1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Support for INET connection oriented protocols. 7 * 8 * Authors: See the TCP sources 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or(at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/jhash.h> 18 19 #include <net/inet_connection_sock.h> 20 #include <net/inet_hashtables.h> 21 #include <net/inet_timewait_sock.h> 22 #include <net/ip.h> 23 #include <net/route.h> 24 #include <net/tcp_states.h> 25 #include <net/xfrm.h> 26 #include <net/tcp.h> 27 #include <net/sock_reuseport.h> 28 #include <net/addrconf.h> 29 30 #if IS_ENABLED(CONFIG_IPV6) 31 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 32 * only, and any IPv4 addresses if not IPv6 only 33 * match_wildcard == false: addresses must be exactly the same, i.e. 34 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 35 * and 0.0.0.0 equals to 0.0.0.0 only 36 */ 37 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 38 const struct in6_addr *sk2_rcv_saddr6, 39 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 40 bool sk1_ipv6only, bool sk2_ipv6only, 41 bool match_wildcard) 42 { 43 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 44 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 45 46 /* if both are mapped, treat as IPv4 */ 47 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 48 if (!sk2_ipv6only) { 49 if (sk1_rcv_saddr == sk2_rcv_saddr) 50 return true; 51 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 52 return match_wildcard; 53 } 54 return false; 55 } 56 57 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 58 return true; 59 60 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 61 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 62 return true; 63 64 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 65 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 66 return true; 67 68 if (sk2_rcv_saddr6 && 69 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 70 return true; 71 72 return false; 73 } 74 #endif 75 76 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 77 * match_wildcard == false: addresses must be exactly the same, i.e. 78 * 0.0.0.0 only equals to 0.0.0.0 79 */ 80 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 81 bool sk2_ipv6only, bool match_wildcard) 82 { 83 if (!sk2_ipv6only) { 84 if (sk1_rcv_saddr == sk2_rcv_saddr) 85 return true; 86 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 87 return match_wildcard; 88 } 89 return false; 90 } 91 92 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 93 bool match_wildcard) 94 { 95 #if IS_ENABLED(CONFIG_IPV6) 96 if (sk->sk_family == AF_INET6) 97 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 98 inet6_rcv_saddr(sk2), 99 sk->sk_rcv_saddr, 100 sk2->sk_rcv_saddr, 101 ipv6_only_sock(sk), 102 ipv6_only_sock(sk2), 103 match_wildcard); 104 #endif 105 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 106 ipv6_only_sock(sk2), match_wildcard); 107 } 108 EXPORT_SYMBOL(inet_rcv_saddr_equal); 109 110 bool inet_rcv_saddr_any(const struct sock *sk) 111 { 112 #if IS_ENABLED(CONFIG_IPV6) 113 if (sk->sk_family == AF_INET6) 114 return ipv6_addr_any(&sk->sk_v6_rcv_saddr); 115 #endif 116 return !sk->sk_rcv_saddr; 117 } 118 119 void inet_get_local_port_range(struct net *net, int *low, int *high) 120 { 121 unsigned int seq; 122 123 do { 124 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 125 126 *low = net->ipv4.ip_local_ports.range[0]; 127 *high = net->ipv4.ip_local_ports.range[1]; 128 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 129 } 130 EXPORT_SYMBOL(inet_get_local_port_range); 131 132 static int inet_csk_bind_conflict(const struct sock *sk, 133 const struct inet_bind_bucket *tb, 134 bool relax, bool reuseport_ok) 135 { 136 struct sock *sk2; 137 bool reuse = sk->sk_reuse; 138 bool reuseport = !!sk->sk_reuseport && reuseport_ok; 139 kuid_t uid = sock_i_uid((struct sock *)sk); 140 141 /* 142 * Unlike other sk lookup places we do not check 143 * for sk_net here, since _all_ the socks listed 144 * in tb->owners list belong to the same net - the 145 * one this bucket belongs to. 146 */ 147 148 sk_for_each_bound(sk2, &tb->owners) { 149 if (sk != sk2 && 150 (!sk->sk_bound_dev_if || 151 !sk2->sk_bound_dev_if || 152 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 153 if ((!reuse || !sk2->sk_reuse || 154 sk2->sk_state == TCP_LISTEN) && 155 (!reuseport || !sk2->sk_reuseport || 156 rcu_access_pointer(sk->sk_reuseport_cb) || 157 (sk2->sk_state != TCP_TIME_WAIT && 158 !uid_eq(uid, sock_i_uid(sk2))))) { 159 if (inet_rcv_saddr_equal(sk, sk2, true)) 160 break; 161 } 162 if (!relax && reuse && sk2->sk_reuse && 163 sk2->sk_state != TCP_LISTEN) { 164 if (inet_rcv_saddr_equal(sk, sk2, true)) 165 break; 166 } 167 } 168 } 169 return sk2 != NULL; 170 } 171 172 /* 173 * Find an open port number for the socket. Returns with the 174 * inet_bind_hashbucket lock held. 175 */ 176 static struct inet_bind_hashbucket * 177 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 178 { 179 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 180 int port = 0; 181 struct inet_bind_hashbucket *head; 182 struct net *net = sock_net(sk); 183 int i, low, high, attempt_half; 184 struct inet_bind_bucket *tb; 185 u32 remaining, offset; 186 int l3mdev; 187 188 l3mdev = inet_sk_bound_l3mdev(sk); 189 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 190 other_half_scan: 191 inet_get_local_port_range(net, &low, &high); 192 high++; /* [32768, 60999] -> [32768, 61000[ */ 193 if (high - low < 4) 194 attempt_half = 0; 195 if (attempt_half) { 196 int half = low + (((high - low) >> 2) << 1); 197 198 if (attempt_half == 1) 199 high = half; 200 else 201 low = half; 202 } 203 remaining = high - low; 204 if (likely(remaining > 1)) 205 remaining &= ~1U; 206 207 offset = prandom_u32() % remaining; 208 /* __inet_hash_connect() favors ports having @low parity 209 * We do the opposite to not pollute connect() users. 210 */ 211 offset |= 1U; 212 213 other_parity_scan: 214 port = low + offset; 215 for (i = 0; i < remaining; i += 2, port += 2) { 216 if (unlikely(port >= high)) 217 port -= remaining; 218 if (inet_is_local_reserved_port(net, port)) 219 continue; 220 head = &hinfo->bhash[inet_bhashfn(net, port, 221 hinfo->bhash_size)]; 222 spin_lock_bh(&head->lock); 223 inet_bind_bucket_for_each(tb, &head->chain) 224 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 225 tb->port == port) { 226 if (!inet_csk_bind_conflict(sk, tb, false, false)) 227 goto success; 228 goto next_port; 229 } 230 tb = NULL; 231 goto success; 232 next_port: 233 spin_unlock_bh(&head->lock); 234 cond_resched(); 235 } 236 237 offset--; 238 if (!(offset & 1)) 239 goto other_parity_scan; 240 241 if (attempt_half == 1) { 242 /* OK we now try the upper half of the range */ 243 attempt_half = 2; 244 goto other_half_scan; 245 } 246 return NULL; 247 success: 248 *port_ret = port; 249 *tb_ret = tb; 250 return head; 251 } 252 253 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 254 struct sock *sk) 255 { 256 kuid_t uid = sock_i_uid(sk); 257 258 if (tb->fastreuseport <= 0) 259 return 0; 260 if (!sk->sk_reuseport) 261 return 0; 262 if (rcu_access_pointer(sk->sk_reuseport_cb)) 263 return 0; 264 if (!uid_eq(tb->fastuid, uid)) 265 return 0; 266 /* We only need to check the rcv_saddr if this tb was once marked 267 * without fastreuseport and then was reset, as we can only know that 268 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 269 * owners list. 270 */ 271 if (tb->fastreuseport == FASTREUSEPORT_ANY) 272 return 1; 273 #if IS_ENABLED(CONFIG_IPV6) 274 if (tb->fast_sk_family == AF_INET6) 275 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 276 inet6_rcv_saddr(sk), 277 tb->fast_rcv_saddr, 278 sk->sk_rcv_saddr, 279 tb->fast_ipv6_only, 280 ipv6_only_sock(sk), true); 281 #endif 282 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 283 ipv6_only_sock(sk), true); 284 } 285 286 /* Obtain a reference to a local port for the given sock, 287 * if snum is zero it means select any available local port. 288 * We try to allocate an odd port (and leave even ports for connect()) 289 */ 290 int inet_csk_get_port(struct sock *sk, unsigned short snum) 291 { 292 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 293 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 294 int ret = 1, port = snum; 295 struct inet_bind_hashbucket *head; 296 struct net *net = sock_net(sk); 297 struct inet_bind_bucket *tb = NULL; 298 kuid_t uid = sock_i_uid(sk); 299 int l3mdev; 300 301 l3mdev = inet_sk_bound_l3mdev(sk); 302 303 if (!port) { 304 head = inet_csk_find_open_port(sk, &tb, &port); 305 if (!head) 306 return ret; 307 if (!tb) 308 goto tb_not_found; 309 goto success; 310 } 311 head = &hinfo->bhash[inet_bhashfn(net, port, 312 hinfo->bhash_size)]; 313 spin_lock_bh(&head->lock); 314 inet_bind_bucket_for_each(tb, &head->chain) 315 if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev && 316 tb->port == port) 317 goto tb_found; 318 tb_not_found: 319 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 320 net, head, port, l3mdev); 321 if (!tb) 322 goto fail_unlock; 323 tb_found: 324 if (!hlist_empty(&tb->owners)) { 325 if (sk->sk_reuse == SK_FORCE_REUSE) 326 goto success; 327 328 if ((tb->fastreuse > 0 && reuse) || 329 sk_reuseport_match(tb, sk)) 330 goto success; 331 if (inet_csk_bind_conflict(sk, tb, true, true)) 332 goto fail_unlock; 333 } 334 success: 335 if (hlist_empty(&tb->owners)) { 336 tb->fastreuse = reuse; 337 if (sk->sk_reuseport) { 338 tb->fastreuseport = FASTREUSEPORT_ANY; 339 tb->fastuid = uid; 340 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 341 tb->fast_ipv6_only = ipv6_only_sock(sk); 342 tb->fast_sk_family = sk->sk_family; 343 #if IS_ENABLED(CONFIG_IPV6) 344 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 345 #endif 346 } else { 347 tb->fastreuseport = 0; 348 } 349 } else { 350 if (!reuse) 351 tb->fastreuse = 0; 352 if (sk->sk_reuseport) { 353 /* We didn't match or we don't have fastreuseport set on 354 * the tb, but we have sk_reuseport set on this socket 355 * and we know that there are no bind conflicts with 356 * this socket in this tb, so reset our tb's reuseport 357 * settings so that any subsequent sockets that match 358 * our current socket will be put on the fast path. 359 * 360 * If we reset we need to set FASTREUSEPORT_STRICT so we 361 * do extra checking for all subsequent sk_reuseport 362 * socks. 363 */ 364 if (!sk_reuseport_match(tb, sk)) { 365 tb->fastreuseport = FASTREUSEPORT_STRICT; 366 tb->fastuid = uid; 367 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 368 tb->fast_ipv6_only = ipv6_only_sock(sk); 369 tb->fast_sk_family = sk->sk_family; 370 #if IS_ENABLED(CONFIG_IPV6) 371 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 372 #endif 373 } 374 } else { 375 tb->fastreuseport = 0; 376 } 377 } 378 if (!inet_csk(sk)->icsk_bind_hash) 379 inet_bind_hash(sk, tb, port); 380 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 381 ret = 0; 382 383 fail_unlock: 384 spin_unlock_bh(&head->lock); 385 return ret; 386 } 387 EXPORT_SYMBOL_GPL(inet_csk_get_port); 388 389 /* 390 * Wait for an incoming connection, avoid race conditions. This must be called 391 * with the socket locked. 392 */ 393 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 394 { 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 DEFINE_WAIT(wait); 397 int err; 398 399 /* 400 * True wake-one mechanism for incoming connections: only 401 * one process gets woken up, not the 'whole herd'. 402 * Since we do not 'race & poll' for established sockets 403 * anymore, the common case will execute the loop only once. 404 * 405 * Subtle issue: "add_wait_queue_exclusive()" will be added 406 * after any current non-exclusive waiters, and we know that 407 * it will always _stay_ after any new non-exclusive waiters 408 * because all non-exclusive waiters are added at the 409 * beginning of the wait-queue. As such, it's ok to "drop" 410 * our exclusiveness temporarily when we get woken up without 411 * having to remove and re-insert us on the wait queue. 412 */ 413 for (;;) { 414 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 415 TASK_INTERRUPTIBLE); 416 release_sock(sk); 417 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 418 timeo = schedule_timeout(timeo); 419 sched_annotate_sleep(); 420 lock_sock(sk); 421 err = 0; 422 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 423 break; 424 err = -EINVAL; 425 if (sk->sk_state != TCP_LISTEN) 426 break; 427 err = sock_intr_errno(timeo); 428 if (signal_pending(current)) 429 break; 430 err = -EAGAIN; 431 if (!timeo) 432 break; 433 } 434 finish_wait(sk_sleep(sk), &wait); 435 return err; 436 } 437 438 /* 439 * This will accept the next outstanding connection. 440 */ 441 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 442 { 443 struct inet_connection_sock *icsk = inet_csk(sk); 444 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 445 struct request_sock *req; 446 struct sock *newsk; 447 int error; 448 449 lock_sock(sk); 450 451 /* We need to make sure that this socket is listening, 452 * and that it has something pending. 453 */ 454 error = -EINVAL; 455 if (sk->sk_state != TCP_LISTEN) 456 goto out_err; 457 458 /* Find already established connection */ 459 if (reqsk_queue_empty(queue)) { 460 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 461 462 /* If this is a non blocking socket don't sleep */ 463 error = -EAGAIN; 464 if (!timeo) 465 goto out_err; 466 467 error = inet_csk_wait_for_connect(sk, timeo); 468 if (error) 469 goto out_err; 470 } 471 req = reqsk_queue_remove(queue, sk); 472 newsk = req->sk; 473 474 if (sk->sk_protocol == IPPROTO_TCP && 475 tcp_rsk(req)->tfo_listener) { 476 spin_lock_bh(&queue->fastopenq.lock); 477 if (tcp_rsk(req)->tfo_listener) { 478 /* We are still waiting for the final ACK from 3WHS 479 * so can't free req now. Instead, we set req->sk to 480 * NULL to signify that the child socket is taken 481 * so reqsk_fastopen_remove() will free the req 482 * when 3WHS finishes (or is aborted). 483 */ 484 req->sk = NULL; 485 req = NULL; 486 } 487 spin_unlock_bh(&queue->fastopenq.lock); 488 } 489 out: 490 release_sock(sk); 491 if (req) 492 reqsk_put(req); 493 return newsk; 494 out_err: 495 newsk = NULL; 496 req = NULL; 497 *err = error; 498 goto out; 499 } 500 EXPORT_SYMBOL(inet_csk_accept); 501 502 /* 503 * Using different timers for retransmit, delayed acks and probes 504 * We may wish use just one timer maintaining a list of expire jiffies 505 * to optimize. 506 */ 507 void inet_csk_init_xmit_timers(struct sock *sk, 508 void (*retransmit_handler)(struct timer_list *t), 509 void (*delack_handler)(struct timer_list *t), 510 void (*keepalive_handler)(struct timer_list *t)) 511 { 512 struct inet_connection_sock *icsk = inet_csk(sk); 513 514 timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0); 515 timer_setup(&icsk->icsk_delack_timer, delack_handler, 0); 516 timer_setup(&sk->sk_timer, keepalive_handler, 0); 517 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 518 } 519 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 520 521 void inet_csk_clear_xmit_timers(struct sock *sk) 522 { 523 struct inet_connection_sock *icsk = inet_csk(sk); 524 525 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 526 527 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 528 sk_stop_timer(sk, &icsk->icsk_delack_timer); 529 sk_stop_timer(sk, &sk->sk_timer); 530 } 531 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 532 533 void inet_csk_delete_keepalive_timer(struct sock *sk) 534 { 535 sk_stop_timer(sk, &sk->sk_timer); 536 } 537 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 538 539 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 540 { 541 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 542 } 543 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 544 545 struct dst_entry *inet_csk_route_req(const struct sock *sk, 546 struct flowi4 *fl4, 547 const struct request_sock *req) 548 { 549 const struct inet_request_sock *ireq = inet_rsk(req); 550 struct net *net = read_pnet(&ireq->ireq_net); 551 struct ip_options_rcu *opt; 552 struct rtable *rt; 553 554 rcu_read_lock(); 555 opt = rcu_dereference(ireq->ireq_opt); 556 557 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 558 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 559 sk->sk_protocol, inet_sk_flowi_flags(sk), 560 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 561 ireq->ir_loc_addr, ireq->ir_rmt_port, 562 htons(ireq->ir_num), sk->sk_uid); 563 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 564 rt = ip_route_output_flow(net, fl4, sk); 565 if (IS_ERR(rt)) 566 goto no_route; 567 if (opt && opt->opt.is_strictroute && rt->rt_gw_family) 568 goto route_err; 569 rcu_read_unlock(); 570 return &rt->dst; 571 572 route_err: 573 ip_rt_put(rt); 574 no_route: 575 rcu_read_unlock(); 576 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 577 return NULL; 578 } 579 EXPORT_SYMBOL_GPL(inet_csk_route_req); 580 581 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 582 struct sock *newsk, 583 const struct request_sock *req) 584 { 585 const struct inet_request_sock *ireq = inet_rsk(req); 586 struct net *net = read_pnet(&ireq->ireq_net); 587 struct inet_sock *newinet = inet_sk(newsk); 588 struct ip_options_rcu *opt; 589 struct flowi4 *fl4; 590 struct rtable *rt; 591 592 opt = rcu_dereference(ireq->ireq_opt); 593 fl4 = &newinet->cork.fl.u.ip4; 594 595 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 596 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 597 sk->sk_protocol, inet_sk_flowi_flags(sk), 598 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 599 ireq->ir_loc_addr, ireq->ir_rmt_port, 600 htons(ireq->ir_num), sk->sk_uid); 601 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 602 rt = ip_route_output_flow(net, fl4, sk); 603 if (IS_ERR(rt)) 604 goto no_route; 605 if (opt && opt->opt.is_strictroute && rt->rt_gw_family) 606 goto route_err; 607 return &rt->dst; 608 609 route_err: 610 ip_rt_put(rt); 611 no_route: 612 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 613 return NULL; 614 } 615 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 616 617 #if IS_ENABLED(CONFIG_IPV6) 618 #define AF_INET_FAMILY(fam) ((fam) == AF_INET) 619 #else 620 #define AF_INET_FAMILY(fam) true 621 #endif 622 623 /* Decide when to expire the request and when to resend SYN-ACK */ 624 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 625 const int max_retries, 626 const u8 rskq_defer_accept, 627 int *expire, int *resend) 628 { 629 if (!rskq_defer_accept) { 630 *expire = req->num_timeout >= thresh; 631 *resend = 1; 632 return; 633 } 634 *expire = req->num_timeout >= thresh && 635 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 636 /* 637 * Do not resend while waiting for data after ACK, 638 * start to resend on end of deferring period to give 639 * last chance for data or ACK to create established socket. 640 */ 641 *resend = !inet_rsk(req)->acked || 642 req->num_timeout >= rskq_defer_accept - 1; 643 } 644 645 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 646 { 647 int err = req->rsk_ops->rtx_syn_ack(parent, req); 648 649 if (!err) 650 req->num_retrans++; 651 return err; 652 } 653 EXPORT_SYMBOL(inet_rtx_syn_ack); 654 655 /* return true if req was found in the ehash table */ 656 static bool reqsk_queue_unlink(struct request_sock_queue *queue, 657 struct request_sock *req) 658 { 659 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 660 bool found = false; 661 662 if (sk_hashed(req_to_sk(req))) { 663 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 664 665 spin_lock(lock); 666 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 667 spin_unlock(lock); 668 } 669 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 670 reqsk_put(req); 671 return found; 672 } 673 674 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 675 { 676 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) { 677 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 678 reqsk_put(req); 679 } 680 } 681 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 682 683 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 684 { 685 inet_csk_reqsk_queue_drop(sk, req); 686 reqsk_put(req); 687 } 688 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 689 690 static void reqsk_timer_handler(struct timer_list *t) 691 { 692 struct request_sock *req = from_timer(req, t, rsk_timer); 693 struct sock *sk_listener = req->rsk_listener; 694 struct net *net = sock_net(sk_listener); 695 struct inet_connection_sock *icsk = inet_csk(sk_listener); 696 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 697 int qlen, expire = 0, resend = 0; 698 int max_retries, thresh; 699 u8 defer_accept; 700 701 if (inet_sk_state_load(sk_listener) != TCP_LISTEN) 702 goto drop; 703 704 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 705 thresh = max_retries; 706 /* Normally all the openreqs are young and become mature 707 * (i.e. converted to established socket) for first timeout. 708 * If synack was not acknowledged for 1 second, it means 709 * one of the following things: synack was lost, ack was lost, 710 * rtt is high or nobody planned to ack (i.e. synflood). 711 * When server is a bit loaded, queue is populated with old 712 * open requests, reducing effective size of queue. 713 * When server is well loaded, queue size reduces to zero 714 * after several minutes of work. It is not synflood, 715 * it is normal operation. The solution is pruning 716 * too old entries overriding normal timeout, when 717 * situation becomes dangerous. 718 * 719 * Essentially, we reserve half of room for young 720 * embrions; and abort old ones without pity, if old 721 * ones are about to clog our table. 722 */ 723 qlen = reqsk_queue_len(queue); 724 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) { 725 int young = reqsk_queue_len_young(queue) << 1; 726 727 while (thresh > 2) { 728 if (qlen < young) 729 break; 730 thresh--; 731 young <<= 1; 732 } 733 } 734 defer_accept = READ_ONCE(queue->rskq_defer_accept); 735 if (defer_accept) 736 max_retries = defer_accept; 737 syn_ack_recalc(req, thresh, max_retries, defer_accept, 738 &expire, &resend); 739 req->rsk_ops->syn_ack_timeout(req); 740 if (!expire && 741 (!resend || 742 !inet_rtx_syn_ack(sk_listener, req) || 743 inet_rsk(req)->acked)) { 744 unsigned long timeo; 745 746 if (req->num_timeout++ == 0) 747 atomic_dec(&queue->young); 748 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 749 mod_timer(&req->rsk_timer, jiffies + timeo); 750 return; 751 } 752 drop: 753 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 754 } 755 756 static void reqsk_queue_hash_req(struct request_sock *req, 757 unsigned long timeout) 758 { 759 req->num_retrans = 0; 760 req->num_timeout = 0; 761 req->sk = NULL; 762 763 timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED); 764 mod_timer(&req->rsk_timer, jiffies + timeout); 765 766 inet_ehash_insert(req_to_sk(req), NULL); 767 /* before letting lookups find us, make sure all req fields 768 * are committed to memory and refcnt initialized. 769 */ 770 smp_wmb(); 771 refcount_set(&req->rsk_refcnt, 2 + 1); 772 } 773 774 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 775 unsigned long timeout) 776 { 777 reqsk_queue_hash_req(req, timeout); 778 inet_csk_reqsk_queue_added(sk); 779 } 780 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 781 782 /** 783 * inet_csk_clone_lock - clone an inet socket, and lock its clone 784 * @sk: the socket to clone 785 * @req: request_sock 786 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 787 * 788 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 789 */ 790 struct sock *inet_csk_clone_lock(const struct sock *sk, 791 const struct request_sock *req, 792 const gfp_t priority) 793 { 794 struct sock *newsk = sk_clone_lock(sk, priority); 795 796 if (newsk) { 797 struct inet_connection_sock *newicsk = inet_csk(newsk); 798 799 inet_sk_set_state(newsk, TCP_SYN_RECV); 800 newicsk->icsk_bind_hash = NULL; 801 802 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 803 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 804 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 805 806 /* listeners have SOCK_RCU_FREE, not the children */ 807 sock_reset_flag(newsk, SOCK_RCU_FREE); 808 809 inet_sk(newsk)->mc_list = NULL; 810 811 newsk->sk_mark = inet_rsk(req)->ir_mark; 812 atomic64_set(&newsk->sk_cookie, 813 atomic64_read(&inet_rsk(req)->ir_cookie)); 814 815 newicsk->icsk_retransmits = 0; 816 newicsk->icsk_backoff = 0; 817 newicsk->icsk_probes_out = 0; 818 819 /* Deinitialize accept_queue to trap illegal accesses. */ 820 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 821 822 security_inet_csk_clone(newsk, req); 823 } 824 return newsk; 825 } 826 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 827 828 /* 829 * At this point, there should be no process reference to this 830 * socket, and thus no user references at all. Therefore we 831 * can assume the socket waitqueue is inactive and nobody will 832 * try to jump onto it. 833 */ 834 void inet_csk_destroy_sock(struct sock *sk) 835 { 836 WARN_ON(sk->sk_state != TCP_CLOSE); 837 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 838 839 /* It cannot be in hash table! */ 840 WARN_ON(!sk_unhashed(sk)); 841 842 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 843 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 844 845 sk->sk_prot->destroy(sk); 846 847 sk_stream_kill_queues(sk); 848 849 xfrm_sk_free_policy(sk); 850 851 sk_refcnt_debug_release(sk); 852 853 percpu_counter_dec(sk->sk_prot->orphan_count); 854 855 sock_put(sk); 856 } 857 EXPORT_SYMBOL(inet_csk_destroy_sock); 858 859 /* This function allows to force a closure of a socket after the call to 860 * tcp/dccp_create_openreq_child(). 861 */ 862 void inet_csk_prepare_forced_close(struct sock *sk) 863 __releases(&sk->sk_lock.slock) 864 { 865 /* sk_clone_lock locked the socket and set refcnt to 2 */ 866 bh_unlock_sock(sk); 867 sock_put(sk); 868 869 /* The below has to be done to allow calling inet_csk_destroy_sock */ 870 sock_set_flag(sk, SOCK_DEAD); 871 percpu_counter_inc(sk->sk_prot->orphan_count); 872 inet_sk(sk)->inet_num = 0; 873 } 874 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 875 876 int inet_csk_listen_start(struct sock *sk, int backlog) 877 { 878 struct inet_connection_sock *icsk = inet_csk(sk); 879 struct inet_sock *inet = inet_sk(sk); 880 int err = -EADDRINUSE; 881 882 reqsk_queue_alloc(&icsk->icsk_accept_queue); 883 884 sk->sk_ack_backlog = 0; 885 inet_csk_delack_init(sk); 886 887 /* There is race window here: we announce ourselves listening, 888 * but this transition is still not validated by get_port(). 889 * It is OK, because this socket enters to hash table only 890 * after validation is complete. 891 */ 892 inet_sk_state_store(sk, TCP_LISTEN); 893 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 894 inet->inet_sport = htons(inet->inet_num); 895 896 sk_dst_reset(sk); 897 err = sk->sk_prot->hash(sk); 898 899 if (likely(!err)) 900 return 0; 901 } 902 903 inet_sk_set_state(sk, TCP_CLOSE); 904 return err; 905 } 906 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 907 908 static void inet_child_forget(struct sock *sk, struct request_sock *req, 909 struct sock *child) 910 { 911 sk->sk_prot->disconnect(child, O_NONBLOCK); 912 913 sock_orphan(child); 914 915 percpu_counter_inc(sk->sk_prot->orphan_count); 916 917 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 918 BUG_ON(tcp_sk(child)->fastopen_rsk != req); 919 BUG_ON(sk != req->rsk_listener); 920 921 /* Paranoid, to prevent race condition if 922 * an inbound pkt destined for child is 923 * blocked by sock lock in tcp_v4_rcv(). 924 * Also to satisfy an assertion in 925 * tcp_v4_destroy_sock(). 926 */ 927 tcp_sk(child)->fastopen_rsk = NULL; 928 } 929 inet_csk_destroy_sock(child); 930 } 931 932 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 933 struct request_sock *req, 934 struct sock *child) 935 { 936 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 937 938 spin_lock(&queue->rskq_lock); 939 if (unlikely(sk->sk_state != TCP_LISTEN)) { 940 inet_child_forget(sk, req, child); 941 child = NULL; 942 } else { 943 req->sk = child; 944 req->dl_next = NULL; 945 if (queue->rskq_accept_head == NULL) 946 queue->rskq_accept_head = req; 947 else 948 queue->rskq_accept_tail->dl_next = req; 949 queue->rskq_accept_tail = req; 950 sk_acceptq_added(sk); 951 } 952 spin_unlock(&queue->rskq_lock); 953 return child; 954 } 955 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 956 957 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 958 struct request_sock *req, bool own_req) 959 { 960 if (own_req) { 961 inet_csk_reqsk_queue_drop(sk, req); 962 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 963 if (inet_csk_reqsk_queue_add(sk, req, child)) 964 return child; 965 } 966 /* Too bad, another child took ownership of the request, undo. */ 967 bh_unlock_sock(child); 968 sock_put(child); 969 return NULL; 970 } 971 EXPORT_SYMBOL(inet_csk_complete_hashdance); 972 973 /* 974 * This routine closes sockets which have been at least partially 975 * opened, but not yet accepted. 976 */ 977 void inet_csk_listen_stop(struct sock *sk) 978 { 979 struct inet_connection_sock *icsk = inet_csk(sk); 980 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 981 struct request_sock *next, *req; 982 983 /* Following specs, it would be better either to send FIN 984 * (and enter FIN-WAIT-1, it is normal close) 985 * or to send active reset (abort). 986 * Certainly, it is pretty dangerous while synflood, but it is 987 * bad justification for our negligence 8) 988 * To be honest, we are not able to make either 989 * of the variants now. --ANK 990 */ 991 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 992 struct sock *child = req->sk; 993 994 local_bh_disable(); 995 bh_lock_sock(child); 996 WARN_ON(sock_owned_by_user(child)); 997 sock_hold(child); 998 999 inet_child_forget(sk, req, child); 1000 reqsk_put(req); 1001 bh_unlock_sock(child); 1002 local_bh_enable(); 1003 sock_put(child); 1004 1005 cond_resched(); 1006 } 1007 if (queue->fastopenq.rskq_rst_head) { 1008 /* Free all the reqs queued in rskq_rst_head. */ 1009 spin_lock_bh(&queue->fastopenq.lock); 1010 req = queue->fastopenq.rskq_rst_head; 1011 queue->fastopenq.rskq_rst_head = NULL; 1012 spin_unlock_bh(&queue->fastopenq.lock); 1013 while (req != NULL) { 1014 next = req->dl_next; 1015 reqsk_put(req); 1016 req = next; 1017 } 1018 } 1019 WARN_ON_ONCE(sk->sk_ack_backlog); 1020 } 1021 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1022 1023 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1024 { 1025 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1026 const struct inet_sock *inet = inet_sk(sk); 1027 1028 sin->sin_family = AF_INET; 1029 sin->sin_addr.s_addr = inet->inet_daddr; 1030 sin->sin_port = inet->inet_dport; 1031 } 1032 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1033 1034 #ifdef CONFIG_COMPAT 1035 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1036 char __user *optval, int __user *optlen) 1037 { 1038 const struct inet_connection_sock *icsk = inet_csk(sk); 1039 1040 if (icsk->icsk_af_ops->compat_getsockopt) 1041 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1042 optval, optlen); 1043 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1044 optval, optlen); 1045 } 1046 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1047 1048 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1049 char __user *optval, unsigned int optlen) 1050 { 1051 const struct inet_connection_sock *icsk = inet_csk(sk); 1052 1053 if (icsk->icsk_af_ops->compat_setsockopt) 1054 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1055 optval, optlen); 1056 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1057 optval, optlen); 1058 } 1059 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1060 #endif 1061 1062 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1063 { 1064 const struct inet_sock *inet = inet_sk(sk); 1065 const struct ip_options_rcu *inet_opt; 1066 __be32 daddr = inet->inet_daddr; 1067 struct flowi4 *fl4; 1068 struct rtable *rt; 1069 1070 rcu_read_lock(); 1071 inet_opt = rcu_dereference(inet->inet_opt); 1072 if (inet_opt && inet_opt->opt.srr) 1073 daddr = inet_opt->opt.faddr; 1074 fl4 = &fl->u.ip4; 1075 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1076 inet->inet_saddr, inet->inet_dport, 1077 inet->inet_sport, sk->sk_protocol, 1078 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1079 if (IS_ERR(rt)) 1080 rt = NULL; 1081 if (rt) 1082 sk_setup_caps(sk, &rt->dst); 1083 rcu_read_unlock(); 1084 1085 return &rt->dst; 1086 } 1087 1088 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1089 { 1090 struct dst_entry *dst = __sk_dst_check(sk, 0); 1091 struct inet_sock *inet = inet_sk(sk); 1092 1093 if (!dst) { 1094 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1095 if (!dst) 1096 goto out; 1097 } 1098 dst->ops->update_pmtu(dst, sk, NULL, mtu); 1099 1100 dst = __sk_dst_check(sk, 0); 1101 if (!dst) 1102 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1103 out: 1104 return dst; 1105 } 1106 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1107