1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 	unsigned int seq;
123 
124 	do {
125 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126 
127 		*low = net->ipv4.ip_local_ports.range[0];
128 		*high = net->ipv4.ip_local_ports.range[1];
129 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132 
133 static int inet_csk_bind_conflict(const struct sock *sk,
134 				  const struct inet_bind_bucket *tb,
135 				  bool relax, bool reuseport_ok)
136 {
137 	struct sock *sk2;
138 	bool reuse = sk->sk_reuse;
139 	bool reuseport = !!sk->sk_reuseport;
140 	kuid_t uid = sock_i_uid((struct sock *)sk);
141 
142 	/*
143 	 * Unlike other sk lookup places we do not check
144 	 * for sk_net here, since _all_ the socks listed
145 	 * in tb->owners list belong to the same net - the
146 	 * one this bucket belongs to.
147 	 */
148 
149 	sk_for_each_bound(sk2, &tb->owners) {
150 		if (sk != sk2 &&
151 		    (!sk->sk_bound_dev_if ||
152 		     !sk2->sk_bound_dev_if ||
153 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
154 			if (reuse && sk2->sk_reuse &&
155 			    sk2->sk_state != TCP_LISTEN) {
156 				if ((!relax ||
157 				     (!reuseport_ok &&
158 				      reuseport && sk2->sk_reuseport &&
159 				      !rcu_access_pointer(sk->sk_reuseport_cb) &&
160 				      (sk2->sk_state == TCP_TIME_WAIT ||
161 				       uid_eq(uid, sock_i_uid(sk2))))) &&
162 				    inet_rcv_saddr_equal(sk, sk2, true))
163 					break;
164 			} else if (!reuseport_ok ||
165 				   !reuseport || !sk2->sk_reuseport ||
166 				   rcu_access_pointer(sk->sk_reuseport_cb) ||
167 				   (sk2->sk_state != TCP_TIME_WAIT &&
168 				    !uid_eq(uid, sock_i_uid(sk2)))) {
169 				if (inet_rcv_saddr_equal(sk, sk2, true))
170 					break;
171 			}
172 		}
173 	}
174 	return sk2 != NULL;
175 }
176 
177 /*
178  * Find an open port number for the socket.  Returns with the
179  * inet_bind_hashbucket lock held.
180  */
181 static struct inet_bind_hashbucket *
182 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
183 {
184 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
185 	int port = 0;
186 	struct inet_bind_hashbucket *head;
187 	struct net *net = sock_net(sk);
188 	bool relax = false;
189 	int i, low, high, attempt_half;
190 	struct inet_bind_bucket *tb;
191 	u32 remaining, offset;
192 	int l3mdev;
193 
194 	l3mdev = inet_sk_bound_l3mdev(sk);
195 ports_exhausted:
196 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
197 other_half_scan:
198 	inet_get_local_port_range(net, &low, &high);
199 	high++; /* [32768, 60999] -> [32768, 61000[ */
200 	if (high - low < 4)
201 		attempt_half = 0;
202 	if (attempt_half) {
203 		int half = low + (((high - low) >> 2) << 1);
204 
205 		if (attempt_half == 1)
206 			high = half;
207 		else
208 			low = half;
209 	}
210 	remaining = high - low;
211 	if (likely(remaining > 1))
212 		remaining &= ~1U;
213 
214 	offset = prandom_u32() % remaining;
215 	/* __inet_hash_connect() favors ports having @low parity
216 	 * We do the opposite to not pollute connect() users.
217 	 */
218 	offset |= 1U;
219 
220 other_parity_scan:
221 	port = low + offset;
222 	for (i = 0; i < remaining; i += 2, port += 2) {
223 		if (unlikely(port >= high))
224 			port -= remaining;
225 		if (inet_is_local_reserved_port(net, port))
226 			continue;
227 		head = &hinfo->bhash[inet_bhashfn(net, port,
228 						  hinfo->bhash_size)];
229 		spin_lock_bh(&head->lock);
230 		inet_bind_bucket_for_each(tb, &head->chain)
231 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
232 			    tb->port == port) {
233 				if (!inet_csk_bind_conflict(sk, tb, relax, false))
234 					goto success;
235 				goto next_port;
236 			}
237 		tb = NULL;
238 		goto success;
239 next_port:
240 		spin_unlock_bh(&head->lock);
241 		cond_resched();
242 	}
243 
244 	offset--;
245 	if (!(offset & 1))
246 		goto other_parity_scan;
247 
248 	if (attempt_half == 1) {
249 		/* OK we now try the upper half of the range */
250 		attempt_half = 2;
251 		goto other_half_scan;
252 	}
253 
254 	if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
255 		/* We still have a chance to connect to different destinations */
256 		relax = true;
257 		goto ports_exhausted;
258 	}
259 	return NULL;
260 success:
261 	*port_ret = port;
262 	*tb_ret = tb;
263 	return head;
264 }
265 
266 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
267 				     struct sock *sk)
268 {
269 	kuid_t uid = sock_i_uid(sk);
270 
271 	if (tb->fastreuseport <= 0)
272 		return 0;
273 	if (!sk->sk_reuseport)
274 		return 0;
275 	if (rcu_access_pointer(sk->sk_reuseport_cb))
276 		return 0;
277 	if (!uid_eq(tb->fastuid, uid))
278 		return 0;
279 	/* We only need to check the rcv_saddr if this tb was once marked
280 	 * without fastreuseport and then was reset, as we can only know that
281 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
282 	 * owners list.
283 	 */
284 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
285 		return 1;
286 #if IS_ENABLED(CONFIG_IPV6)
287 	if (tb->fast_sk_family == AF_INET6)
288 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
289 					    inet6_rcv_saddr(sk),
290 					    tb->fast_rcv_saddr,
291 					    sk->sk_rcv_saddr,
292 					    tb->fast_ipv6_only,
293 					    ipv6_only_sock(sk), true, false);
294 #endif
295 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
296 				    ipv6_only_sock(sk), true, false);
297 }
298 
299 /* Obtain a reference to a local port for the given sock,
300  * if snum is zero it means select any available local port.
301  * We try to allocate an odd port (and leave even ports for connect())
302  */
303 int inet_csk_get_port(struct sock *sk, unsigned short snum)
304 {
305 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
306 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
307 	int ret = 1, port = snum;
308 	struct inet_bind_hashbucket *head;
309 	struct net *net = sock_net(sk);
310 	struct inet_bind_bucket *tb = NULL;
311 	kuid_t uid = sock_i_uid(sk);
312 	int l3mdev;
313 
314 	l3mdev = inet_sk_bound_l3mdev(sk);
315 
316 	if (!port) {
317 		head = inet_csk_find_open_port(sk, &tb, &port);
318 		if (!head)
319 			return ret;
320 		if (!tb)
321 			goto tb_not_found;
322 		goto success;
323 	}
324 	head = &hinfo->bhash[inet_bhashfn(net, port,
325 					  hinfo->bhash_size)];
326 	spin_lock_bh(&head->lock);
327 	inet_bind_bucket_for_each(tb, &head->chain)
328 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
329 		    tb->port == port)
330 			goto tb_found;
331 tb_not_found:
332 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
333 				     net, head, port, l3mdev);
334 	if (!tb)
335 		goto fail_unlock;
336 tb_found:
337 	if (!hlist_empty(&tb->owners)) {
338 		if (sk->sk_reuse == SK_FORCE_REUSE)
339 			goto success;
340 
341 		if ((tb->fastreuse > 0 && reuse) ||
342 		    sk_reuseport_match(tb, sk))
343 			goto success;
344 		if (inet_csk_bind_conflict(sk, tb, true, true))
345 			goto fail_unlock;
346 	}
347 success:
348 	if (hlist_empty(&tb->owners)) {
349 		tb->fastreuse = reuse;
350 		if (sk->sk_reuseport) {
351 			tb->fastreuseport = FASTREUSEPORT_ANY;
352 			tb->fastuid = uid;
353 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
354 			tb->fast_ipv6_only = ipv6_only_sock(sk);
355 			tb->fast_sk_family = sk->sk_family;
356 #if IS_ENABLED(CONFIG_IPV6)
357 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
358 #endif
359 		} else {
360 			tb->fastreuseport = 0;
361 		}
362 	} else {
363 		if (!reuse)
364 			tb->fastreuse = 0;
365 		if (sk->sk_reuseport) {
366 			/* We didn't match or we don't have fastreuseport set on
367 			 * the tb, but we have sk_reuseport set on this socket
368 			 * and we know that there are no bind conflicts with
369 			 * this socket in this tb, so reset our tb's reuseport
370 			 * settings so that any subsequent sockets that match
371 			 * our current socket will be put on the fast path.
372 			 *
373 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
374 			 * do extra checking for all subsequent sk_reuseport
375 			 * socks.
376 			 */
377 			if (!sk_reuseport_match(tb, sk)) {
378 				tb->fastreuseport = FASTREUSEPORT_STRICT;
379 				tb->fastuid = uid;
380 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
381 				tb->fast_ipv6_only = ipv6_only_sock(sk);
382 				tb->fast_sk_family = sk->sk_family;
383 #if IS_ENABLED(CONFIG_IPV6)
384 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
385 #endif
386 			}
387 		} else {
388 			tb->fastreuseport = 0;
389 		}
390 	}
391 	if (!inet_csk(sk)->icsk_bind_hash)
392 		inet_bind_hash(sk, tb, port);
393 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
394 	ret = 0;
395 
396 fail_unlock:
397 	spin_unlock_bh(&head->lock);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(inet_csk_get_port);
401 
402 /*
403  * Wait for an incoming connection, avoid race conditions. This must be called
404  * with the socket locked.
405  */
406 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
407 {
408 	struct inet_connection_sock *icsk = inet_csk(sk);
409 	DEFINE_WAIT(wait);
410 	int err;
411 
412 	/*
413 	 * True wake-one mechanism for incoming connections: only
414 	 * one process gets woken up, not the 'whole herd'.
415 	 * Since we do not 'race & poll' for established sockets
416 	 * anymore, the common case will execute the loop only once.
417 	 *
418 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
419 	 * after any current non-exclusive waiters, and we know that
420 	 * it will always _stay_ after any new non-exclusive waiters
421 	 * because all non-exclusive waiters are added at the
422 	 * beginning of the wait-queue. As such, it's ok to "drop"
423 	 * our exclusiveness temporarily when we get woken up without
424 	 * having to remove and re-insert us on the wait queue.
425 	 */
426 	for (;;) {
427 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
428 					  TASK_INTERRUPTIBLE);
429 		release_sock(sk);
430 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
431 			timeo = schedule_timeout(timeo);
432 		sched_annotate_sleep();
433 		lock_sock(sk);
434 		err = 0;
435 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
436 			break;
437 		err = -EINVAL;
438 		if (sk->sk_state != TCP_LISTEN)
439 			break;
440 		err = sock_intr_errno(timeo);
441 		if (signal_pending(current))
442 			break;
443 		err = -EAGAIN;
444 		if (!timeo)
445 			break;
446 	}
447 	finish_wait(sk_sleep(sk), &wait);
448 	return err;
449 }
450 
451 /*
452  * This will accept the next outstanding connection.
453  */
454 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
455 {
456 	struct inet_connection_sock *icsk = inet_csk(sk);
457 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
458 	struct request_sock *req;
459 	struct sock *newsk;
460 	int error;
461 
462 	lock_sock(sk);
463 
464 	/* We need to make sure that this socket is listening,
465 	 * and that it has something pending.
466 	 */
467 	error = -EINVAL;
468 	if (sk->sk_state != TCP_LISTEN)
469 		goto out_err;
470 
471 	/* Find already established connection */
472 	if (reqsk_queue_empty(queue)) {
473 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
474 
475 		/* If this is a non blocking socket don't sleep */
476 		error = -EAGAIN;
477 		if (!timeo)
478 			goto out_err;
479 
480 		error = inet_csk_wait_for_connect(sk, timeo);
481 		if (error)
482 			goto out_err;
483 	}
484 	req = reqsk_queue_remove(queue, sk);
485 	newsk = req->sk;
486 
487 	if (sk->sk_protocol == IPPROTO_TCP &&
488 	    tcp_rsk(req)->tfo_listener) {
489 		spin_lock_bh(&queue->fastopenq.lock);
490 		if (tcp_rsk(req)->tfo_listener) {
491 			/* We are still waiting for the final ACK from 3WHS
492 			 * so can't free req now. Instead, we set req->sk to
493 			 * NULL to signify that the child socket is taken
494 			 * so reqsk_fastopen_remove() will free the req
495 			 * when 3WHS finishes (or is aborted).
496 			 */
497 			req->sk = NULL;
498 			req = NULL;
499 		}
500 		spin_unlock_bh(&queue->fastopenq.lock);
501 	}
502 
503 out:
504 	release_sock(sk);
505 	if (newsk && mem_cgroup_sockets_enabled) {
506 		int amt;
507 
508 		/* atomically get the memory usage, set and charge the
509 		 * newsk->sk_memcg.
510 		 */
511 		lock_sock(newsk);
512 
513 		/* The socket has not been accepted yet, no need to look at
514 		 * newsk->sk_wmem_queued.
515 		 */
516 		amt = sk_mem_pages(newsk->sk_forward_alloc +
517 				   atomic_read(&newsk->sk_rmem_alloc));
518 		mem_cgroup_sk_alloc(newsk);
519 		if (newsk->sk_memcg && amt)
520 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
521 
522 		release_sock(newsk);
523 	}
524 	if (req)
525 		reqsk_put(req);
526 	return newsk;
527 out_err:
528 	newsk = NULL;
529 	req = NULL;
530 	*err = error;
531 	goto out;
532 }
533 EXPORT_SYMBOL(inet_csk_accept);
534 
535 /*
536  * Using different timers for retransmit, delayed acks and probes
537  * We may wish use just one timer maintaining a list of expire jiffies
538  * to optimize.
539  */
540 void inet_csk_init_xmit_timers(struct sock *sk,
541 			       void (*retransmit_handler)(struct timer_list *t),
542 			       void (*delack_handler)(struct timer_list *t),
543 			       void (*keepalive_handler)(struct timer_list *t))
544 {
545 	struct inet_connection_sock *icsk = inet_csk(sk);
546 
547 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
548 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
549 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
550 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
551 }
552 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
553 
554 void inet_csk_clear_xmit_timers(struct sock *sk)
555 {
556 	struct inet_connection_sock *icsk = inet_csk(sk);
557 
558 	icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
559 
560 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
561 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
562 	sk_stop_timer(sk, &sk->sk_timer);
563 }
564 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
565 
566 void inet_csk_delete_keepalive_timer(struct sock *sk)
567 {
568 	sk_stop_timer(sk, &sk->sk_timer);
569 }
570 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
571 
572 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
573 {
574 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
575 }
576 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
577 
578 struct dst_entry *inet_csk_route_req(const struct sock *sk,
579 				     struct flowi4 *fl4,
580 				     const struct request_sock *req)
581 {
582 	const struct inet_request_sock *ireq = inet_rsk(req);
583 	struct net *net = read_pnet(&ireq->ireq_net);
584 	struct ip_options_rcu *opt;
585 	struct rtable *rt;
586 
587 	rcu_read_lock();
588 	opt = rcu_dereference(ireq->ireq_opt);
589 
590 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
591 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
592 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
593 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
594 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
595 			   htons(ireq->ir_num), sk->sk_uid);
596 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
597 	rt = ip_route_output_flow(net, fl4, sk);
598 	if (IS_ERR(rt))
599 		goto no_route;
600 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
601 		goto route_err;
602 	rcu_read_unlock();
603 	return &rt->dst;
604 
605 route_err:
606 	ip_rt_put(rt);
607 no_route:
608 	rcu_read_unlock();
609 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
610 	return NULL;
611 }
612 EXPORT_SYMBOL_GPL(inet_csk_route_req);
613 
614 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
615 					    struct sock *newsk,
616 					    const struct request_sock *req)
617 {
618 	const struct inet_request_sock *ireq = inet_rsk(req);
619 	struct net *net = read_pnet(&ireq->ireq_net);
620 	struct inet_sock *newinet = inet_sk(newsk);
621 	struct ip_options_rcu *opt;
622 	struct flowi4 *fl4;
623 	struct rtable *rt;
624 
625 	opt = rcu_dereference(ireq->ireq_opt);
626 	fl4 = &newinet->cork.fl.u.ip4;
627 
628 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
629 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
630 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
631 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
632 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
633 			   htons(ireq->ir_num), sk->sk_uid);
634 	security_req_classify_flow(req, flowi4_to_flowi(fl4));
635 	rt = ip_route_output_flow(net, fl4, sk);
636 	if (IS_ERR(rt))
637 		goto no_route;
638 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
639 		goto route_err;
640 	return &rt->dst;
641 
642 route_err:
643 	ip_rt_put(rt);
644 no_route:
645 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
646 	return NULL;
647 }
648 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
649 
650 /* Decide when to expire the request and when to resend SYN-ACK */
651 static void syn_ack_recalc(struct request_sock *req,
652 			   const int max_syn_ack_retries,
653 			   const u8 rskq_defer_accept,
654 			   int *expire, int *resend)
655 {
656 	if (!rskq_defer_accept) {
657 		*expire = req->num_timeout >= max_syn_ack_retries;
658 		*resend = 1;
659 		return;
660 	}
661 	*expire = req->num_timeout >= max_syn_ack_retries &&
662 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
663 	/* Do not resend while waiting for data after ACK,
664 	 * start to resend on end of deferring period to give
665 	 * last chance for data or ACK to create established socket.
666 	 */
667 	*resend = !inet_rsk(req)->acked ||
668 		  req->num_timeout >= rskq_defer_accept - 1;
669 }
670 
671 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
672 {
673 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
674 
675 	if (!err)
676 		req->num_retrans++;
677 	return err;
678 }
679 EXPORT_SYMBOL(inet_rtx_syn_ack);
680 
681 /* return true if req was found in the ehash table */
682 static bool reqsk_queue_unlink(struct request_sock *req)
683 {
684 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
685 	bool found = false;
686 
687 	if (sk_hashed(req_to_sk(req))) {
688 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
689 
690 		spin_lock(lock);
691 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
692 		spin_unlock(lock);
693 	}
694 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
695 		reqsk_put(req);
696 	return found;
697 }
698 
699 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
700 {
701 	if (reqsk_queue_unlink(req)) {
702 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
703 		reqsk_put(req);
704 	}
705 }
706 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
707 
708 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
709 {
710 	inet_csk_reqsk_queue_drop(sk, req);
711 	reqsk_put(req);
712 }
713 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
714 
715 static void reqsk_timer_handler(struct timer_list *t)
716 {
717 	struct request_sock *req = from_timer(req, t, rsk_timer);
718 	struct sock *sk_listener = req->rsk_listener;
719 	struct net *net = sock_net(sk_listener);
720 	struct inet_connection_sock *icsk = inet_csk(sk_listener);
721 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
722 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
723 
724 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN)
725 		goto drop;
726 
727 	max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
728 	/* Normally all the openreqs are young and become mature
729 	 * (i.e. converted to established socket) for first timeout.
730 	 * If synack was not acknowledged for 1 second, it means
731 	 * one of the following things: synack was lost, ack was lost,
732 	 * rtt is high or nobody planned to ack (i.e. synflood).
733 	 * When server is a bit loaded, queue is populated with old
734 	 * open requests, reducing effective size of queue.
735 	 * When server is well loaded, queue size reduces to zero
736 	 * after several minutes of work. It is not synflood,
737 	 * it is normal operation. The solution is pruning
738 	 * too old entries overriding normal timeout, when
739 	 * situation becomes dangerous.
740 	 *
741 	 * Essentially, we reserve half of room for young
742 	 * embrions; and abort old ones without pity, if old
743 	 * ones are about to clog our table.
744 	 */
745 	qlen = reqsk_queue_len(queue);
746 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
747 		int young = reqsk_queue_len_young(queue) << 1;
748 
749 		while (max_syn_ack_retries > 2) {
750 			if (qlen < young)
751 				break;
752 			max_syn_ack_retries--;
753 			young <<= 1;
754 		}
755 	}
756 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
757 		       &expire, &resend);
758 	req->rsk_ops->syn_ack_timeout(req);
759 	if (!expire &&
760 	    (!resend ||
761 	     !inet_rtx_syn_ack(sk_listener, req) ||
762 	     inet_rsk(req)->acked)) {
763 		unsigned long timeo;
764 
765 		if (req->num_timeout++ == 0)
766 			atomic_dec(&queue->young);
767 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
768 		mod_timer(&req->rsk_timer, jiffies + timeo);
769 		return;
770 	}
771 drop:
772 	inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
773 }
774 
775 static void reqsk_queue_hash_req(struct request_sock *req,
776 				 unsigned long timeout)
777 {
778 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
779 	mod_timer(&req->rsk_timer, jiffies + timeout);
780 
781 	inet_ehash_insert(req_to_sk(req), NULL);
782 	/* before letting lookups find us, make sure all req fields
783 	 * are committed to memory and refcnt initialized.
784 	 */
785 	smp_wmb();
786 	refcount_set(&req->rsk_refcnt, 2 + 1);
787 }
788 
789 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
790 				   unsigned long timeout)
791 {
792 	reqsk_queue_hash_req(req, timeout);
793 	inet_csk_reqsk_queue_added(sk);
794 }
795 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
796 
797 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
798 			   const gfp_t priority)
799 {
800 	struct inet_connection_sock *icsk = inet_csk(newsk);
801 
802 	if (!icsk->icsk_ulp_ops)
803 		return;
804 
805 	if (icsk->icsk_ulp_ops->clone)
806 		icsk->icsk_ulp_ops->clone(req, newsk, priority);
807 }
808 
809 /**
810  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
811  *	@sk: the socket to clone
812  *	@req: request_sock
813  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
814  *
815  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
816  */
817 struct sock *inet_csk_clone_lock(const struct sock *sk,
818 				 const struct request_sock *req,
819 				 const gfp_t priority)
820 {
821 	struct sock *newsk = sk_clone_lock(sk, priority);
822 
823 	if (newsk) {
824 		struct inet_connection_sock *newicsk = inet_csk(newsk);
825 
826 		inet_sk_set_state(newsk, TCP_SYN_RECV);
827 		newicsk->icsk_bind_hash = NULL;
828 
829 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
830 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
831 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
832 
833 		/* listeners have SOCK_RCU_FREE, not the children */
834 		sock_reset_flag(newsk, SOCK_RCU_FREE);
835 
836 		inet_sk(newsk)->mc_list = NULL;
837 
838 		newsk->sk_mark = inet_rsk(req)->ir_mark;
839 		atomic64_set(&newsk->sk_cookie,
840 			     atomic64_read(&inet_rsk(req)->ir_cookie));
841 
842 		newicsk->icsk_retransmits = 0;
843 		newicsk->icsk_backoff	  = 0;
844 		newicsk->icsk_probes_out  = 0;
845 
846 		/* Deinitialize accept_queue to trap illegal accesses. */
847 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
848 
849 		inet_clone_ulp(req, newsk, priority);
850 
851 		security_inet_csk_clone(newsk, req);
852 	}
853 	return newsk;
854 }
855 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
856 
857 /*
858  * At this point, there should be no process reference to this
859  * socket, and thus no user references at all.  Therefore we
860  * can assume the socket waitqueue is inactive and nobody will
861  * try to jump onto it.
862  */
863 void inet_csk_destroy_sock(struct sock *sk)
864 {
865 	WARN_ON(sk->sk_state != TCP_CLOSE);
866 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
867 
868 	/* It cannot be in hash table! */
869 	WARN_ON(!sk_unhashed(sk));
870 
871 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
872 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
873 
874 	sk->sk_prot->destroy(sk);
875 
876 	sk_stream_kill_queues(sk);
877 
878 	xfrm_sk_free_policy(sk);
879 
880 	sk_refcnt_debug_release(sk);
881 
882 	percpu_counter_dec(sk->sk_prot->orphan_count);
883 
884 	sock_put(sk);
885 }
886 EXPORT_SYMBOL(inet_csk_destroy_sock);
887 
888 /* This function allows to force a closure of a socket after the call to
889  * tcp/dccp_create_openreq_child().
890  */
891 void inet_csk_prepare_forced_close(struct sock *sk)
892 	__releases(&sk->sk_lock.slock)
893 {
894 	/* sk_clone_lock locked the socket and set refcnt to 2 */
895 	bh_unlock_sock(sk);
896 	sock_put(sk);
897 	inet_csk_prepare_for_destroy_sock(sk);
898 	inet_sk(sk)->inet_num = 0;
899 }
900 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
901 
902 int inet_csk_listen_start(struct sock *sk, int backlog)
903 {
904 	struct inet_connection_sock *icsk = inet_csk(sk);
905 	struct inet_sock *inet = inet_sk(sk);
906 	int err = -EADDRINUSE;
907 
908 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
909 
910 	sk->sk_ack_backlog = 0;
911 	inet_csk_delack_init(sk);
912 
913 	/* There is race window here: we announce ourselves listening,
914 	 * but this transition is still not validated by get_port().
915 	 * It is OK, because this socket enters to hash table only
916 	 * after validation is complete.
917 	 */
918 	inet_sk_state_store(sk, TCP_LISTEN);
919 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
920 		inet->inet_sport = htons(inet->inet_num);
921 
922 		sk_dst_reset(sk);
923 		err = sk->sk_prot->hash(sk);
924 
925 		if (likely(!err))
926 			return 0;
927 	}
928 
929 	inet_sk_set_state(sk, TCP_CLOSE);
930 	return err;
931 }
932 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
933 
934 static void inet_child_forget(struct sock *sk, struct request_sock *req,
935 			      struct sock *child)
936 {
937 	sk->sk_prot->disconnect(child, O_NONBLOCK);
938 
939 	sock_orphan(child);
940 
941 	percpu_counter_inc(sk->sk_prot->orphan_count);
942 
943 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
944 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
945 		BUG_ON(sk != req->rsk_listener);
946 
947 		/* Paranoid, to prevent race condition if
948 		 * an inbound pkt destined for child is
949 		 * blocked by sock lock in tcp_v4_rcv().
950 		 * Also to satisfy an assertion in
951 		 * tcp_v4_destroy_sock().
952 		 */
953 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
954 	}
955 	inet_csk_destroy_sock(child);
956 }
957 
958 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
959 				      struct request_sock *req,
960 				      struct sock *child)
961 {
962 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
963 
964 	spin_lock(&queue->rskq_lock);
965 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
966 		inet_child_forget(sk, req, child);
967 		child = NULL;
968 	} else {
969 		req->sk = child;
970 		req->dl_next = NULL;
971 		if (queue->rskq_accept_head == NULL)
972 			WRITE_ONCE(queue->rskq_accept_head, req);
973 		else
974 			queue->rskq_accept_tail->dl_next = req;
975 		queue->rskq_accept_tail = req;
976 		sk_acceptq_added(sk);
977 	}
978 	spin_unlock(&queue->rskq_lock);
979 	return child;
980 }
981 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
982 
983 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
984 					 struct request_sock *req, bool own_req)
985 {
986 	if (own_req) {
987 		inet_csk_reqsk_queue_drop(sk, req);
988 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
989 		if (inet_csk_reqsk_queue_add(sk, req, child))
990 			return child;
991 	}
992 	/* Too bad, another child took ownership of the request, undo. */
993 	bh_unlock_sock(child);
994 	sock_put(child);
995 	return NULL;
996 }
997 EXPORT_SYMBOL(inet_csk_complete_hashdance);
998 
999 /*
1000  *	This routine closes sockets which have been at least partially
1001  *	opened, but not yet accepted.
1002  */
1003 void inet_csk_listen_stop(struct sock *sk)
1004 {
1005 	struct inet_connection_sock *icsk = inet_csk(sk);
1006 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1007 	struct request_sock *next, *req;
1008 
1009 	/* Following specs, it would be better either to send FIN
1010 	 * (and enter FIN-WAIT-1, it is normal close)
1011 	 * or to send active reset (abort).
1012 	 * Certainly, it is pretty dangerous while synflood, but it is
1013 	 * bad justification for our negligence 8)
1014 	 * To be honest, we are not able to make either
1015 	 * of the variants now.			--ANK
1016 	 */
1017 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1018 		struct sock *child = req->sk;
1019 
1020 		local_bh_disable();
1021 		bh_lock_sock(child);
1022 		WARN_ON(sock_owned_by_user(child));
1023 		sock_hold(child);
1024 
1025 		inet_child_forget(sk, req, child);
1026 		reqsk_put(req);
1027 		bh_unlock_sock(child);
1028 		local_bh_enable();
1029 		sock_put(child);
1030 
1031 		cond_resched();
1032 	}
1033 	if (queue->fastopenq.rskq_rst_head) {
1034 		/* Free all the reqs queued in rskq_rst_head. */
1035 		spin_lock_bh(&queue->fastopenq.lock);
1036 		req = queue->fastopenq.rskq_rst_head;
1037 		queue->fastopenq.rskq_rst_head = NULL;
1038 		spin_unlock_bh(&queue->fastopenq.lock);
1039 		while (req != NULL) {
1040 			next = req->dl_next;
1041 			reqsk_put(req);
1042 			req = next;
1043 		}
1044 	}
1045 	WARN_ON_ONCE(sk->sk_ack_backlog);
1046 }
1047 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1048 
1049 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1050 {
1051 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1052 	const struct inet_sock *inet = inet_sk(sk);
1053 
1054 	sin->sin_family		= AF_INET;
1055 	sin->sin_addr.s_addr	= inet->inet_daddr;
1056 	sin->sin_port		= inet->inet_dport;
1057 }
1058 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1059 
1060 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1061 {
1062 	const struct inet_sock *inet = inet_sk(sk);
1063 	const struct ip_options_rcu *inet_opt;
1064 	__be32 daddr = inet->inet_daddr;
1065 	struct flowi4 *fl4;
1066 	struct rtable *rt;
1067 
1068 	rcu_read_lock();
1069 	inet_opt = rcu_dereference(inet->inet_opt);
1070 	if (inet_opt && inet_opt->opt.srr)
1071 		daddr = inet_opt->opt.faddr;
1072 	fl4 = &fl->u.ip4;
1073 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1074 				   inet->inet_saddr, inet->inet_dport,
1075 				   inet->inet_sport, sk->sk_protocol,
1076 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1077 	if (IS_ERR(rt))
1078 		rt = NULL;
1079 	if (rt)
1080 		sk_setup_caps(sk, &rt->dst);
1081 	rcu_read_unlock();
1082 
1083 	return &rt->dst;
1084 }
1085 
1086 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1087 {
1088 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1089 	struct inet_sock *inet = inet_sk(sk);
1090 
1091 	if (!dst) {
1092 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1093 		if (!dst)
1094 			goto out;
1095 	}
1096 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1097 
1098 	dst = __sk_dst_check(sk, 0);
1099 	if (!dst)
1100 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1101 out:
1102 	return dst;
1103 }
1104 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1105