1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122 	unsigned int seq;
123 
124 	do {
125 		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126 
127 		*low = net->ipv4.ip_local_ports.range[0];
128 		*high = net->ipv4.ip_local_ports.range[1];
129 	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132 
133 static int inet_csk_bind_conflict(const struct sock *sk,
134 				  const struct inet_bind_bucket *tb,
135 				  bool relax, bool reuseport_ok)
136 {
137 	struct sock *sk2;
138 	bool reuseport_cb_ok;
139 	bool reuse = sk->sk_reuse;
140 	bool reuseport = !!sk->sk_reuseport;
141 	struct sock_reuseport *reuseport_cb;
142 	kuid_t uid = sock_i_uid((struct sock *)sk);
143 
144 	rcu_read_lock();
145 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
146 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
147 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
148 	rcu_read_unlock();
149 
150 	/*
151 	 * Unlike other sk lookup places we do not check
152 	 * for sk_net here, since _all_ the socks listed
153 	 * in tb->owners list belong to the same net - the
154 	 * one this bucket belongs to.
155 	 */
156 
157 	sk_for_each_bound(sk2, &tb->owners) {
158 		if (sk != sk2 &&
159 		    (!sk->sk_bound_dev_if ||
160 		     !sk2->sk_bound_dev_if ||
161 		     sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
162 			if (reuse && sk2->sk_reuse &&
163 			    sk2->sk_state != TCP_LISTEN) {
164 				if ((!relax ||
165 				     (!reuseport_ok &&
166 				      reuseport && sk2->sk_reuseport &&
167 				      reuseport_cb_ok &&
168 				      (sk2->sk_state == TCP_TIME_WAIT ||
169 				       uid_eq(uid, sock_i_uid(sk2))))) &&
170 				    inet_rcv_saddr_equal(sk, sk2, true))
171 					break;
172 			} else if (!reuseport_ok ||
173 				   !reuseport || !sk2->sk_reuseport ||
174 				   !reuseport_cb_ok ||
175 				   (sk2->sk_state != TCP_TIME_WAIT &&
176 				    !uid_eq(uid, sock_i_uid(sk2)))) {
177 				if (inet_rcv_saddr_equal(sk, sk2, true))
178 					break;
179 			}
180 		}
181 	}
182 	return sk2 != NULL;
183 }
184 
185 /*
186  * Find an open port number for the socket.  Returns with the
187  * inet_bind_hashbucket lock held.
188  */
189 static struct inet_bind_hashbucket *
190 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
191 {
192 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
193 	int port = 0;
194 	struct inet_bind_hashbucket *head;
195 	struct net *net = sock_net(sk);
196 	bool relax = false;
197 	int i, low, high, attempt_half;
198 	struct inet_bind_bucket *tb;
199 	u32 remaining, offset;
200 	int l3mdev;
201 
202 	l3mdev = inet_sk_bound_l3mdev(sk);
203 ports_exhausted:
204 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
205 other_half_scan:
206 	inet_get_local_port_range(net, &low, &high);
207 	high++; /* [32768, 60999] -> [32768, 61000[ */
208 	if (high - low < 4)
209 		attempt_half = 0;
210 	if (attempt_half) {
211 		int half = low + (((high - low) >> 2) << 1);
212 
213 		if (attempt_half == 1)
214 			high = half;
215 		else
216 			low = half;
217 	}
218 	remaining = high - low;
219 	if (likely(remaining > 1))
220 		remaining &= ~1U;
221 
222 	offset = prandom_u32() % remaining;
223 	/* __inet_hash_connect() favors ports having @low parity
224 	 * We do the opposite to not pollute connect() users.
225 	 */
226 	offset |= 1U;
227 
228 other_parity_scan:
229 	port = low + offset;
230 	for (i = 0; i < remaining; i += 2, port += 2) {
231 		if (unlikely(port >= high))
232 			port -= remaining;
233 		if (inet_is_local_reserved_port(net, port))
234 			continue;
235 		head = &hinfo->bhash[inet_bhashfn(net, port,
236 						  hinfo->bhash_size)];
237 		spin_lock_bh(&head->lock);
238 		inet_bind_bucket_for_each(tb, &head->chain)
239 			if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
240 			    tb->port == port) {
241 				if (!inet_csk_bind_conflict(sk, tb, relax, false))
242 					goto success;
243 				goto next_port;
244 			}
245 		tb = NULL;
246 		goto success;
247 next_port:
248 		spin_unlock_bh(&head->lock);
249 		cond_resched();
250 	}
251 
252 	offset--;
253 	if (!(offset & 1))
254 		goto other_parity_scan;
255 
256 	if (attempt_half == 1) {
257 		/* OK we now try the upper half of the range */
258 		attempt_half = 2;
259 		goto other_half_scan;
260 	}
261 
262 	if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
263 		/* We still have a chance to connect to different destinations */
264 		relax = true;
265 		goto ports_exhausted;
266 	}
267 	return NULL;
268 success:
269 	*port_ret = port;
270 	*tb_ret = tb;
271 	return head;
272 }
273 
274 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
275 				     struct sock *sk)
276 {
277 	kuid_t uid = sock_i_uid(sk);
278 
279 	if (tb->fastreuseport <= 0)
280 		return 0;
281 	if (!sk->sk_reuseport)
282 		return 0;
283 	if (rcu_access_pointer(sk->sk_reuseport_cb))
284 		return 0;
285 	if (!uid_eq(tb->fastuid, uid))
286 		return 0;
287 	/* We only need to check the rcv_saddr if this tb was once marked
288 	 * without fastreuseport and then was reset, as we can only know that
289 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
290 	 * owners list.
291 	 */
292 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
293 		return 1;
294 #if IS_ENABLED(CONFIG_IPV6)
295 	if (tb->fast_sk_family == AF_INET6)
296 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
297 					    inet6_rcv_saddr(sk),
298 					    tb->fast_rcv_saddr,
299 					    sk->sk_rcv_saddr,
300 					    tb->fast_ipv6_only,
301 					    ipv6_only_sock(sk), true, false);
302 #endif
303 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
304 				    ipv6_only_sock(sk), true, false);
305 }
306 
307 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
308 			       struct sock *sk)
309 {
310 	kuid_t uid = sock_i_uid(sk);
311 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
312 
313 	if (hlist_empty(&tb->owners)) {
314 		tb->fastreuse = reuse;
315 		if (sk->sk_reuseport) {
316 			tb->fastreuseport = FASTREUSEPORT_ANY;
317 			tb->fastuid = uid;
318 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
319 			tb->fast_ipv6_only = ipv6_only_sock(sk);
320 			tb->fast_sk_family = sk->sk_family;
321 #if IS_ENABLED(CONFIG_IPV6)
322 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
323 #endif
324 		} else {
325 			tb->fastreuseport = 0;
326 		}
327 	} else {
328 		if (!reuse)
329 			tb->fastreuse = 0;
330 		if (sk->sk_reuseport) {
331 			/* We didn't match or we don't have fastreuseport set on
332 			 * the tb, but we have sk_reuseport set on this socket
333 			 * and we know that there are no bind conflicts with
334 			 * this socket in this tb, so reset our tb's reuseport
335 			 * settings so that any subsequent sockets that match
336 			 * our current socket will be put on the fast path.
337 			 *
338 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
339 			 * do extra checking for all subsequent sk_reuseport
340 			 * socks.
341 			 */
342 			if (!sk_reuseport_match(tb, sk)) {
343 				tb->fastreuseport = FASTREUSEPORT_STRICT;
344 				tb->fastuid = uid;
345 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
346 				tb->fast_ipv6_only = ipv6_only_sock(sk);
347 				tb->fast_sk_family = sk->sk_family;
348 #if IS_ENABLED(CONFIG_IPV6)
349 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
350 #endif
351 			}
352 		} else {
353 			tb->fastreuseport = 0;
354 		}
355 	}
356 }
357 
358 /* Obtain a reference to a local port for the given sock,
359  * if snum is zero it means select any available local port.
360  * We try to allocate an odd port (and leave even ports for connect())
361  */
362 int inet_csk_get_port(struct sock *sk, unsigned short snum)
363 {
364 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
365 	struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
366 	int ret = 1, port = snum;
367 	struct inet_bind_hashbucket *head;
368 	struct net *net = sock_net(sk);
369 	struct inet_bind_bucket *tb = NULL;
370 	int l3mdev;
371 
372 	l3mdev = inet_sk_bound_l3mdev(sk);
373 
374 	if (!port) {
375 		head = inet_csk_find_open_port(sk, &tb, &port);
376 		if (!head)
377 			return ret;
378 		if (!tb)
379 			goto tb_not_found;
380 		goto success;
381 	}
382 	head = &hinfo->bhash[inet_bhashfn(net, port,
383 					  hinfo->bhash_size)];
384 	spin_lock_bh(&head->lock);
385 	inet_bind_bucket_for_each(tb, &head->chain)
386 		if (net_eq(ib_net(tb), net) && tb->l3mdev == l3mdev &&
387 		    tb->port == port)
388 			goto tb_found;
389 tb_not_found:
390 	tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
391 				     net, head, port, l3mdev);
392 	if (!tb)
393 		goto fail_unlock;
394 tb_found:
395 	if (!hlist_empty(&tb->owners)) {
396 		if (sk->sk_reuse == SK_FORCE_REUSE)
397 			goto success;
398 
399 		if ((tb->fastreuse > 0 && reuse) ||
400 		    sk_reuseport_match(tb, sk))
401 			goto success;
402 		if (inet_csk_bind_conflict(sk, tb, true, true))
403 			goto fail_unlock;
404 	}
405 success:
406 	inet_csk_update_fastreuse(tb, sk);
407 
408 	if (!inet_csk(sk)->icsk_bind_hash)
409 		inet_bind_hash(sk, tb, port);
410 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
411 	ret = 0;
412 
413 fail_unlock:
414 	spin_unlock_bh(&head->lock);
415 	return ret;
416 }
417 EXPORT_SYMBOL_GPL(inet_csk_get_port);
418 
419 /*
420  * Wait for an incoming connection, avoid race conditions. This must be called
421  * with the socket locked.
422  */
423 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
424 {
425 	struct inet_connection_sock *icsk = inet_csk(sk);
426 	DEFINE_WAIT(wait);
427 	int err;
428 
429 	/*
430 	 * True wake-one mechanism for incoming connections: only
431 	 * one process gets woken up, not the 'whole herd'.
432 	 * Since we do not 'race & poll' for established sockets
433 	 * anymore, the common case will execute the loop only once.
434 	 *
435 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
436 	 * after any current non-exclusive waiters, and we know that
437 	 * it will always _stay_ after any new non-exclusive waiters
438 	 * because all non-exclusive waiters are added at the
439 	 * beginning of the wait-queue. As such, it's ok to "drop"
440 	 * our exclusiveness temporarily when we get woken up without
441 	 * having to remove and re-insert us on the wait queue.
442 	 */
443 	for (;;) {
444 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
445 					  TASK_INTERRUPTIBLE);
446 		release_sock(sk);
447 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
448 			timeo = schedule_timeout(timeo);
449 		sched_annotate_sleep();
450 		lock_sock(sk);
451 		err = 0;
452 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
453 			break;
454 		err = -EINVAL;
455 		if (sk->sk_state != TCP_LISTEN)
456 			break;
457 		err = sock_intr_errno(timeo);
458 		if (signal_pending(current))
459 			break;
460 		err = -EAGAIN;
461 		if (!timeo)
462 			break;
463 	}
464 	finish_wait(sk_sleep(sk), &wait);
465 	return err;
466 }
467 
468 /*
469  * This will accept the next outstanding connection.
470  */
471 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
472 {
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
475 	struct request_sock *req;
476 	struct sock *newsk;
477 	int error;
478 
479 	lock_sock(sk);
480 
481 	/* We need to make sure that this socket is listening,
482 	 * and that it has something pending.
483 	 */
484 	error = -EINVAL;
485 	if (sk->sk_state != TCP_LISTEN)
486 		goto out_err;
487 
488 	/* Find already established connection */
489 	if (reqsk_queue_empty(queue)) {
490 		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
491 
492 		/* If this is a non blocking socket don't sleep */
493 		error = -EAGAIN;
494 		if (!timeo)
495 			goto out_err;
496 
497 		error = inet_csk_wait_for_connect(sk, timeo);
498 		if (error)
499 			goto out_err;
500 	}
501 	req = reqsk_queue_remove(queue, sk);
502 	newsk = req->sk;
503 
504 	if (sk->sk_protocol == IPPROTO_TCP &&
505 	    tcp_rsk(req)->tfo_listener) {
506 		spin_lock_bh(&queue->fastopenq.lock);
507 		if (tcp_rsk(req)->tfo_listener) {
508 			/* We are still waiting for the final ACK from 3WHS
509 			 * so can't free req now. Instead, we set req->sk to
510 			 * NULL to signify that the child socket is taken
511 			 * so reqsk_fastopen_remove() will free the req
512 			 * when 3WHS finishes (or is aborted).
513 			 */
514 			req->sk = NULL;
515 			req = NULL;
516 		}
517 		spin_unlock_bh(&queue->fastopenq.lock);
518 	}
519 
520 out:
521 	release_sock(sk);
522 	if (newsk && mem_cgroup_sockets_enabled) {
523 		int amt;
524 
525 		/* atomically get the memory usage, set and charge the
526 		 * newsk->sk_memcg.
527 		 */
528 		lock_sock(newsk);
529 
530 		/* The socket has not been accepted yet, no need to look at
531 		 * newsk->sk_wmem_queued.
532 		 */
533 		amt = sk_mem_pages(newsk->sk_forward_alloc +
534 				   atomic_read(&newsk->sk_rmem_alloc));
535 		mem_cgroup_sk_alloc(newsk);
536 		if (newsk->sk_memcg && amt)
537 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt);
538 
539 		release_sock(newsk);
540 	}
541 	if (req)
542 		reqsk_put(req);
543 	return newsk;
544 out_err:
545 	newsk = NULL;
546 	req = NULL;
547 	*err = error;
548 	goto out;
549 }
550 EXPORT_SYMBOL(inet_csk_accept);
551 
552 /*
553  * Using different timers for retransmit, delayed acks and probes
554  * We may wish use just one timer maintaining a list of expire jiffies
555  * to optimize.
556  */
557 void inet_csk_init_xmit_timers(struct sock *sk,
558 			       void (*retransmit_handler)(struct timer_list *t),
559 			       void (*delack_handler)(struct timer_list *t),
560 			       void (*keepalive_handler)(struct timer_list *t))
561 {
562 	struct inet_connection_sock *icsk = inet_csk(sk);
563 
564 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
565 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
566 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
567 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
568 }
569 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
570 
571 void inet_csk_clear_xmit_timers(struct sock *sk)
572 {
573 	struct inet_connection_sock *icsk = inet_csk(sk);
574 
575 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
576 
577 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
578 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
579 	sk_stop_timer(sk, &sk->sk_timer);
580 }
581 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
582 
583 void inet_csk_delete_keepalive_timer(struct sock *sk)
584 {
585 	sk_stop_timer(sk, &sk->sk_timer);
586 }
587 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
588 
589 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
590 {
591 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
592 }
593 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
594 
595 struct dst_entry *inet_csk_route_req(const struct sock *sk,
596 				     struct flowi4 *fl4,
597 				     const struct request_sock *req)
598 {
599 	const struct inet_request_sock *ireq = inet_rsk(req);
600 	struct net *net = read_pnet(&ireq->ireq_net);
601 	struct ip_options_rcu *opt;
602 	struct rtable *rt;
603 
604 	rcu_read_lock();
605 	opt = rcu_dereference(ireq->ireq_opt);
606 
607 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
608 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
609 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
610 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
611 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
612 			   htons(ireq->ir_num), sk->sk_uid);
613 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
614 	rt = ip_route_output_flow(net, fl4, sk);
615 	if (IS_ERR(rt))
616 		goto no_route;
617 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
618 		goto route_err;
619 	rcu_read_unlock();
620 	return &rt->dst;
621 
622 route_err:
623 	ip_rt_put(rt);
624 no_route:
625 	rcu_read_unlock();
626 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
627 	return NULL;
628 }
629 EXPORT_SYMBOL_GPL(inet_csk_route_req);
630 
631 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
632 					    struct sock *newsk,
633 					    const struct request_sock *req)
634 {
635 	const struct inet_request_sock *ireq = inet_rsk(req);
636 	struct net *net = read_pnet(&ireq->ireq_net);
637 	struct inet_sock *newinet = inet_sk(newsk);
638 	struct ip_options_rcu *opt;
639 	struct flowi4 *fl4;
640 	struct rtable *rt;
641 
642 	opt = rcu_dereference(ireq->ireq_opt);
643 	fl4 = &newinet->cork.fl.u.ip4;
644 
645 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
646 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
647 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
648 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
649 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
650 			   htons(ireq->ir_num), sk->sk_uid);
651 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
652 	rt = ip_route_output_flow(net, fl4, sk);
653 	if (IS_ERR(rt))
654 		goto no_route;
655 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
656 		goto route_err;
657 	return &rt->dst;
658 
659 route_err:
660 	ip_rt_put(rt);
661 no_route:
662 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
663 	return NULL;
664 }
665 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
666 
667 /* Decide when to expire the request and when to resend SYN-ACK */
668 static void syn_ack_recalc(struct request_sock *req,
669 			   const int max_syn_ack_retries,
670 			   const u8 rskq_defer_accept,
671 			   int *expire, int *resend)
672 {
673 	if (!rskq_defer_accept) {
674 		*expire = req->num_timeout >= max_syn_ack_retries;
675 		*resend = 1;
676 		return;
677 	}
678 	*expire = req->num_timeout >= max_syn_ack_retries &&
679 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
680 	/* Do not resend while waiting for data after ACK,
681 	 * start to resend on end of deferring period to give
682 	 * last chance for data or ACK to create established socket.
683 	 */
684 	*resend = !inet_rsk(req)->acked ||
685 		  req->num_timeout >= rskq_defer_accept - 1;
686 }
687 
688 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
689 {
690 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
691 
692 	if (!err)
693 		req->num_retrans++;
694 	return err;
695 }
696 EXPORT_SYMBOL(inet_rtx_syn_ack);
697 
698 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
699 					     struct sock *sk)
700 {
701 	struct sock *req_sk, *nreq_sk;
702 	struct request_sock *nreq;
703 
704 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
705 	if (!nreq) {
706 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
707 
708 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
709 		sock_put(sk);
710 		return NULL;
711 	}
712 
713 	req_sk = req_to_sk(req);
714 	nreq_sk = req_to_sk(nreq);
715 
716 	memcpy(nreq_sk, req_sk,
717 	       offsetof(struct sock, sk_dontcopy_begin));
718 	memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
719 	       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
720 
721 	sk_node_init(&nreq_sk->sk_node);
722 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
723 #ifdef CONFIG_XPS
724 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
725 #endif
726 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
727 
728 	nreq->rsk_listener = sk;
729 
730 	/* We need not acquire fastopenq->lock
731 	 * because the child socket is locked in inet_csk_listen_stop().
732 	 */
733 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
734 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
735 
736 	return nreq;
737 }
738 
739 static void reqsk_queue_migrated(struct request_sock_queue *queue,
740 				 const struct request_sock *req)
741 {
742 	if (req->num_timeout == 0)
743 		atomic_inc(&queue->young);
744 	atomic_inc(&queue->qlen);
745 }
746 
747 static void reqsk_migrate_reset(struct request_sock *req)
748 {
749 	req->saved_syn = NULL;
750 #if IS_ENABLED(CONFIG_IPV6)
751 	inet_rsk(req)->ipv6_opt = NULL;
752 	inet_rsk(req)->pktopts = NULL;
753 #else
754 	inet_rsk(req)->ireq_opt = NULL;
755 #endif
756 }
757 
758 /* return true if req was found in the ehash table */
759 static bool reqsk_queue_unlink(struct request_sock *req)
760 {
761 	struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
762 	bool found = false;
763 
764 	if (sk_hashed(req_to_sk(req))) {
765 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
766 
767 		spin_lock(lock);
768 		found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
769 		spin_unlock(lock);
770 	}
771 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
772 		reqsk_put(req);
773 	return found;
774 }
775 
776 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
777 {
778 	bool unlinked = reqsk_queue_unlink(req);
779 
780 	if (unlinked) {
781 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
782 		reqsk_put(req);
783 	}
784 	return unlinked;
785 }
786 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
787 
788 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
789 {
790 	inet_csk_reqsk_queue_drop(sk, req);
791 	reqsk_put(req);
792 }
793 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
794 
795 static void reqsk_timer_handler(struct timer_list *t)
796 {
797 	struct request_sock *req = from_timer(req, t, rsk_timer);
798 	struct request_sock *nreq = NULL, *oreq = req;
799 	struct sock *sk_listener = req->rsk_listener;
800 	struct inet_connection_sock *icsk;
801 	struct request_sock_queue *queue;
802 	struct net *net;
803 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
804 
805 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
806 		struct sock *nsk;
807 
808 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
809 		if (!nsk)
810 			goto drop;
811 
812 		nreq = inet_reqsk_clone(req, nsk);
813 		if (!nreq)
814 			goto drop;
815 
816 		/* The new timer for the cloned req can decrease the 2
817 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
818 		 * hold another count to prevent use-after-free and
819 		 * call reqsk_put() just before return.
820 		 */
821 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
822 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
823 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
824 
825 		req = nreq;
826 		sk_listener = nsk;
827 	}
828 
829 	icsk = inet_csk(sk_listener);
830 	net = sock_net(sk_listener);
831 	max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
832 	/* Normally all the openreqs are young and become mature
833 	 * (i.e. converted to established socket) for first timeout.
834 	 * If synack was not acknowledged for 1 second, it means
835 	 * one of the following things: synack was lost, ack was lost,
836 	 * rtt is high or nobody planned to ack (i.e. synflood).
837 	 * When server is a bit loaded, queue is populated with old
838 	 * open requests, reducing effective size of queue.
839 	 * When server is well loaded, queue size reduces to zero
840 	 * after several minutes of work. It is not synflood,
841 	 * it is normal operation. The solution is pruning
842 	 * too old entries overriding normal timeout, when
843 	 * situation becomes dangerous.
844 	 *
845 	 * Essentially, we reserve half of room for young
846 	 * embrions; and abort old ones without pity, if old
847 	 * ones are about to clog our table.
848 	 */
849 	queue = &icsk->icsk_accept_queue;
850 	qlen = reqsk_queue_len(queue);
851 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
852 		int young = reqsk_queue_len_young(queue) << 1;
853 
854 		while (max_syn_ack_retries > 2) {
855 			if (qlen < young)
856 				break;
857 			max_syn_ack_retries--;
858 			young <<= 1;
859 		}
860 	}
861 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
862 		       &expire, &resend);
863 	req->rsk_ops->syn_ack_timeout(req);
864 	if (!expire &&
865 	    (!resend ||
866 	     !inet_rtx_syn_ack(sk_listener, req) ||
867 	     inet_rsk(req)->acked)) {
868 		unsigned long timeo;
869 
870 		if (req->num_timeout++ == 0)
871 			atomic_dec(&queue->young);
872 		timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
873 		mod_timer(&req->rsk_timer, jiffies + timeo);
874 
875 		if (!nreq)
876 			return;
877 
878 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
879 			/* delete timer */
880 			inet_csk_reqsk_queue_drop(sk_listener, nreq);
881 			goto no_ownership;
882 		}
883 
884 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
885 		reqsk_migrate_reset(oreq);
886 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
887 		reqsk_put(oreq);
888 
889 		reqsk_put(nreq);
890 		return;
891 	}
892 
893 	/* Even if we can clone the req, we may need not retransmit any more
894 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
895 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
896 	 */
897 	if (nreq) {
898 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
899 no_ownership:
900 		reqsk_migrate_reset(nreq);
901 		reqsk_queue_removed(queue, nreq);
902 		__reqsk_free(nreq);
903 	}
904 
905 drop:
906 	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
907 }
908 
909 static void reqsk_queue_hash_req(struct request_sock *req,
910 				 unsigned long timeout)
911 {
912 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
913 	mod_timer(&req->rsk_timer, jiffies + timeout);
914 
915 	inet_ehash_insert(req_to_sk(req), NULL, NULL);
916 	/* before letting lookups find us, make sure all req fields
917 	 * are committed to memory and refcnt initialized.
918 	 */
919 	smp_wmb();
920 	refcount_set(&req->rsk_refcnt, 2 + 1);
921 }
922 
923 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
924 				   unsigned long timeout)
925 {
926 	reqsk_queue_hash_req(req, timeout);
927 	inet_csk_reqsk_queue_added(sk);
928 }
929 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
930 
931 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
932 			   const gfp_t priority)
933 {
934 	struct inet_connection_sock *icsk = inet_csk(newsk);
935 
936 	if (!icsk->icsk_ulp_ops)
937 		return;
938 
939 	if (icsk->icsk_ulp_ops->clone)
940 		icsk->icsk_ulp_ops->clone(req, newsk, priority);
941 }
942 
943 /**
944  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
945  *	@sk: the socket to clone
946  *	@req: request_sock
947  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
948  *
949  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
950  */
951 struct sock *inet_csk_clone_lock(const struct sock *sk,
952 				 const struct request_sock *req,
953 				 const gfp_t priority)
954 {
955 	struct sock *newsk = sk_clone_lock(sk, priority);
956 
957 	if (newsk) {
958 		struct inet_connection_sock *newicsk = inet_csk(newsk);
959 
960 		inet_sk_set_state(newsk, TCP_SYN_RECV);
961 		newicsk->icsk_bind_hash = NULL;
962 
963 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
964 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
965 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
966 
967 		/* listeners have SOCK_RCU_FREE, not the children */
968 		sock_reset_flag(newsk, SOCK_RCU_FREE);
969 
970 		inet_sk(newsk)->mc_list = NULL;
971 
972 		newsk->sk_mark = inet_rsk(req)->ir_mark;
973 		atomic64_set(&newsk->sk_cookie,
974 			     atomic64_read(&inet_rsk(req)->ir_cookie));
975 
976 		newicsk->icsk_retransmits = 0;
977 		newicsk->icsk_backoff	  = 0;
978 		newicsk->icsk_probes_out  = 0;
979 		newicsk->icsk_probes_tstamp = 0;
980 
981 		/* Deinitialize accept_queue to trap illegal accesses. */
982 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
983 
984 		inet_clone_ulp(req, newsk, priority);
985 
986 		security_inet_csk_clone(newsk, req);
987 	}
988 	return newsk;
989 }
990 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
991 
992 /*
993  * At this point, there should be no process reference to this
994  * socket, and thus no user references at all.  Therefore we
995  * can assume the socket waitqueue is inactive and nobody will
996  * try to jump onto it.
997  */
998 void inet_csk_destroy_sock(struct sock *sk)
999 {
1000 	WARN_ON(sk->sk_state != TCP_CLOSE);
1001 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1002 
1003 	/* It cannot be in hash table! */
1004 	WARN_ON(!sk_unhashed(sk));
1005 
1006 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1007 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1008 
1009 	sk->sk_prot->destroy(sk);
1010 
1011 	sk_stream_kill_queues(sk);
1012 
1013 	xfrm_sk_free_policy(sk);
1014 
1015 	sk_refcnt_debug_release(sk);
1016 
1017 	percpu_counter_dec(sk->sk_prot->orphan_count);
1018 
1019 	sock_put(sk);
1020 }
1021 EXPORT_SYMBOL(inet_csk_destroy_sock);
1022 
1023 /* This function allows to force a closure of a socket after the call to
1024  * tcp/dccp_create_openreq_child().
1025  */
1026 void inet_csk_prepare_forced_close(struct sock *sk)
1027 	__releases(&sk->sk_lock.slock)
1028 {
1029 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1030 	bh_unlock_sock(sk);
1031 	sock_put(sk);
1032 	inet_csk_prepare_for_destroy_sock(sk);
1033 	inet_sk(sk)->inet_num = 0;
1034 }
1035 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1036 
1037 int inet_csk_listen_start(struct sock *sk, int backlog)
1038 {
1039 	struct inet_connection_sock *icsk = inet_csk(sk);
1040 	struct inet_sock *inet = inet_sk(sk);
1041 	int err = -EADDRINUSE;
1042 
1043 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1044 
1045 	sk->sk_ack_backlog = 0;
1046 	inet_csk_delack_init(sk);
1047 
1048 	/* There is race window here: we announce ourselves listening,
1049 	 * but this transition is still not validated by get_port().
1050 	 * It is OK, because this socket enters to hash table only
1051 	 * after validation is complete.
1052 	 */
1053 	inet_sk_state_store(sk, TCP_LISTEN);
1054 	if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
1055 		inet->inet_sport = htons(inet->inet_num);
1056 
1057 		sk_dst_reset(sk);
1058 		err = sk->sk_prot->hash(sk);
1059 
1060 		if (likely(!err))
1061 			return 0;
1062 	}
1063 
1064 	inet_sk_set_state(sk, TCP_CLOSE);
1065 	return err;
1066 }
1067 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1068 
1069 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1070 			      struct sock *child)
1071 {
1072 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1073 
1074 	sock_orphan(child);
1075 
1076 	percpu_counter_inc(sk->sk_prot->orphan_count);
1077 
1078 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1079 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1080 		BUG_ON(sk != req->rsk_listener);
1081 
1082 		/* Paranoid, to prevent race condition if
1083 		 * an inbound pkt destined for child is
1084 		 * blocked by sock lock in tcp_v4_rcv().
1085 		 * Also to satisfy an assertion in
1086 		 * tcp_v4_destroy_sock().
1087 		 */
1088 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1089 	}
1090 	inet_csk_destroy_sock(child);
1091 }
1092 
1093 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1094 				      struct request_sock *req,
1095 				      struct sock *child)
1096 {
1097 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1098 
1099 	spin_lock(&queue->rskq_lock);
1100 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1101 		inet_child_forget(sk, req, child);
1102 		child = NULL;
1103 	} else {
1104 		req->sk = child;
1105 		req->dl_next = NULL;
1106 		if (queue->rskq_accept_head == NULL)
1107 			WRITE_ONCE(queue->rskq_accept_head, req);
1108 		else
1109 			queue->rskq_accept_tail->dl_next = req;
1110 		queue->rskq_accept_tail = req;
1111 		sk_acceptq_added(sk);
1112 	}
1113 	spin_unlock(&queue->rskq_lock);
1114 	return child;
1115 }
1116 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1117 
1118 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1119 					 struct request_sock *req, bool own_req)
1120 {
1121 	if (own_req) {
1122 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1123 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1124 
1125 		if (sk != req->rsk_listener) {
1126 			/* another listening sk has been selected,
1127 			 * migrate the req to it.
1128 			 */
1129 			struct request_sock *nreq;
1130 
1131 			/* hold a refcnt for the nreq->rsk_listener
1132 			 * which is assigned in inet_reqsk_clone()
1133 			 */
1134 			sock_hold(sk);
1135 			nreq = inet_reqsk_clone(req, sk);
1136 			if (!nreq) {
1137 				inet_child_forget(sk, req, child);
1138 				goto child_put;
1139 			}
1140 
1141 			refcount_set(&nreq->rsk_refcnt, 1);
1142 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1143 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1144 				reqsk_migrate_reset(req);
1145 				reqsk_put(req);
1146 				return child;
1147 			}
1148 
1149 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1150 			reqsk_migrate_reset(nreq);
1151 			__reqsk_free(nreq);
1152 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1153 			return child;
1154 		}
1155 	}
1156 	/* Too bad, another child took ownership of the request, undo. */
1157 child_put:
1158 	bh_unlock_sock(child);
1159 	sock_put(child);
1160 	return NULL;
1161 }
1162 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1163 
1164 /*
1165  *	This routine closes sockets which have been at least partially
1166  *	opened, but not yet accepted.
1167  */
1168 void inet_csk_listen_stop(struct sock *sk)
1169 {
1170 	struct inet_connection_sock *icsk = inet_csk(sk);
1171 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1172 	struct request_sock *next, *req;
1173 
1174 	/* Following specs, it would be better either to send FIN
1175 	 * (and enter FIN-WAIT-1, it is normal close)
1176 	 * or to send active reset (abort).
1177 	 * Certainly, it is pretty dangerous while synflood, but it is
1178 	 * bad justification for our negligence 8)
1179 	 * To be honest, we are not able to make either
1180 	 * of the variants now.			--ANK
1181 	 */
1182 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1183 		struct sock *child = req->sk, *nsk;
1184 		struct request_sock *nreq;
1185 
1186 		local_bh_disable();
1187 		bh_lock_sock(child);
1188 		WARN_ON(sock_owned_by_user(child));
1189 		sock_hold(child);
1190 
1191 		nsk = reuseport_migrate_sock(sk, child, NULL);
1192 		if (nsk) {
1193 			nreq = inet_reqsk_clone(req, nsk);
1194 			if (nreq) {
1195 				refcount_set(&nreq->rsk_refcnt, 1);
1196 
1197 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1198 					__NET_INC_STATS(sock_net(nsk),
1199 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1200 					reqsk_migrate_reset(req);
1201 				} else {
1202 					__NET_INC_STATS(sock_net(nsk),
1203 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1204 					reqsk_migrate_reset(nreq);
1205 					__reqsk_free(nreq);
1206 				}
1207 
1208 				/* inet_csk_reqsk_queue_add() has already
1209 				 * called inet_child_forget() on failure case.
1210 				 */
1211 				goto skip_child_forget;
1212 			}
1213 		}
1214 
1215 		inet_child_forget(sk, req, child);
1216 skip_child_forget:
1217 		reqsk_put(req);
1218 		bh_unlock_sock(child);
1219 		local_bh_enable();
1220 		sock_put(child);
1221 
1222 		cond_resched();
1223 	}
1224 	if (queue->fastopenq.rskq_rst_head) {
1225 		/* Free all the reqs queued in rskq_rst_head. */
1226 		spin_lock_bh(&queue->fastopenq.lock);
1227 		req = queue->fastopenq.rskq_rst_head;
1228 		queue->fastopenq.rskq_rst_head = NULL;
1229 		spin_unlock_bh(&queue->fastopenq.lock);
1230 		while (req != NULL) {
1231 			next = req->dl_next;
1232 			reqsk_put(req);
1233 			req = next;
1234 		}
1235 	}
1236 	WARN_ON_ONCE(sk->sk_ack_backlog);
1237 }
1238 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1239 
1240 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1241 {
1242 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1243 	const struct inet_sock *inet = inet_sk(sk);
1244 
1245 	sin->sin_family		= AF_INET;
1246 	sin->sin_addr.s_addr	= inet->inet_daddr;
1247 	sin->sin_port		= inet->inet_dport;
1248 }
1249 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1250 
1251 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1252 {
1253 	const struct inet_sock *inet = inet_sk(sk);
1254 	const struct ip_options_rcu *inet_opt;
1255 	__be32 daddr = inet->inet_daddr;
1256 	struct flowi4 *fl4;
1257 	struct rtable *rt;
1258 
1259 	rcu_read_lock();
1260 	inet_opt = rcu_dereference(inet->inet_opt);
1261 	if (inet_opt && inet_opt->opt.srr)
1262 		daddr = inet_opt->opt.faddr;
1263 	fl4 = &fl->u.ip4;
1264 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1265 				   inet->inet_saddr, inet->inet_dport,
1266 				   inet->inet_sport, sk->sk_protocol,
1267 				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1268 	if (IS_ERR(rt))
1269 		rt = NULL;
1270 	if (rt)
1271 		sk_setup_caps(sk, &rt->dst);
1272 	rcu_read_unlock();
1273 
1274 	return &rt->dst;
1275 }
1276 
1277 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1278 {
1279 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1280 	struct inet_sock *inet = inet_sk(sk);
1281 
1282 	if (!dst) {
1283 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1284 		if (!dst)
1285 			goto out;
1286 	}
1287 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1288 
1289 	dst = __sk_dst_check(sk, 0);
1290 	if (!dst)
1291 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1292 out:
1293 	return dst;
1294 }
1295 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1296