1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Support for INET connection oriented protocols. 7 * 8 * Authors: See the TCP sources 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License 12 * as published by the Free Software Foundation; either version 13 * 2 of the License, or(at your option) any later version. 14 */ 15 16 #include <linux/module.h> 17 #include <linux/jhash.h> 18 19 #include <net/inet_connection_sock.h> 20 #include <net/inet_hashtables.h> 21 #include <net/inet_timewait_sock.h> 22 #include <net/ip.h> 23 #include <net/route.h> 24 #include <net/tcp_states.h> 25 #include <net/xfrm.h> 26 #include <net/tcp.h> 27 #include <net/sock_reuseport.h> 28 29 #ifdef INET_CSK_DEBUG 30 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n"; 31 EXPORT_SYMBOL(inet_csk_timer_bug_msg); 32 #endif 33 34 #if IS_ENABLED(CONFIG_IPV6) 35 /* match_wildcard == true: IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6 36 * only, and any IPv4 addresses if not IPv6 only 37 * match_wildcard == false: addresses must be exactly the same, i.e. 38 * IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY, 39 * and 0.0.0.0 equals to 0.0.0.0 only 40 */ 41 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6, 42 const struct in6_addr *sk2_rcv_saddr6, 43 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 44 bool sk1_ipv6only, bool sk2_ipv6only, 45 bool match_wildcard) 46 { 47 int addr_type = ipv6_addr_type(sk1_rcv_saddr6); 48 int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED; 49 50 /* if both are mapped, treat as IPv4 */ 51 if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) { 52 if (!sk2_ipv6only) { 53 if (sk1_rcv_saddr == sk2_rcv_saddr) 54 return 1; 55 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 56 return match_wildcard; 57 } 58 return 0; 59 } 60 61 if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY) 62 return 1; 63 64 if (addr_type2 == IPV6_ADDR_ANY && match_wildcard && 65 !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED)) 66 return 1; 67 68 if (addr_type == IPV6_ADDR_ANY && match_wildcard && 69 !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED)) 70 return 1; 71 72 if (sk2_rcv_saddr6 && 73 ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6)) 74 return 1; 75 76 return 0; 77 } 78 #endif 79 80 /* match_wildcard == true: 0.0.0.0 equals to any IPv4 addresses 81 * match_wildcard == false: addresses must be exactly the same, i.e. 82 * 0.0.0.0 only equals to 0.0.0.0 83 */ 84 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr, 85 bool sk2_ipv6only, bool match_wildcard) 86 { 87 if (!sk2_ipv6only) { 88 if (sk1_rcv_saddr == sk2_rcv_saddr) 89 return 1; 90 if (!sk1_rcv_saddr || !sk2_rcv_saddr) 91 return match_wildcard; 92 } 93 return 0; 94 } 95 96 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2, 97 bool match_wildcard) 98 { 99 #if IS_ENABLED(CONFIG_IPV6) 100 if (sk->sk_family == AF_INET6) 101 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr, 102 inet6_rcv_saddr(sk2), 103 sk->sk_rcv_saddr, 104 sk2->sk_rcv_saddr, 105 ipv6_only_sock(sk), 106 ipv6_only_sock(sk2), 107 match_wildcard); 108 #endif 109 return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr, 110 ipv6_only_sock(sk2), match_wildcard); 111 } 112 EXPORT_SYMBOL(inet_rcv_saddr_equal); 113 114 void inet_get_local_port_range(struct net *net, int *low, int *high) 115 { 116 unsigned int seq; 117 118 do { 119 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock); 120 121 *low = net->ipv4.ip_local_ports.range[0]; 122 *high = net->ipv4.ip_local_ports.range[1]; 123 } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq)); 124 } 125 EXPORT_SYMBOL(inet_get_local_port_range); 126 127 static int inet_csk_bind_conflict(const struct sock *sk, 128 const struct inet_bind_bucket *tb, 129 bool relax, bool reuseport_ok) 130 { 131 struct sock *sk2; 132 bool reuse = sk->sk_reuse; 133 bool reuseport = !!sk->sk_reuseport && reuseport_ok; 134 kuid_t uid = sock_i_uid((struct sock *)sk); 135 136 /* 137 * Unlike other sk lookup places we do not check 138 * for sk_net here, since _all_ the socks listed 139 * in tb->owners list belong to the same net - the 140 * one this bucket belongs to. 141 */ 142 143 sk_for_each_bound(sk2, &tb->owners) { 144 if (sk != sk2 && 145 (!sk->sk_bound_dev_if || 146 !sk2->sk_bound_dev_if || 147 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) { 148 if ((!reuse || !sk2->sk_reuse || 149 sk2->sk_state == TCP_LISTEN) && 150 (!reuseport || !sk2->sk_reuseport || 151 rcu_access_pointer(sk->sk_reuseport_cb) || 152 (sk2->sk_state != TCP_TIME_WAIT && 153 !uid_eq(uid, sock_i_uid(sk2))))) { 154 if (inet_rcv_saddr_equal(sk, sk2, true)) 155 break; 156 } 157 if (!relax && reuse && sk2->sk_reuse && 158 sk2->sk_state != TCP_LISTEN) { 159 if (inet_rcv_saddr_equal(sk, sk2, true)) 160 break; 161 } 162 } 163 } 164 return sk2 != NULL; 165 } 166 167 /* 168 * Find an open port number for the socket. Returns with the 169 * inet_bind_hashbucket lock held. 170 */ 171 static struct inet_bind_hashbucket * 172 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret) 173 { 174 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 175 int port = 0; 176 struct inet_bind_hashbucket *head; 177 struct net *net = sock_net(sk); 178 int i, low, high, attempt_half; 179 struct inet_bind_bucket *tb; 180 u32 remaining, offset; 181 182 attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0; 183 other_half_scan: 184 inet_get_local_port_range(net, &low, &high); 185 high++; /* [32768, 60999] -> [32768, 61000[ */ 186 if (high - low < 4) 187 attempt_half = 0; 188 if (attempt_half) { 189 int half = low + (((high - low) >> 2) << 1); 190 191 if (attempt_half == 1) 192 high = half; 193 else 194 low = half; 195 } 196 remaining = high - low; 197 if (likely(remaining > 1)) 198 remaining &= ~1U; 199 200 offset = prandom_u32() % remaining; 201 /* __inet_hash_connect() favors ports having @low parity 202 * We do the opposite to not pollute connect() users. 203 */ 204 offset |= 1U; 205 206 other_parity_scan: 207 port = low + offset; 208 for (i = 0; i < remaining; i += 2, port += 2) { 209 if (unlikely(port >= high)) 210 port -= remaining; 211 if (inet_is_local_reserved_port(net, port)) 212 continue; 213 head = &hinfo->bhash[inet_bhashfn(net, port, 214 hinfo->bhash_size)]; 215 spin_lock_bh(&head->lock); 216 inet_bind_bucket_for_each(tb, &head->chain) 217 if (net_eq(ib_net(tb), net) && tb->port == port) { 218 if (!inet_csk_bind_conflict(sk, tb, false, false)) 219 goto success; 220 goto next_port; 221 } 222 tb = NULL; 223 goto success; 224 next_port: 225 spin_unlock_bh(&head->lock); 226 cond_resched(); 227 } 228 229 offset--; 230 if (!(offset & 1)) 231 goto other_parity_scan; 232 233 if (attempt_half == 1) { 234 /* OK we now try the upper half of the range */ 235 attempt_half = 2; 236 goto other_half_scan; 237 } 238 return NULL; 239 success: 240 *port_ret = port; 241 *tb_ret = tb; 242 return head; 243 } 244 245 static inline int sk_reuseport_match(struct inet_bind_bucket *tb, 246 struct sock *sk) 247 { 248 kuid_t uid = sock_i_uid(sk); 249 250 if (tb->fastreuseport <= 0) 251 return 0; 252 if (!sk->sk_reuseport) 253 return 0; 254 if (rcu_access_pointer(sk->sk_reuseport_cb)) 255 return 0; 256 if (!uid_eq(tb->fastuid, uid)) 257 return 0; 258 /* We only need to check the rcv_saddr if this tb was once marked 259 * without fastreuseport and then was reset, as we can only know that 260 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the 261 * owners list. 262 */ 263 if (tb->fastreuseport == FASTREUSEPORT_ANY) 264 return 1; 265 #if IS_ENABLED(CONFIG_IPV6) 266 if (tb->fast_sk_family == AF_INET6) 267 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr, 268 &sk->sk_v6_rcv_saddr, 269 tb->fast_rcv_saddr, 270 sk->sk_rcv_saddr, 271 tb->fast_ipv6_only, 272 ipv6_only_sock(sk), true); 273 #endif 274 return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr, 275 ipv6_only_sock(sk), true); 276 } 277 278 /* Obtain a reference to a local port for the given sock, 279 * if snum is zero it means select any available local port. 280 * We try to allocate an odd port (and leave even ports for connect()) 281 */ 282 int inet_csk_get_port(struct sock *sk, unsigned short snum) 283 { 284 bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN; 285 struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo; 286 int ret = 1, port = snum; 287 struct inet_bind_hashbucket *head; 288 struct net *net = sock_net(sk); 289 struct inet_bind_bucket *tb = NULL; 290 kuid_t uid = sock_i_uid(sk); 291 292 if (!port) { 293 head = inet_csk_find_open_port(sk, &tb, &port); 294 if (!head) 295 return ret; 296 if (!tb) 297 goto tb_not_found; 298 goto success; 299 } 300 head = &hinfo->bhash[inet_bhashfn(net, port, 301 hinfo->bhash_size)]; 302 spin_lock_bh(&head->lock); 303 inet_bind_bucket_for_each(tb, &head->chain) 304 if (net_eq(ib_net(tb), net) && tb->port == port) 305 goto tb_found; 306 tb_not_found: 307 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, 308 net, head, port); 309 if (!tb) 310 goto fail_unlock; 311 tb_found: 312 if (!hlist_empty(&tb->owners)) { 313 if (sk->sk_reuse == SK_FORCE_REUSE) 314 goto success; 315 316 if ((tb->fastreuse > 0 && reuse) || 317 sk_reuseport_match(tb, sk)) 318 goto success; 319 if (inet_csk_bind_conflict(sk, tb, true, true)) 320 goto fail_unlock; 321 } 322 success: 323 if (!hlist_empty(&tb->owners)) { 324 tb->fastreuse = reuse; 325 if (sk->sk_reuseport) { 326 tb->fastreuseport = FASTREUSEPORT_ANY; 327 tb->fastuid = uid; 328 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 329 tb->fast_ipv6_only = ipv6_only_sock(sk); 330 #if IS_ENABLED(CONFIG_IPV6) 331 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 332 #endif 333 } else { 334 tb->fastreuseport = 0; 335 } 336 } else { 337 if (!reuse) 338 tb->fastreuse = 0; 339 if (sk->sk_reuseport) { 340 /* We didn't match or we don't have fastreuseport set on 341 * the tb, but we have sk_reuseport set on this socket 342 * and we know that there are no bind conflicts with 343 * this socket in this tb, so reset our tb's reuseport 344 * settings so that any subsequent sockets that match 345 * our current socket will be put on the fast path. 346 * 347 * If we reset we need to set FASTREUSEPORT_STRICT so we 348 * do extra checking for all subsequent sk_reuseport 349 * socks. 350 */ 351 if (!sk_reuseport_match(tb, sk)) { 352 tb->fastreuseport = FASTREUSEPORT_STRICT; 353 tb->fastuid = uid; 354 tb->fast_rcv_saddr = sk->sk_rcv_saddr; 355 tb->fast_ipv6_only = ipv6_only_sock(sk); 356 #if IS_ENABLED(CONFIG_IPV6) 357 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr; 358 #endif 359 } 360 } else { 361 tb->fastreuseport = 0; 362 } 363 } 364 if (!inet_csk(sk)->icsk_bind_hash) 365 inet_bind_hash(sk, tb, port); 366 WARN_ON(inet_csk(sk)->icsk_bind_hash != tb); 367 ret = 0; 368 369 fail_unlock: 370 spin_unlock_bh(&head->lock); 371 return ret; 372 } 373 EXPORT_SYMBOL_GPL(inet_csk_get_port); 374 375 /* 376 * Wait for an incoming connection, avoid race conditions. This must be called 377 * with the socket locked. 378 */ 379 static int inet_csk_wait_for_connect(struct sock *sk, long timeo) 380 { 381 struct inet_connection_sock *icsk = inet_csk(sk); 382 DEFINE_WAIT(wait); 383 int err; 384 385 /* 386 * True wake-one mechanism for incoming connections: only 387 * one process gets woken up, not the 'whole herd'. 388 * Since we do not 'race & poll' for established sockets 389 * anymore, the common case will execute the loop only once. 390 * 391 * Subtle issue: "add_wait_queue_exclusive()" will be added 392 * after any current non-exclusive waiters, and we know that 393 * it will always _stay_ after any new non-exclusive waiters 394 * because all non-exclusive waiters are added at the 395 * beginning of the wait-queue. As such, it's ok to "drop" 396 * our exclusiveness temporarily when we get woken up without 397 * having to remove and re-insert us on the wait queue. 398 */ 399 for (;;) { 400 prepare_to_wait_exclusive(sk_sleep(sk), &wait, 401 TASK_INTERRUPTIBLE); 402 release_sock(sk); 403 if (reqsk_queue_empty(&icsk->icsk_accept_queue)) 404 timeo = schedule_timeout(timeo); 405 sched_annotate_sleep(); 406 lock_sock(sk); 407 err = 0; 408 if (!reqsk_queue_empty(&icsk->icsk_accept_queue)) 409 break; 410 err = -EINVAL; 411 if (sk->sk_state != TCP_LISTEN) 412 break; 413 err = sock_intr_errno(timeo); 414 if (signal_pending(current)) 415 break; 416 err = -EAGAIN; 417 if (!timeo) 418 break; 419 } 420 finish_wait(sk_sleep(sk), &wait); 421 return err; 422 } 423 424 /* 425 * This will accept the next outstanding connection. 426 */ 427 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern) 428 { 429 struct inet_connection_sock *icsk = inet_csk(sk); 430 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 431 struct request_sock *req; 432 struct sock *newsk; 433 int error; 434 435 lock_sock(sk); 436 437 /* We need to make sure that this socket is listening, 438 * and that it has something pending. 439 */ 440 error = -EINVAL; 441 if (sk->sk_state != TCP_LISTEN) 442 goto out_err; 443 444 /* Find already established connection */ 445 if (reqsk_queue_empty(queue)) { 446 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); 447 448 /* If this is a non blocking socket don't sleep */ 449 error = -EAGAIN; 450 if (!timeo) 451 goto out_err; 452 453 error = inet_csk_wait_for_connect(sk, timeo); 454 if (error) 455 goto out_err; 456 } 457 req = reqsk_queue_remove(queue, sk); 458 newsk = req->sk; 459 460 if (sk->sk_protocol == IPPROTO_TCP && 461 tcp_rsk(req)->tfo_listener) { 462 spin_lock_bh(&queue->fastopenq.lock); 463 if (tcp_rsk(req)->tfo_listener) { 464 /* We are still waiting for the final ACK from 3WHS 465 * so can't free req now. Instead, we set req->sk to 466 * NULL to signify that the child socket is taken 467 * so reqsk_fastopen_remove() will free the req 468 * when 3WHS finishes (or is aborted). 469 */ 470 req->sk = NULL; 471 req = NULL; 472 } 473 spin_unlock_bh(&queue->fastopenq.lock); 474 } 475 out: 476 release_sock(sk); 477 if (req) 478 reqsk_put(req); 479 return newsk; 480 out_err: 481 newsk = NULL; 482 req = NULL; 483 *err = error; 484 goto out; 485 } 486 EXPORT_SYMBOL(inet_csk_accept); 487 488 /* 489 * Using different timers for retransmit, delayed acks and probes 490 * We may wish use just one timer maintaining a list of expire jiffies 491 * to optimize. 492 */ 493 void inet_csk_init_xmit_timers(struct sock *sk, 494 void (*retransmit_handler)(unsigned long), 495 void (*delack_handler)(unsigned long), 496 void (*keepalive_handler)(unsigned long)) 497 { 498 struct inet_connection_sock *icsk = inet_csk(sk); 499 500 setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler, 501 (unsigned long)sk); 502 setup_timer(&icsk->icsk_delack_timer, delack_handler, 503 (unsigned long)sk); 504 setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk); 505 icsk->icsk_pending = icsk->icsk_ack.pending = 0; 506 } 507 EXPORT_SYMBOL(inet_csk_init_xmit_timers); 508 509 void inet_csk_clear_xmit_timers(struct sock *sk) 510 { 511 struct inet_connection_sock *icsk = inet_csk(sk); 512 513 icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0; 514 515 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 516 sk_stop_timer(sk, &icsk->icsk_delack_timer); 517 sk_stop_timer(sk, &sk->sk_timer); 518 } 519 EXPORT_SYMBOL(inet_csk_clear_xmit_timers); 520 521 void inet_csk_delete_keepalive_timer(struct sock *sk) 522 { 523 sk_stop_timer(sk, &sk->sk_timer); 524 } 525 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer); 526 527 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len) 528 { 529 sk_reset_timer(sk, &sk->sk_timer, jiffies + len); 530 } 531 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer); 532 533 struct dst_entry *inet_csk_route_req(const struct sock *sk, 534 struct flowi4 *fl4, 535 const struct request_sock *req) 536 { 537 const struct inet_request_sock *ireq = inet_rsk(req); 538 struct net *net = read_pnet(&ireq->ireq_net); 539 struct ip_options_rcu *opt = ireq->opt; 540 struct rtable *rt; 541 542 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 543 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 544 sk->sk_protocol, inet_sk_flowi_flags(sk), 545 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 546 ireq->ir_loc_addr, ireq->ir_rmt_port, 547 htons(ireq->ir_num), sk->sk_uid); 548 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 549 rt = ip_route_output_flow(net, fl4, sk); 550 if (IS_ERR(rt)) 551 goto no_route; 552 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 553 goto route_err; 554 return &rt->dst; 555 556 route_err: 557 ip_rt_put(rt); 558 no_route: 559 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 560 return NULL; 561 } 562 EXPORT_SYMBOL_GPL(inet_csk_route_req); 563 564 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk, 565 struct sock *newsk, 566 const struct request_sock *req) 567 { 568 const struct inet_request_sock *ireq = inet_rsk(req); 569 struct net *net = read_pnet(&ireq->ireq_net); 570 struct inet_sock *newinet = inet_sk(newsk); 571 struct ip_options_rcu *opt; 572 struct flowi4 *fl4; 573 struct rtable *rt; 574 575 fl4 = &newinet->cork.fl.u.ip4; 576 577 rcu_read_lock(); 578 opt = rcu_dereference(newinet->inet_opt); 579 flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark, 580 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, 581 sk->sk_protocol, inet_sk_flowi_flags(sk), 582 (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr, 583 ireq->ir_loc_addr, ireq->ir_rmt_port, 584 htons(ireq->ir_num), sk->sk_uid); 585 security_req_classify_flow(req, flowi4_to_flowi(fl4)); 586 rt = ip_route_output_flow(net, fl4, sk); 587 if (IS_ERR(rt)) 588 goto no_route; 589 if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway) 590 goto route_err; 591 rcu_read_unlock(); 592 return &rt->dst; 593 594 route_err: 595 ip_rt_put(rt); 596 no_route: 597 rcu_read_unlock(); 598 __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); 599 return NULL; 600 } 601 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock); 602 603 #if IS_ENABLED(CONFIG_IPV6) 604 #define AF_INET_FAMILY(fam) ((fam) == AF_INET) 605 #else 606 #define AF_INET_FAMILY(fam) true 607 #endif 608 609 /* Decide when to expire the request and when to resend SYN-ACK */ 610 static inline void syn_ack_recalc(struct request_sock *req, const int thresh, 611 const int max_retries, 612 const u8 rskq_defer_accept, 613 int *expire, int *resend) 614 { 615 if (!rskq_defer_accept) { 616 *expire = req->num_timeout >= thresh; 617 *resend = 1; 618 return; 619 } 620 *expire = req->num_timeout >= thresh && 621 (!inet_rsk(req)->acked || req->num_timeout >= max_retries); 622 /* 623 * Do not resend while waiting for data after ACK, 624 * start to resend on end of deferring period to give 625 * last chance for data or ACK to create established socket. 626 */ 627 *resend = !inet_rsk(req)->acked || 628 req->num_timeout >= rskq_defer_accept - 1; 629 } 630 631 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req) 632 { 633 int err = req->rsk_ops->rtx_syn_ack(parent, req); 634 635 if (!err) 636 req->num_retrans++; 637 return err; 638 } 639 EXPORT_SYMBOL(inet_rtx_syn_ack); 640 641 /* return true if req was found in the ehash table */ 642 static bool reqsk_queue_unlink(struct request_sock_queue *queue, 643 struct request_sock *req) 644 { 645 struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo; 646 bool found = false; 647 648 if (sk_hashed(req_to_sk(req))) { 649 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash); 650 651 spin_lock(lock); 652 found = __sk_nulls_del_node_init_rcu(req_to_sk(req)); 653 spin_unlock(lock); 654 } 655 if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer)) 656 reqsk_put(req); 657 return found; 658 } 659 660 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req) 661 { 662 if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) { 663 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 664 reqsk_put(req); 665 } 666 } 667 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop); 668 669 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req) 670 { 671 inet_csk_reqsk_queue_drop(sk, req); 672 reqsk_put(req); 673 } 674 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put); 675 676 static void reqsk_timer_handler(unsigned long data) 677 { 678 struct request_sock *req = (struct request_sock *)data; 679 struct sock *sk_listener = req->rsk_listener; 680 struct net *net = sock_net(sk_listener); 681 struct inet_connection_sock *icsk = inet_csk(sk_listener); 682 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 683 int qlen, expire = 0, resend = 0; 684 int max_retries, thresh; 685 u8 defer_accept; 686 687 if (sk_state_load(sk_listener) != TCP_LISTEN) 688 goto drop; 689 690 max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries; 691 thresh = max_retries; 692 /* Normally all the openreqs are young and become mature 693 * (i.e. converted to established socket) for first timeout. 694 * If synack was not acknowledged for 1 second, it means 695 * one of the following things: synack was lost, ack was lost, 696 * rtt is high or nobody planned to ack (i.e. synflood). 697 * When server is a bit loaded, queue is populated with old 698 * open requests, reducing effective size of queue. 699 * When server is well loaded, queue size reduces to zero 700 * after several minutes of work. It is not synflood, 701 * it is normal operation. The solution is pruning 702 * too old entries overriding normal timeout, when 703 * situation becomes dangerous. 704 * 705 * Essentially, we reserve half of room for young 706 * embrions; and abort old ones without pity, if old 707 * ones are about to clog our table. 708 */ 709 qlen = reqsk_queue_len(queue); 710 if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) { 711 int young = reqsk_queue_len_young(queue) << 1; 712 713 while (thresh > 2) { 714 if (qlen < young) 715 break; 716 thresh--; 717 young <<= 1; 718 } 719 } 720 defer_accept = READ_ONCE(queue->rskq_defer_accept); 721 if (defer_accept) 722 max_retries = defer_accept; 723 syn_ack_recalc(req, thresh, max_retries, defer_accept, 724 &expire, &resend); 725 req->rsk_ops->syn_ack_timeout(req); 726 if (!expire && 727 (!resend || 728 !inet_rtx_syn_ack(sk_listener, req) || 729 inet_rsk(req)->acked)) { 730 unsigned long timeo; 731 732 if (req->num_timeout++ == 0) 733 atomic_dec(&queue->young); 734 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX); 735 mod_timer(&req->rsk_timer, jiffies + timeo); 736 return; 737 } 738 drop: 739 inet_csk_reqsk_queue_drop_and_put(sk_listener, req); 740 } 741 742 static void reqsk_queue_hash_req(struct request_sock *req, 743 unsigned long timeout) 744 { 745 req->num_retrans = 0; 746 req->num_timeout = 0; 747 req->sk = NULL; 748 749 setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler, 750 (unsigned long)req); 751 mod_timer(&req->rsk_timer, jiffies + timeout); 752 753 inet_ehash_insert(req_to_sk(req), NULL); 754 /* before letting lookups find us, make sure all req fields 755 * are committed to memory and refcnt initialized. 756 */ 757 smp_wmb(); 758 atomic_set(&req->rsk_refcnt, 2 + 1); 759 } 760 761 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req, 762 unsigned long timeout) 763 { 764 reqsk_queue_hash_req(req, timeout); 765 inet_csk_reqsk_queue_added(sk); 766 } 767 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add); 768 769 /** 770 * inet_csk_clone_lock - clone an inet socket, and lock its clone 771 * @sk: the socket to clone 772 * @req: request_sock 773 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc) 774 * 775 * Caller must unlock socket even in error path (bh_unlock_sock(newsk)) 776 */ 777 struct sock *inet_csk_clone_lock(const struct sock *sk, 778 const struct request_sock *req, 779 const gfp_t priority) 780 { 781 struct sock *newsk = sk_clone_lock(sk, priority); 782 783 if (newsk) { 784 struct inet_connection_sock *newicsk = inet_csk(newsk); 785 786 newsk->sk_state = TCP_SYN_RECV; 787 newicsk->icsk_bind_hash = NULL; 788 789 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port; 790 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num; 791 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num); 792 newsk->sk_write_space = sk_stream_write_space; 793 794 /* listeners have SOCK_RCU_FREE, not the children */ 795 sock_reset_flag(newsk, SOCK_RCU_FREE); 796 797 inet_sk(newsk)->mc_list = NULL; 798 799 newsk->sk_mark = inet_rsk(req)->ir_mark; 800 atomic64_set(&newsk->sk_cookie, 801 atomic64_read(&inet_rsk(req)->ir_cookie)); 802 803 newicsk->icsk_retransmits = 0; 804 newicsk->icsk_backoff = 0; 805 newicsk->icsk_probes_out = 0; 806 807 /* Deinitialize accept_queue to trap illegal accesses. */ 808 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue)); 809 810 security_inet_csk_clone(newsk, req); 811 } 812 return newsk; 813 } 814 EXPORT_SYMBOL_GPL(inet_csk_clone_lock); 815 816 /* 817 * At this point, there should be no process reference to this 818 * socket, and thus no user references at all. Therefore we 819 * can assume the socket waitqueue is inactive and nobody will 820 * try to jump onto it. 821 */ 822 void inet_csk_destroy_sock(struct sock *sk) 823 { 824 WARN_ON(sk->sk_state != TCP_CLOSE); 825 WARN_ON(!sock_flag(sk, SOCK_DEAD)); 826 827 /* It cannot be in hash table! */ 828 WARN_ON(!sk_unhashed(sk)); 829 830 /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */ 831 WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash); 832 833 sk->sk_prot->destroy(sk); 834 835 sk_stream_kill_queues(sk); 836 837 xfrm_sk_free_policy(sk); 838 839 sk_refcnt_debug_release(sk); 840 841 percpu_counter_dec(sk->sk_prot->orphan_count); 842 843 sock_put(sk); 844 } 845 EXPORT_SYMBOL(inet_csk_destroy_sock); 846 847 /* This function allows to force a closure of a socket after the call to 848 * tcp/dccp_create_openreq_child(). 849 */ 850 void inet_csk_prepare_forced_close(struct sock *sk) 851 __releases(&sk->sk_lock.slock) 852 { 853 /* sk_clone_lock locked the socket and set refcnt to 2 */ 854 bh_unlock_sock(sk); 855 sock_put(sk); 856 857 /* The below has to be done to allow calling inet_csk_destroy_sock */ 858 sock_set_flag(sk, SOCK_DEAD); 859 percpu_counter_inc(sk->sk_prot->orphan_count); 860 inet_sk(sk)->inet_num = 0; 861 } 862 EXPORT_SYMBOL(inet_csk_prepare_forced_close); 863 864 int inet_csk_listen_start(struct sock *sk, int backlog) 865 { 866 struct inet_connection_sock *icsk = inet_csk(sk); 867 struct inet_sock *inet = inet_sk(sk); 868 int err = -EADDRINUSE; 869 870 reqsk_queue_alloc(&icsk->icsk_accept_queue); 871 872 sk->sk_max_ack_backlog = backlog; 873 sk->sk_ack_backlog = 0; 874 inet_csk_delack_init(sk); 875 876 /* There is race window here: we announce ourselves listening, 877 * but this transition is still not validated by get_port(). 878 * It is OK, because this socket enters to hash table only 879 * after validation is complete. 880 */ 881 sk_state_store(sk, TCP_LISTEN); 882 if (!sk->sk_prot->get_port(sk, inet->inet_num)) { 883 inet->inet_sport = htons(inet->inet_num); 884 885 sk_dst_reset(sk); 886 err = sk->sk_prot->hash(sk); 887 888 if (likely(!err)) 889 return 0; 890 } 891 892 sk->sk_state = TCP_CLOSE; 893 return err; 894 } 895 EXPORT_SYMBOL_GPL(inet_csk_listen_start); 896 897 static void inet_child_forget(struct sock *sk, struct request_sock *req, 898 struct sock *child) 899 { 900 sk->sk_prot->disconnect(child, O_NONBLOCK); 901 902 sock_orphan(child); 903 904 percpu_counter_inc(sk->sk_prot->orphan_count); 905 906 if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) { 907 BUG_ON(tcp_sk(child)->fastopen_rsk != req); 908 BUG_ON(sk != req->rsk_listener); 909 910 /* Paranoid, to prevent race condition if 911 * an inbound pkt destined for child is 912 * blocked by sock lock in tcp_v4_rcv(). 913 * Also to satisfy an assertion in 914 * tcp_v4_destroy_sock(). 915 */ 916 tcp_sk(child)->fastopen_rsk = NULL; 917 } 918 inet_csk_destroy_sock(child); 919 reqsk_put(req); 920 } 921 922 struct sock *inet_csk_reqsk_queue_add(struct sock *sk, 923 struct request_sock *req, 924 struct sock *child) 925 { 926 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 927 928 spin_lock(&queue->rskq_lock); 929 if (unlikely(sk->sk_state != TCP_LISTEN)) { 930 inet_child_forget(sk, req, child); 931 child = NULL; 932 } else { 933 req->sk = child; 934 req->dl_next = NULL; 935 if (queue->rskq_accept_head == NULL) 936 queue->rskq_accept_head = req; 937 else 938 queue->rskq_accept_tail->dl_next = req; 939 queue->rskq_accept_tail = req; 940 sk_acceptq_added(sk); 941 } 942 spin_unlock(&queue->rskq_lock); 943 return child; 944 } 945 EXPORT_SYMBOL(inet_csk_reqsk_queue_add); 946 947 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child, 948 struct request_sock *req, bool own_req) 949 { 950 if (own_req) { 951 inet_csk_reqsk_queue_drop(sk, req); 952 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req); 953 if (inet_csk_reqsk_queue_add(sk, req, child)) 954 return child; 955 } 956 /* Too bad, another child took ownership of the request, undo. */ 957 bh_unlock_sock(child); 958 sock_put(child); 959 return NULL; 960 } 961 EXPORT_SYMBOL(inet_csk_complete_hashdance); 962 963 /* 964 * This routine closes sockets which have been at least partially 965 * opened, but not yet accepted. 966 */ 967 void inet_csk_listen_stop(struct sock *sk) 968 { 969 struct inet_connection_sock *icsk = inet_csk(sk); 970 struct request_sock_queue *queue = &icsk->icsk_accept_queue; 971 struct request_sock *next, *req; 972 973 /* Following specs, it would be better either to send FIN 974 * (and enter FIN-WAIT-1, it is normal close) 975 * or to send active reset (abort). 976 * Certainly, it is pretty dangerous while synflood, but it is 977 * bad justification for our negligence 8) 978 * To be honest, we are not able to make either 979 * of the variants now. --ANK 980 */ 981 while ((req = reqsk_queue_remove(queue, sk)) != NULL) { 982 struct sock *child = req->sk; 983 984 local_bh_disable(); 985 bh_lock_sock(child); 986 WARN_ON(sock_owned_by_user(child)); 987 sock_hold(child); 988 989 inet_child_forget(sk, req, child); 990 bh_unlock_sock(child); 991 local_bh_enable(); 992 sock_put(child); 993 994 cond_resched(); 995 } 996 if (queue->fastopenq.rskq_rst_head) { 997 /* Free all the reqs queued in rskq_rst_head. */ 998 spin_lock_bh(&queue->fastopenq.lock); 999 req = queue->fastopenq.rskq_rst_head; 1000 queue->fastopenq.rskq_rst_head = NULL; 1001 spin_unlock_bh(&queue->fastopenq.lock); 1002 while (req != NULL) { 1003 next = req->dl_next; 1004 reqsk_put(req); 1005 req = next; 1006 } 1007 } 1008 WARN_ON_ONCE(sk->sk_ack_backlog); 1009 } 1010 EXPORT_SYMBOL_GPL(inet_csk_listen_stop); 1011 1012 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr) 1013 { 1014 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr; 1015 const struct inet_sock *inet = inet_sk(sk); 1016 1017 sin->sin_family = AF_INET; 1018 sin->sin_addr.s_addr = inet->inet_daddr; 1019 sin->sin_port = inet->inet_dport; 1020 } 1021 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr); 1022 1023 #ifdef CONFIG_COMPAT 1024 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname, 1025 char __user *optval, int __user *optlen) 1026 { 1027 const struct inet_connection_sock *icsk = inet_csk(sk); 1028 1029 if (icsk->icsk_af_ops->compat_getsockopt) 1030 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname, 1031 optval, optlen); 1032 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 1033 optval, optlen); 1034 } 1035 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt); 1036 1037 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname, 1038 char __user *optval, unsigned int optlen) 1039 { 1040 const struct inet_connection_sock *icsk = inet_csk(sk); 1041 1042 if (icsk->icsk_af_ops->compat_setsockopt) 1043 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname, 1044 optval, optlen); 1045 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 1046 optval, optlen); 1047 } 1048 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt); 1049 #endif 1050 1051 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl) 1052 { 1053 const struct inet_sock *inet = inet_sk(sk); 1054 const struct ip_options_rcu *inet_opt; 1055 __be32 daddr = inet->inet_daddr; 1056 struct flowi4 *fl4; 1057 struct rtable *rt; 1058 1059 rcu_read_lock(); 1060 inet_opt = rcu_dereference(inet->inet_opt); 1061 if (inet_opt && inet_opt->opt.srr) 1062 daddr = inet_opt->opt.faddr; 1063 fl4 = &fl->u.ip4; 1064 rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, 1065 inet->inet_saddr, inet->inet_dport, 1066 inet->inet_sport, sk->sk_protocol, 1067 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if); 1068 if (IS_ERR(rt)) 1069 rt = NULL; 1070 if (rt) 1071 sk_setup_caps(sk, &rt->dst); 1072 rcu_read_unlock(); 1073 1074 return &rt->dst; 1075 } 1076 1077 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu) 1078 { 1079 struct dst_entry *dst = __sk_dst_check(sk, 0); 1080 struct inet_sock *inet = inet_sk(sk); 1081 1082 if (!dst) { 1083 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1084 if (!dst) 1085 goto out; 1086 } 1087 dst->ops->update_pmtu(dst, sk, NULL, mtu); 1088 1089 dst = __sk_dst_check(sk, 0); 1090 if (!dst) 1091 dst = inet_csk_rebuild_route(sk, &inet->cork.fl); 1092 out: 1093 return dst; 1094 } 1095 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu); 1096