet_sock *inet = inet_sk(sk);
1027 
1028 	sin->sin_family		= AF_INET;
1029 	sin->sin_addr.s_addr	= inet->inet_daddr;
1030 	sin->sin_port		= inet->inet_dport;
1031 }
1032 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1033 
1034 #ifdef CONFIG_COMPAT
1035 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1036 			       char __user *optval, int __user *optlen)
1037 {
1038 	const struct inet_connection_sock *icsk = inet_csk(sk);
1039 
1040 	if (icsk->icsk_af_ops->compat_getsockopt)
1041 		return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1042 							    optval, optlen);
1043 	return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1044 					     optval, optlen);
1045 }
1046 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1047 
1048 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1049 			       char __user *optval, unsigned int optlen)
1050 {
1051 	const struct inet_connection_sock *icsk = inet_csk(sk);
1052 
1053 	if (icsk->icsk_af_ops->compat_setsockopt)
1054 		return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1055 							    optval, optlen);
1056 	return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1057 					     optval, optlen);
1058 }
1059 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1060 #endif
1061 
1062 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1063 {
1064 	const struct inet_sock *inet = inet_sk(sk);
1065 	const struct ip_options_rcu *inet_opt;
1066 	__be32 daddr = inet->inet_daddr;
1067 	struct flowi4 *fl4;
1068 	struct rtable *rt;
1069 
1070 	rcu_read_lock();
1071 	inet_opt = rcu_dereference(inet->inet_opt);
1072 	if (inet_opt && inet_opt->opt.srr)
1073 		daddr = inet_opt->opt.faddr;
1074 	fl4 = &fl->u.ip4;
1075 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1076 				   inet->inet_saddr, inet->inet_dport,
1077 				   inet->inet_sport, sk->sk_protocol,
1078 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1079 	if (IS_ERR(rt))
1080 		rt = NULL;
1081 	if (rt)
1082 		sk_setup_caps(sk, &rt->dst);
1083 	rcu_read_unlock();
1084 
1085 	return &rt->dst;
1086 }
1087 
1088 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1089 {
1090 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1091 	struct inet_sock *inet = inet_sk(sk);
1092 
1093 	if (!dst) {
1094 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1095 		if (!dst)
1096 			goto out;
1097 	}
1098 	dst->ops->update_pmtu(dst, sk, NULL, mtu);
1099 
1100 	dst = __sk_dst_check(sk, 0);
1101 	if (!dst)
1102 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1103 out:
1104 	return dst;
1105 }
1106 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1107